1
|
Sharma S, Rahman S, Becker MZ, Pelah MG, Berkovich R, Popa I. The Influence of DNA Handles on the Mechanical Response of Single Protein Molecules. Biomacromolecules 2025. [PMID: 40359487 DOI: 10.1021/acs.biomac.5c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The mechanical response of proteins to force is governed by their chain stiffness, molecular length, and domain segmentation and can be influenced by unstructured tethers in series with the molecule. Here, we investigate the effect of DNA linkers on the mechanical unfolding of proteins. These tethers are extensively used in single-molecule techniques as spacing handles or calibration standards. We designed two DNA-protein constructs made from covalently cross-linked DNA molecules having 604 bp and 3 kbp in series with eight repeats of bacterial protein L, and compared them with the protein L construct lacking any DNA linker. Using magnetic tweezers, we measured the unfolding dynamics and folding likelihood of protein L connected in series with these DNA linkers. Our findings indicate that stiff DNA linkers do not significantly alter the unfolding kinetics of the tethered protein, while a longer handle slightly increases the force required for refolding. We rationalize our measurements using an energy profile model projected on the pulling end-to-end reaction coordinate. Furthermore, we analyze how the tension is being transmitted along the protein-DNA construct as a function of its size. We conclude that the small differences induced by the presence of DNA linkers in single-molecule measurements are insignificant, given the current instrumental capabilities.
Collapse
Affiliation(s)
- Sabita Sharma
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| | - Sadia Rahman
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| | - Mattan Ze'ev Becker
- Department of Chemical Engineering, Ben-Gurion University of the Negev, 1 Beer Sheva Blvd, Beer Sheva 8410501, Israel
| | - Maya Georgia Pelah
- Department of Chemical Engineering, Ben-Gurion University of the Negev, 1 Beer Sheva Blvd, Beer Sheva 8410501, Israel
| | - Ronen Berkovich
- Department of Chemical Engineering, Ben-Gurion University of the Negev, 1 Beer Sheva Blvd, Beer Sheva 8410501, Israel
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
2
|
Liu X, Yu L, Xiao A, Sun W, Wang H, Wang X, Zhou Y, Li C, Li J, Wang Y, Wang G. Analytical methods in studying cell force sensing: principles, current technologies and perspectives. Regen Biomater 2025; 12:rbaf007. [PMID: 40337625 PMCID: PMC12057814 DOI: 10.1093/rb/rbaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Accepted: 02/10/2025] [Indexed: 05/09/2025] Open
Abstract
Mechanical stimulation plays a crucial role in numerous biological activities, including tissue development, regeneration and remodeling. Understanding how cells respond to their mechanical microenvironment is vital for investigating mechanotransduction with adequate spatial and temporal resolution. Cell force sensing-also known as mechanosensation or mechanotransduction-involves force transmission through the cytoskeleton and mechanochemical signaling. Insights into cell-extracellular matrix interactions and mechanotransduction are particularly relevant for guiding biomaterial design in tissue engineering. To establish a foundation for mechanical biomedicine, this review will provide a comprehensive overview of cell mechanotransduction mechanisms, including the structural components essential for effective mechanical responses, such as cytoskeletal elements, force-sensitive ion channels, membrane receptors and key signaling pathways. It will also discuss the clutch model in force transmission, the role of mechanotransduction in both physiology and pathological contexts, and biomechanics and biomaterial design. Additionally, we outline analytical approaches for characterizing forces at cellular and subcellular levels, discussing the advantages and limitations of each method to aid researchers in selecting appropriate techniques. Finally, we summarize recent advancements in cell force sensing and identify key challenges for future research. Overall, this review should contribute to biomedical engineering by supporting the design of biomaterials that integrate precise mechanical information.
Collapse
Affiliation(s)
- Xiaojun Liu
- College of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266113, China
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao 266024, China
| | - Lei Yu
- Department of Traditional Chinese Medicine, Qingdao Special Service Sanatorium of PLA Navy, Qingdao 266071, China
| | - Adam Xiao
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Wenxu Sun
- School of Sciences, Nantong University, Nantong 226019, China
| | - Han Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xiangxiu Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yanghao Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Chao Li
- College of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266113, China
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao 266024, China
| | - Jiangtao Li
- College of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Yongliang Wang
- College of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266113, China
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao 266024, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
- Qindao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao 266044, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
- JinFeng Laboratory, Chongqing 401329, China
| |
Collapse
|
3
|
Xu J, Sun H, Zhang Z, Guo Z, Le S, Chen H. Folding and Misfolding Dynamics of Irisin Protein Revealed by Single-Molecule Magnetic Tweezers. J Phys Chem Lett 2024; 15:11954-11960. [PMID: 39576132 DOI: 10.1021/acs.jpclett.4c02718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Irisin, a fibronectin III protein secreted by muscles during physical exercise, plays a significant role in the browning of white fat and cell adhesion, highlighting the importance of its conformational transitions. In this study, we investigated the folding and unfolding dynamics of a single irisin domain using a single-molecule manipulation technique known as magnetic tweezers. In addition to the native state, irisin can also fold transiently into a misfolded state. We determined the folding free energies of the native and misfolded states as well as their force-dependent folding and unfolding rates. The free energy of the misfolded state is higher than that of the unfolded state, and the misfolded state has a homogeneous force-dependent unfolding rate. The stable native state demonstrates heterogeneous unfolding rates that are within ∼1 order of magnitude. Via comparison with the well-studied 10th fibronectin III domain that has a partially folded intermediate state, our study demonstrates that proteins with similar structure can have distinct folding pathways.
Collapse
Affiliation(s)
- Jiashu Xu
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Hao Sun
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Zhuwei Zhang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Zilong Guo
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Shimin Le
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Hu Chen
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| |
Collapse
|
4
|
Huerta-López C, Clemente-Manteca A, Velázquez-Carreras D, Espinosa FM, Sanchez JG, Martínez-del-Pozo Á, García-García M, Martín-Colomo S, Rodríguez-Blanco A, Esteban-González R, Martín-Zamora FM, Gutierrez-Rus LI, Garcia R, Roca-Cusachs P, Elosegui-Artola A, del Pozo MA, Herrero-Galán E, Sáez P, Plaza GR, Alegre-Cebollada J. Cell response to extracellular matrix viscous energy dissipation outweighs high-rigidity sensing. SCIENCE ADVANCES 2024; 10:eadf9758. [PMID: 39546608 PMCID: PMC11567001 DOI: 10.1126/sciadv.adf9758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024]
Abstract
The mechanics of the extracellular matrix (ECM) determine cell activity and fate through mechanoresponsive proteins including Yes-associated protein 1 (YAP). Rigidity and viscous relaxation have emerged as the main mechanical properties of the ECM steering cell behavior. However, how cells integrate coexisting ECM rigidity and viscosity cues remains poorly understood, particularly in the high-stiffness regime. Here, we have exploited engineered stiff viscoelastic protein hydrogels to show that, contrary to current models of cell-ECM interaction, substrate viscous energy dissipation attenuates mechanosensing even when cells are exposed to higher effective rigidity. This unexpected behavior is however readily captured by a pull-and-hold model of molecular clutch-based cell mechanosensing, which also recapitulates opposite cellular response at low rigidities. Consistent with predictions of the pull-and-hold model, we find that myosin inhibition can boost mechanosensing on cells cultured on dissipative matrices. Together, our work provides general mechanistic understanding on how cells respond to the viscoelastic properties of the ECM.
Collapse
Affiliation(s)
- Carla Huerta-López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | | | | | | - Juan G. Sanchez
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | - Álvaro Martínez-del-Pozo
- Departamento de Bioquímica y Biología Molecular, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María García-García
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Sara Martín-Colomo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | | | | | | | | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Alberto Elosegui-Artola
- Cell and Tissue Mechanobiology Laboratory, Francis Crick Institute, London, 1 Midland Road, NW1 1AT, UK
- Department of Physics, King’s College London, London, WC2R 2LS, UK
| | - Miguel A. del Pozo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Elías Herrero-Galán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Pablo Sáez
- Laboratori de Càlcul Numèric (LaCàN), Universitat Politècnica de Catalunya–BarcelonaTech, Barcelona, Spain
- Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech), Barcelona, Spain
| | - Gustavo R. Plaza
- ETSI de Caminos and Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | |
Collapse
|
5
|
Rissone P, Severino A, Pastor I, Ritort F. Universal cold RNA phase transitions. Proc Natl Acad Sci U S A 2024; 121:e2408313121. [PMID: 39150781 PMCID: PMC11348302 DOI: 10.1073/pnas.2408313121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/12/2024] [Indexed: 08/18/2024] Open
Abstract
RNA's diversity of structures and functions impacts all life forms since primordia. We use calorimetric force spectroscopy to investigate RNA folding landscapes in previously unexplored low-temperature conditions. We find that Watson-Crick RNA hairpins, the most basic secondary structure elements, undergo a glass-like transition below [Formula: see text]C where the heat capacity abruptly changes and the RNA folds into a diversity of misfolded structures. We hypothesize that an altered RNA biochemistry, determined by sequence-independent ribose-water interactions, outweighs sequence-dependent base pairing. The ubiquitous ribose-water interactions lead to universal RNA phase transitions below TG, such as maximum stability at [Formula: see text]C where water density is maximum, and cold denaturation at [Formula: see text]C. RNA cold biochemistry may have a profound impact on RNA function and evolution.
Collapse
Affiliation(s)
- Paolo Rissone
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Barcelona 08028, Spain
| | - Aurélien Severino
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Barcelona 08028, Spain
| | - Isabel Pastor
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Barcelona 08028, Spain
| | - Felix Ritort
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Barcelona 08028, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Barcelona 08028, Spain
| |
Collapse
|
6
|
Lin Z, Lu Z, Di Z, Tang Y. Learning noise-induced transitions by multi-scaling reservoir computing. Nat Commun 2024; 15:6584. [PMID: 39097591 PMCID: PMC11297999 DOI: 10.1038/s41467-024-50905-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 07/23/2024] [Indexed: 08/05/2024] Open
Abstract
Noise is usually regarded as adversarial to extracting effective dynamics from time series, such that conventional approaches usually aim at learning dynamics by mitigating the noisy effect. However, noise can have a functional role in driving transitions between stable states underlying many stochastic dynamics. We find that leveraging a machine learning model, reservoir computing, can learn noise-induced transitions. We propose a concise training protocol with a focus on a pivotal hyperparameter controlling the time scale. The approach is widely applicable, including a bistable system with white noise or colored noise, where it generates accurate statistics of transition time for white noise and specific transition time for colored noise. Instead, the conventional approaches such as SINDy and the recurrent neural network do not faithfully capture stochastic transitions even for the case of white noise. The present approach is also aware of asymmetry of the bistable potential, rotational dynamics caused by non-detailed balance, and transitions in multi-stable systems. For the experimental data of protein folding, it learns statistics of transition time between folded states, enabling us to characterize transition dynamics from a small dataset. The results portend the exploration of extending the prevailing approaches in learning dynamics from noisy time series.
Collapse
Affiliation(s)
- Zequn Lin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
- Center for Interdisciplinary Studies, Westlake University, Hangzhou, 310024, China
- School of Science, Westlake University, Hangzhou, 310024, China
| | - Zhaofan Lu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Zengru Di
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Ying Tang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China.
- Key Laboratory of Quantum Physics and Photonic Quantum Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
7
|
Mykuliak VV, Rahikainen R, Ball NJ, Bussi G, Goult BT, Hytönen VP. Molecular dynamics simulations reveal how vinculin refolds partially unfolded talin rod helices to stabilize them against mechanical force. PLoS Comput Biol 2024; 20:e1012341. [PMID: 39110765 PMCID: PMC11333002 DOI: 10.1371/journal.pcbi.1012341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/19/2024] [Accepted: 07/21/2024] [Indexed: 08/21/2024] Open
Abstract
Vinculin binds to specific sites of mechanically unfolded talin rod domains to reinforce the coupling of the cell's exterior to its force generation machinery. Force-dependent vinculin-talin complexation and dissociation was previously observed as contraction or extension of the unfolded talin domains respectively using magnetic tweezers. However, the structural mechanism underlying vinculin recognition of unfolded vinculin binding sites (VBSs) in talin remains unknown. Using molecular dynamics simulations, we demonstrate that a VBS dynamically refolds under force, and that vinculin can recognize and bind to partially unfolded VBS states. Vinculin binding enables refolding of the mechanically strained VBS and stabilizes its folded α-helical conformation, providing resistance against mechanical stress. Together, these results provide an understanding of a recognition mechanism of proteins unfolded by force and insight into the initial moments of how vinculin binds unfolded talin rod domains during the assembly of this mechanosensing meshwork.
Collapse
Affiliation(s)
- Vasyl V. Mykuliak
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Rolle Rahikainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Neil J. Ball
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, SISSA, Trieste, Italy
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| |
Collapse
|
8
|
Tapia-Rojo R, Mora M, Garcia-Manyes S. Single-molecule magnetic tweezers to probe the equilibrium dynamics of individual proteins at physiologically relevant forces and timescales. Nat Protoc 2024; 19:1779-1806. [PMID: 38467905 PMCID: PMC7616092 DOI: 10.1038/s41596-024-00965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/18/2023] [Indexed: 03/13/2024]
Abstract
The reversible unfolding and refolding of proteins is a regulatory mechanism of tissue elasticity and signalling used by cells to sense and adapt to extracellular and intracellular mechanical forces. However, most of these proteins exhibit low mechanical stability, posing technical challenges to the characterization of their conformational dynamics under force. Here, we detail step-by-step instructions for conducting single-protein nanomechanical experiments using ultra-stable magnetic tweezers, which enable the measurement of the equilibrium conformational dynamics of single proteins under physiologically relevant low forces applied over biologically relevant timescales. We report the basic principles determining the functioning of the magnetic tweezer instrument, review the protein design strategy and the fluid chamber preparation and detail the procedure to acquire and analyze the unfolding and refolding trajectories of individual proteins under force. This technique adds to the toolbox of single-molecule nanomechanical techniques and will be of particular interest to those interested in proteins involved in mechanosensing and mechanotransduction. The procedure takes 4 d to complete, plus an additional 6 d for protein cloning and production, requiring basic expertise in molecular biology, surface chemistry and data analysis.
Collapse
Affiliation(s)
- Rafael Tapia-Rojo
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK.
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK.
| | - Marc Mora
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK.
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK.
| | - Sergi Garcia-Manyes
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK.
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK.
| |
Collapse
|
9
|
Tapia-Rojo R, Alonso-Caballero A, Badilla CL, Fernandez JM. Identical sequences, different behaviors: Protein diversity captured at the single-molecule level. Biophys J 2024; 123:814-823. [PMID: 38409780 PMCID: PMC10995423 DOI: 10.1016/j.bpj.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
The classical "one sequence, one structure, one function" paradigm has shaped much of our intuition of how proteins work inside the cell. Partially due to the insight provided by bulk biochemical assays, individual biomolecules are often assumed to behave as identical entities, and their characterization relies on ensemble averages that flatten any conformational diversity into a unique phenotype. While the emergence of single-molecule techniques opened the gates to interrogating individual molecules, technical shortcomings typically limit the duration of these measurements, which precludes a complete characterization of an individual protein and, hence, capturing the heterogeneity among molecular populations. Here, we introduce an ultrastable magnetic tweezers design, which enables us to measure the folding dynamics of a single protein during several uninterrupted days with high temporal and spatial resolution. Thanks to this instrumental development, we fully characterize the nanomechanics of two proteins with a very distinct force response, the talin R3IVVI domain and protein L. Days-long recordings on the same protein individual accumulate thousands of folding transitions with submicrosecond resolution, allowing us to reconstruct their free energy landscapes and describe how they evolve with force. By mapping the nanomechanical identity of many different protein individuals, we directly capture their molecular diversity as a quantifiable dispersion on their force response and folding kinetics. By significantly expanding the measurable timescales, our instrumental development offers a tool for profiling individual molecules, opening the gates to directly characterizing biomolecular heterogeneity.
Collapse
Affiliation(s)
- Rafael Tapia-Rojo
- Department of Biological Sciences, Columbia University, New York, New York.
| | | | - Carmen L Badilla
- Department of Biological Sciences, Columbia University, New York, New York
| | - Julio M Fernandez
- Department of Biological Sciences, Columbia University, New York, New York
| |
Collapse
|
10
|
Guo Y, Yan J, Goult BT. Mechanotransduction through protein stretching. Curr Opin Cell Biol 2024; 87:102327. [PMID: 38301379 DOI: 10.1016/j.ceb.2024.102327] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Cells sense and respond to subtle changes in their physicality, and via a myriad of different mechanosensitive processes, convert these physical cues into chemical and biochemical signals. This process, called mechanotransduction, is possible due to a highly sophisticated machinery within cells. One mechanism by which this can occur is via the stretching of mechanosensitive proteins. Stretching proteins that contain force-dependent regions results in altered geometry and dimensions of the connections, as well as differential spatial organization of signals bound to the stretched protein. The purpose of this mini-review is to discuss some of the intense recent activity in this area of mechanobiology that strives to understand how protein stretching can influence signaling outputs and cellular responses.
Collapse
Affiliation(s)
- Yanyu Guo
- Department of Physics, Mechanobiology Institute, National University of Singapore 117542, Singapore
| | - Jie Yan
- Department of Physics, Mechanobiology Institute, National University of Singapore 117542, Singapore.
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK; Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|
11
|
Yuan J, Tanaka H. Impact of Hydrodynamic Interactions on the Kinetic Pathway of Protein Folding. PHYSICAL REVIEW LETTERS 2024; 132:138402. [PMID: 38613272 DOI: 10.1103/physrevlett.132.138402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 02/29/2024] [Indexed: 04/14/2024]
Abstract
Protein folding is a fundamental process critical to cellular function and human health, but it remains a grand challenge in biophysics. Hydrodynamic interaction (HI) plays a vital role in the self-organization of soft and biological materials, yet its role in protein folding is not fully understood despite folding occurring in a fluid environment. Here, we use the fluid particle dynamics method to investigate many-body hydrodynamic couplings between amino acid residues and fluid motion in the folding kinetics of a coarse-grained four-α-helices bundle protein. Our results reveal that HI helps select fast folding pathways to the native state without being kinetically trapped, significantly speeding up the folding kinetics compared to its absence. First, the directional flow along the protein backbone expedites protein collapse. Then, the incompressibility-induced squeezing flow effects retard the accumulation of non-native hydrophobic contacts, thus preventing the protein from being trapped in local energy minima during the conformational search of the native structure. We also find that the significance of HI in folding kinetics depends on temperature, with a pronounced effect under biologically relevant conditions. Our findings suggest that HI, particularly the short-range squeezing effect, may be crucial in avoiding protein misfolding.
Collapse
Affiliation(s)
- Jiaxing Yuan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hajime Tanaka
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Fundamental Engineering, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
12
|
Cao R, Tian H, Tian Y, Fu X. A Hierarchical Mechanotransduction System: From Macro to Micro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302327. [PMID: 38145330 PMCID: PMC10953595 DOI: 10.1002/advs.202302327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/27/2023] [Indexed: 12/26/2023]
Abstract
Mechanotransduction is a strictly regulated process whereby mechanical stimuli, including mechanical forces and properties, are sensed and translated into biochemical signals. Increasing data demonstrate that mechanotransduction is crucial for regulating macroscopic and microscopic dynamics and functionalities. However, the actions and mechanisms of mechanotransduction across multiple hierarchies, from molecules, subcellular structures, cells, tissues/organs, to the whole-body level, have not been yet comprehensively documented. Herein, the biological roles and operational mechanisms of mechanotransduction from macro to micro are revisited, with a focus on the orchestrations across diverse hierarchies. The implications, applications, and challenges of mechanotransduction in human diseases are also summarized and discussed. Together, this knowledge from a hierarchical perspective has the potential to refresh insights into mechanotransduction regulation and disease pathogenesis and therapy, and ultimately revolutionize the prevention, diagnosis, and treatment of human diseases.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Huimin Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Yan Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Xianghui Fu
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| |
Collapse
|
13
|
Tapia-Rojo R. Construction and operation of high-resolution magnetic tape head tweezers for measuring single-protein dynamics under force. Methods Enzymol 2024; 694:83-107. [PMID: 38492959 DOI: 10.1016/bs.mie.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Mechanical forces are critical to protein function across many biological contexts-from bacterial adhesion to muscle mechanics and mechanotransduction processes. Hence, understanding how mechanical forces govern protein activity has developed into a central scientific question. In this context, single-molecule magnetic tweezers has recently emerged as a valuable experimental tool, offering the capability to measure single proteins over physiologically relevant forces and timescales. In this chapter, we present a detailed protocol for the assembly and operation of our magnetic tape head tweezers instrument, specifically tailored to investigate protein dynamics. Our instrument boasts a simplified microscope design and incorporates a magnetic tape head as the force-generating apparatus, facilitating precise force control and enhancing its temporal stability, enabling the study of single protein mechanics over extended timescales spanning several hours or even days. Moreover, its straightforward and cost-effective design ensures its accessibility to the wider scientific community. We anticipate that this technique will attract widespread interest within the growing field of mechanobiology and expect that this chapter will provide facilitated accessibility to this technology.
Collapse
|
14
|
Bhatia S, Udgaonkar JB. Understanding the heterogeneity intrinsic to protein folding. Curr Opin Struct Biol 2024; 84:102738. [PMID: 38041993 DOI: 10.1016/j.sbi.2023.102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/04/2023]
Abstract
Relating the native fold of a protein to its amino acid sequence remains a fundamental problem in biology. While computer algorithms have demonstrated recently their prowess in predicting what structure a particular amino acid sequence will fold to, an understanding of how and why a specific protein fold is achieved remains elusive. A major challenge is to define the role of conformational heterogeneity during protein folding. Recent experimental studies, utilizing time-resolved FRET, hydrogen-exchange coupled to mass spectrometry, and single-molecule force spectroscopy, often in conjunction with simulation, have begun to reveal how conformational heterogeneity evolves during folding, and whether an intermediate ensemble of defined free energy consists of different sub-populations of molecules that may differ significantly in conformation, energy and entropy.
Collapse
Affiliation(s)
- Sandhya Bhatia
- Department of Biophysics, Howard Hughes Medical Institute UT Southwestern Medical Center, Dallas 75390, United States. https://twitter.com/Sandhyabhatia_5
| | - Jayant B Udgaonkar
- Department of Biology, Indian Institute of Science Education and Research Pune, Pashan, Pune 41008, India.
| |
Collapse
|
15
|
Mierke CT. Magnetic tweezers in cell mechanics. Methods Enzymol 2024; 694:321-354. [PMID: 38492957 DOI: 10.1016/bs.mie.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
The chapter provides an overview of the applications of magnetic tweezers in living cells. It discusses the advantages and disadvantages of magnetic tweezers technology with a focus on individual magnetic tweezers configurations, such as electromagnetic tweezers. Solutions to the disadvantages identified are also outlined. The specific role of magnetic tweezers in the field of mechanobiology, such as mechanosensitivity, mechano-allostery and mechanotransduction are also emphasized. The specific usage of magnetic tweezers in mechanically probing cells via specific cell surface receptors, such as mechanosensitive channels is discussed and why mechanical probing has revealed the opening and closing of the channels. Finally, the future direction of magnetic tweezers is presented.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Sciences, Peter Debye Institute for Soft Matter Physics, Biological Physics Division, Leipzig University, Leipzig, Germany.
| |
Collapse
|
16
|
Salicari L, Baiesi M, Orlandini E, Trovato A. Folding kinetics of an entangled protein. PLoS Comput Biol 2023; 19:e1011107. [PMID: 37956216 PMCID: PMC10681328 DOI: 10.1371/journal.pcbi.1011107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 11/27/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
The possibility of the protein backbone adopting lasso-like entangled motifs has attracted increasing attention. After discovering the surprising abundance of natively entangled protein domain structures, it was shown that misfolded entangled subpopulations might become thermosensitive or escape the homeostasis network just after translation. To investigate the role of entanglement in shaping folding kinetics, we introduce a novel indicator and analyze simulations of a coarse-grained, structure-based model for two small single-domain proteins. The model recapitulates the well-known two-state folding mechanism of a non-entangled SH3 domain. However, despite its small size, a natively entangled antifreeze RD1 protein displays a rich refolding behavior, populating two distinct kinetic intermediates: a short-lived, entangled, near-unfolded state and a longer-lived, non-entangled, near-native state. The former directs refolding along a fast pathway, whereas the latter is a kinetic trap, consistently with known experimental evidence of two different characteristic times. Upon trapping, the natively entangled loop folds without being threaded by the N-terminal residues. After trapping, the native entangled structure emerges by either backtracking to the unfolded state or threading through the already formed but not yet entangled loop. Along the fast pathway, trapping does not occur because the native contacts at the closure of the lasso-like loop fold after those involved in the N-terminal thread, confirming previous predictions. Despite this, entanglement may appear already in unfolded configurations. Remarkably, a longer-lived, near-native intermediate, with non-native entanglement properties, recalls what was observed in cotranslational folding.
Collapse
Affiliation(s)
- Leonardo Salicari
- Department of Physics and Astronomy “G. Galilei”, University of Padova, Padova, Italy
- National Institute of Nuclear Physics (INFN), Padova Section, Padova, Italy
| | - Marco Baiesi
- Department of Physics and Astronomy “G. Galilei”, University of Padova, Padova, Italy
- National Institute of Nuclear Physics (INFN), Padova Section, Padova, Italy
| | - Enzo Orlandini
- Department of Physics and Astronomy “G. Galilei”, University of Padova, Padova, Italy
- National Institute of Nuclear Physics (INFN), Padova Section, Padova, Italy
| | - Antonio Trovato
- Department of Physics and Astronomy “G. Galilei”, University of Padova, Padova, Italy
- National Institute of Nuclear Physics (INFN), Padova Section, Padova, Italy
| |
Collapse
|
17
|
Beedle AE, Roca-Cusachs P. The reversibility of cellular mechano-activation. Curr Opin Cell Biol 2023; 84:102229. [PMID: 37633090 DOI: 10.1016/j.ceb.2023.102229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023]
Abstract
The cellular microenvironment is highly heterogeneous and dynamic. Therefore, cells must be equipped with molecular tools to adapt and respond to constantly fluctuating inputs. One such input is mechanical force, which activates signalling and regulates cell behaviour in the process of mechanotransduction. Whereas the mechanisms activating mechanotransduction are well studied, the reversibility of this process, whereby cells disassemble and reverse force-activated signalling pathways upon cessation of mechanical stimulation is far less understood. In this review we will outline some of the key experimental techniques to investigate the reversibility of mechanical signalling, and key discoveries arising from them.
Collapse
Affiliation(s)
- Amy Em Beedle
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Department of Physics, King's College London, London WC2R 2LS, UK.
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|