1
|
Chen J, Sun HW, Wang RZ, Zhang YF, Li WJ, Wang YK, Wang H, Jia MM, Xu QX, Zhuang H, Xue N. Glutamate promotes CCL2 expression to recruit tumor-associated macrophages by restraining EZH2-mediated histone methylation in hepatocellular carcinoma. Oncoimmunology 2025; 14:2497172. [PMID: 40271976 DOI: 10.1080/2162402x.2025.2497172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/02/2025] [Accepted: 04/21/2025] [Indexed: 04/25/2025] Open
Abstract
Glutamate is well-known as metabolite for maintaining the energy and redox homeostasis in cancer, moreover it is also the primary excitatory neurotransmitter in the central nervous system. However, whether glutamatergic signaling can regulate hepatocellular carcinoma (HCC) progression and the specific regulatory mechanisms are unknown. In the present study, we found that glutamate and its receptor NMDAR2B were significantly elevated in HCC patients, which predicts poor prognosis. Glutamate could upregulate CCL2 expression on hepatoma cells and further enhance the capability of tumor cells to recruit tumor-associated macrophages (TAMs). Mechanistically, glutamate could facilitate CCL2 expression through NMDAR pathway by decreasing the expression of EZH2, which regulates the H3K27me3 levels on the CCL2 promoter, rather than affecting DNA methylation. Moreover, inhibiting glutamate pathway with MK801 could significantly delay tumor growth, with reduced TAMs in implanted Hepa1-6 mouse HCC models. Our work suggested that glutamate could induce CCL2 expression to promote TAM infiltration by negatively regulating EZH2 levels in hepatoma cells, which might serve as a potential prognostic marker and a therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Jing Chen
- Department of Orthopaedics, Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University&Henan Cancer Hospital, Zhenghou, China
| | - Hong-Wei Sun
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, China
| | - Run-Zheng Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yun-Fei Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wen-Jiao Li
- Department of Orthopaedics, Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University&Henan Cancer Hospital, Zhenghou, China
| | - Yong-Kui Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Wang
- Department of Orthopaedics, Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University&Henan Cancer Hospital, Zhenghou, China
| | - Miao-Miao Jia
- Department of Orthopaedics, Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University&Henan Cancer Hospital, Zhenghou, China
| | - Qing-Xia Xu
- Department of Orthopaedics, Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University&Henan Cancer Hospital, Zhenghou, China
| | - Hao Zhuang
- Department of Orthopaedics, Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University&Henan Cancer Hospital, Zhenghou, China
| | - Ning Xue
- Department of Orthopaedics, Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University&Henan Cancer Hospital, Zhenghou, China
| |
Collapse
|
2
|
Mousa-Doust D, Bazzarelli A, Deban M, Dingee C, Newman-Bremang J, Pao JS, Warburton R, McKevitt E. Inflammatory breast cancer response to modern neoadjuvant chemotherapy: Tumor response and survival outcomes. Am J Surg 2025; 243:116288. [PMID: 40088610 DOI: 10.1016/j.amjsurg.2025.116288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/22/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is a rare, aggressive form of breast cancer. This study evaluates oncologic outcomes in IBC patients treated with modern multimodal treatment. METHODS A retrospective review analyzed clinicopathologic data of 5063 patients, 646 of whom underwent NAC followed by surgery between 2012 and 2024. Survival outcomes were compared across biologic subtypes. RESULTS Twenty-six cases of T4dM0 IBC were identified, with 57.7 % HER-2 positive, 26.9 % ER positive/HER-2 negative, and 15.4 % ER negative/HER-2 negative. The total pCR rate was highest in HER-2 positive (53.3 %) and lowest in ER-positive/HER-2 negative patients (p = 0.036). Among 19 patients with ≥3 years of follow-up, 47 % experienced recurrence (78 % distant and 22 % locoregional) and 42 % died of breast cancer. No significant differences in locoregional recurrence, or survival outcomes were found across subtypes. CONCLUSION pCR has limited prognostic value in IBC. Although HER-2 positive patients are more likely to achieve pCR, this does not necessarily translate into improved outcomes.
Collapse
Affiliation(s)
- Dorsa Mousa-Doust
- Division of General Surgery, Department of Surgery, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 11th Floor, Vancouver, BC, V5Z 1M9, Canada.
| | - Amy Bazzarelli
- Providence Breast Centre, Mount Saint Joseph Hospital, 3080 Prince Edward Street, Vancouver, BC, V5T 3N4, Canada; Division of General Surgery, Department of Surgery, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 11th Floor, Vancouver, BC, V5Z 1M9, Canada.
| | | | - Carol Dingee
- Providence Breast Centre, Mount Saint Joseph Hospital, 3080 Prince Edward Street, Vancouver, BC, V5T 3N4, Canada; Division of General Surgery, Department of Surgery, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 11th Floor, Vancouver, BC, V5Z 1M9, Canada.
| | - Jieun Newman-Bremang
- Providence Breast Centre, Mount Saint Joseph Hospital, 3080 Prince Edward Street, Vancouver, BC, V5T 3N4, Canada; Division of General Surgery, Department of Surgery, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 11th Floor, Vancouver, BC, V5Z 1M9, Canada.
| | - Jin-Si Pao
- Providence Breast Centre, Mount Saint Joseph Hospital, 3080 Prince Edward Street, Vancouver, BC, V5T 3N4, Canada; Division of General Surgery, Department of Surgery, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 11th Floor, Vancouver, BC, V5Z 1M9, Canada.
| | - Rebecca Warburton
- Providence Breast Centre, Mount Saint Joseph Hospital, 3080 Prince Edward Street, Vancouver, BC, V5T 3N4, Canada; Division of General Surgery, Department of Surgery, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 11th Floor, Vancouver, BC, V5Z 1M9, Canada.
| | - Elaine McKevitt
- Providence Breast Centre, Mount Saint Joseph Hospital, 3080 Prince Edward Street, Vancouver, BC, V5T 3N4, Canada; Division of General Surgery, Department of Surgery, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 11th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
3
|
Tripathi S, Sharma Y, Kumar D. Unveiling the link between chronic inflammation and cancer. Metabol Open 2025; 25:100347. [PMID: 39876904 PMCID: PMC11772974 DOI: 10.1016/j.metop.2025.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
The highly nuanced transition from an inflammatory process to tumorigenesis is of great scientific interest. While it is well known that environmental stimuli can cause inflammation, less is known about the oncogenic modifications that chronic inflammation in the tissue microenvironment can bring about, as well as how these modifications can set off pro-tumorigenic processes. It is clear that no matter where the environmental factors come from, maintaining an inflammatory microenvironment encourages carcinogenesis. In addition to encouraging angiogenesis and metastatic processes, sustaining the survival and proliferation of malignant transformed cells, and possibly altering the efficacy of therapeutic agents, inflammation can negatively regulate the antitumoral adaptive and innate immune responses. Because chronic inflammation has multiple pathways involved in tumorigenesis and metastasis, it has gained recognition as a marker of cancer and a desirable target for cancer therapy. Recent advances in our knowledge of the molecular mechanisms that drive cancer's progression demonstrate that inflammation promotes tumorigenesis and metastasis while suppressing anti-tumor immunity. In many solid tumor types, including breast, lung, and liver cancer, inflammation stimulates the activation of oncogenes and impairs the body's defenses against the tumor. Additionally, it alters the microenvironment of the tumor. As a tactical approach to cancer treatment, these findings have underscored the importance of targeting inflammatory pathways. This review highlights the role of inflammation in cancer development and metastasis, focusing on its impact on tumor progression, immune suppression, and therapy resistance. It examines current anti-inflammatory strategies, including NSAIDs, cytokine modulators, and STAT3 inhibitors, while addressing their potential and limitations. The review emphasizes the need for further research to unravel the complex mechanisms linking inflammation to cancer progression and identify molecular targets for specific cancer subtypes.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
4
|
Consoli V, Sorrenti V, Gulisano M, Spampinato M, Vanella L. Navigating heme pathways: the breach of heme oxygenase and hemin in breast cancer. Mol Cell Biochem 2025; 480:1495-1518. [PMID: 39287890 PMCID: PMC11842487 DOI: 10.1007/s11010-024-05119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
Breast cancer remains a significant global health challenge, with diverse subtypes and complex molecular mechanisms underlying its development and progression. This review comprehensively examines recent advances in breast cancer research, with a focus on classification, molecular pathways, and the role of heme oxygenases (HO), heme metabolism implications, and therapeutic innovations. The classification of breast cancer subtypes based on molecular profiling has significantly improved diagnosis and treatment strategies, allowing for tailored approaches to patient care. Molecular studies have elucidated key signaling pathways and biomarkers implicated in breast cancer pathogenesis, shedding light on potential targets for therapeutic intervention. Notably, emerging evidence suggests a critical role for heme oxygenases, particularly HO-1, in breast cancer progression and therapeutic resistance, highlighting the importance of understanding heme metabolism in cancer biology. Furthermore, this review highlights recent advances in breast cancer therapy, including targeted therapies, immunotherapy, and novel drug delivery systems. Understanding the complex interplay between breast cancer subtypes, molecular pathways, and innovative therapeutic approaches is essential for improving patient outcomes and developing more effective treatment strategies in the fight against breast cancer.
Collapse
Affiliation(s)
- Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Maria Gulisano
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Mariarita Spampinato
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy.
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy.
| |
Collapse
|
5
|
Sharma S, Basak SK, Das S, Alone DP. Characterisation of the role played by ELMO1, GPR141 and the intergenic polymorphism rs918980 in Fuchs' dystrophy in the Indian population. FEBS Open Bio 2025. [PMID: 39967558 DOI: 10.1002/2211-5463.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/24/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
Fuchs' endothelial corneal dystrophy (FECD) is the most common type of primary corneal dystrophy and can result in corneal transplantation. Here, we investigated the genetic association of SNP rs918980 (A>G) with FECD and the role of its surrounding genes ELMO1 and GPR141. First, 128 patients and 379 controls were genotyped by Sanger sequencing. Our results show that rs918980 is significantly associated with FECD in the Indian population. Furthermore, in silico analysis suggested that rs918980 and its surrounding 150 bp region could regulate the transcriptional activities of nearby genes. Thus, we assessed whether ELMO1 and GPR141 were differentially expressed in FECD patients and in the corneal tissue of a UVA-induced FECD mice model. Both genes were significantly upregulated and western blots studies concluded that protein levels of ELMO1 and GPR141 were also higher in the corneal endothelium of the UVA-exposed eye compared to the control eye. Taken together, our results suggest that ELMO1 and GPR141 might play a significant role in FECD progression. However, further studies are required to better characterize the possible role of rs918980 and its nearby region in the regulation of ELMO1 and GPR141.
Collapse
Affiliation(s)
- Susmita Sharma
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Khurda, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | | | - Sujata Das
- LV Prasad Eye Institute, Bhubaneswar, India
| | - Debasmita Pankaj Alone
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Khurda, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
6
|
Lynce F, Martínez-Sáez O, Walbaum B, Brasó-Maristany F, Waks AG, Villagrasa P, Villacampa Javierre G, Sanfeliu E, Galván P, Paré L, Anderson LM, Perou CM, Parker JS, Vivancos A, DiLullo MK, Pernas S, Winer EP, Overmoyer B, Mittendorf EA, Bueno-Muiño C, Martín M, Prat A, Tolaney SM. HER2DX in HER2-positive inflammatory breast cancer: correlative insights and comparative analysis with noninflammatory breast cancers. ESMO Open 2025; 10:104100. [PMID: 39826476 PMCID: PMC11786065 DOI: 10.1016/j.esmoop.2024.104100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/24/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND The HER2DX assay predicts long-term prognosis and pathologic complete response (pCR) in patients with early-stage human epidermal growth factor receptor 2 (HER2)-positive breast cancer receiving neoadjuvant systemic therapy but has not been evaluated in inflammatory breast cancer (IBC). PATIENTS AND METHODS HER2DX was analyzed in baseline biopsy tissues from 23 patients with stage III HER2-positive IBC on a phase II trial (NCT01796197) treated with neoadjuvant trastuzumab, pertuzumab, and paclitaxel (THP). To assess the assay's predictive accuracy for pCR in IBC, clinical-pathological features and outcomes from this IBC cohort were compared with 156 patients with stage III HER2-positive non-IBC from four different cohorts. Comparative analyses included HER2DX scores, gene signatures, and expression of individual genes between patients with IBC and non-IBC. RESULTS Notable differences in clinicopathological characteristics included higher pertuzumab and chemotherapy usage and lower axillary burden in patients with IBC compared with non-IBC. In the combined cohort (n = 179), HER2DX pCR score and pertuzumab use were significant predictors of pCR, but not IBC status. The pCR rates in patients treated with trastuzumab-based chemotherapy (including IBC and non-IBC) were 68.9%, 58.5%, and 16.3% in the HER2DX pCR-high, -medium, and -low groups, respectively. Comparative gene expression analysis indicated minor differences between IBC and non-IBC affecting individual HER2, immune, and proliferation genes. CONCLUSIONS The HER2DX pCR score could predict pCR in stage III HER2-positive IBC following treatment with de-escalated neoadjuvant systemic therapy and in stage III HER2-positive non-IBC. Elevated pCR rates in HER2-positive IBC with high HER2DX pCR scores suggest there may be a role for treatment de-escalation in these patients and confirmatory studies are justified.
Collapse
Affiliation(s)
- F Lynce
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, USA; Harvard Medical School, Boston, USA.
| | - O Martínez-Sáez
- Medical Oncology Department, Hospital Clinic, Barcelona, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain; Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - B Walbaum
- Medical Oncology Department, Hospital Clinic, Barcelona, Spain; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F Brasó-Maristany
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - A G Waks
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, USA; Harvard Medical School, Boston, USA
| | | | - G Villacampa Javierre
- Statistics Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - E Sanfeliu
- Pathology Department, Hospital Clinic, Barcelona, Spain
| | - P Galván
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - L Paré
- Reveal Genomics, Barcelona, Spain
| | - L M Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, USA
| | - C M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - J S Parker
- Life Edit Therapeutics, Morrisville, USA
| | - A Vivancos
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona
| | - M K DiLullo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, USA
| | - S Pernas
- Medical Oncology Department, Catalan Institute of Oncology, L'Hospitalet, Barcelona, Spain
| | | | - B Overmoyer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, USA; Harvard Medical School, Boston, USA
| | - E A Mittendorf
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, USA; Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, USA
| | - C Bueno-Muiño
- Medical Oncology Department, Hospital Infanta Cristina (Parla), Fundación de Investigación Biomédica H.U. Puerta de Hierro, Majadahonda, Madrid, Spain
| | - M Martín
- Department of Medical Oncology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERONC, Geicam, Universidad Complutense, Madrid, Spain
| | - A Prat
- Medical Oncology Department, Hospital Clinic, Barcelona, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain; Reveal Genomics, Barcelona, Spain; Institute of Oncology (IOB)-Hospital Quirónsalud, Barcelona, Spain
| | - S M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, USA; Harvard Medical School, Boston, USA
| |
Collapse
|
7
|
Ju M, Tong W, Bi J, Zeng X, Qi A, Sun M, Wen J, Zhao L, Wei M. Hydrogen Sulfide Promotes TAM-M1 Polarization through Activating IRE-1α Pathway via GRP78 S-Sulfhydrylation to against Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413607. [PMID: 39755930 PMCID: PMC11848574 DOI: 10.1002/advs.202413607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Indexed: 01/06/2025]
Abstract
Hydrogen sulfide (H2S)-mediated protein S-sulfhydration has been shown to play critical roles in several diseases. Tumor-associated macrophages (TAMs) are the predominant population of immune cells present within solid tumor tissues, and they function to restrict antitumor immunity. However, no previous study has investigated the role of protein S-sulfhydration in TAM reprogramming in breast cancer (BC). Therefore, the aim is to investigate whether protein S-sulfhydration can regulate TAM reprogramming and its underlying mechanism in BC. The results showed that in BC, the CTH-H2S axis is positively correlated with the presence of an anti-tumor phenotype in TAMs. NaHS, as an H2S donor, repolarized TAMs into M1 macrophages to block the tumor-promoting activities of TAMs both in vitro and in vivo. Mechanistically, H2S-mediated S-sulfhydration of the protein chaperone glucose-regulated-protein 78 (GRP78) induced endoplasmic reticulum transmembrane protein kinase-1α (IRE-1α) dissociation from GRP78, which enhanced the phosphatase activity of IRE-1α itself in BC-TAMs, while the Cys420 site mutation of GRP78 interfered with these effects. Collectively, GRP78 S-sulfhydrylation mediated by H2S at the Cys420 residue decreased the tumor burden and inhibited lung metastasis of BC through reprograming TAMs via activating the IRE-1α pathway, indicating that targeting GRP78 S-sulfhydration represents a promising intervention for TAM-M1 repolarization in BC.
Collapse
Affiliation(s)
- Mingyi Ju
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
| | - Weiwei Tong
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
- Department of Laboratory MedicineShengjing Hospital of China Medical UniversityShenyang110122China
| | - Jia Bi
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
| | - Xianxin Zeng
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
| | - Aoshuang Qi
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
| | - Mingli Sun
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
| | - Jian Wen
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
- Department of Breast SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyang110122China
| | - Lin Zhao
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
| | - Minjie Wei
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
- School of PharmacyQiqihar Medical UniversityQiqihar161006China
| |
Collapse
|
8
|
Verma R, Kumar K, Bhatt S, Yadav M, Kumar M, Tagde P, Rajinikanth PS, Tiwari A, Tiwari V, Nagpal D, Mittal V, Kaushik D. Untangling Breast Cancer: Trailing Towards Nanoformulations-based Drug Development. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:76-98. [PMID: 37519201 DOI: 10.2174/1872210517666230731091046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
All over the world, cancer death and prevalence are increasing. Breast cancer (BC) is the major cause of cancer mortality (15%) which makes it the most common cancer in women. BC is defined as the furious progression and quick division of breast cells. Novel nanotechnology-based approaches helped in improving survival rate, metastatic BC is still facing obstacles to treat with an expected overall 23% survival rate. This paper represents epidemiology, classification (non-invasive, invasive and metastatic), risk factors (genetic and non-genetic) and treatment challenges of breast cancer in brief. This review paper focus on the importance of nanotechnology-based nanoformulations for treatment of BC. This review aims to deliver elementary insight and understanding of the novel nanoformulations in BC treatment and to explain to the readers for enduring designing novel nanomedicine. Later, we elaborate on several types of nanoformulations used in tumor therapeutics such as liposomes, dendrimers, polymeric nanomaterials and many others. Potential research opportunities for clinical application and current challenges related to nanoformulations utility for the treatment of BC are also highlighted in this review. The role of artificial intelligence is elaborated in detail. We also confer the existing challenges and perspectives of nanoformulations in effective tumor management, with emphasis on the various patented nanoformulations approved or progression of clinical trials retrieved from various search engines.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, 127021, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Shailendra Bhatt
- Shrinathji Institute of Pharmacy, Shrinathji Society for Higher Education, Upali Oden, Nathdwara, Rajasmand, Rajasthan, India
| | - Manish Yadav
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram, 122103, India
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana, 142024, Punjab, India
| | - Priti Tagde
- Bhabha Pharmacy Research Institute, Bhabha University Bhopal, 462026, Madhya Pradesh, India
- PRISAL Foundation, Pharmaceutical Royal International Society, New Dehli, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Amebdkar University, Lucknow, India
| | - Abhishek Tiwari
- Pharmacy Academy, IFTM University, Lodhipur Rajput, Moradabad, U.P., 244102, India
| | - Varsha Tiwari
- Pharmacy Academy, IFTM University, Lodhipur Rajput, Moradabad, U.P., 244102, India
| | - Diksha Nagpal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
9
|
Allen-Taylor D, Boro G, Cabato P, Mai C, Nguyen K, Rijal G. Staphylococcus epidermidis biofilm in inflammatory breast cancer and its treatment strategies. Biofilm 2024; 8:100220. [PMID: 39318870 PMCID: PMC11420492 DOI: 10.1016/j.bioflm.2024.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Bacterial biofilms represent a significant challenge in both clinical and industrial settings because of their robust nature and resistance to antimicrobials. Biofilms are formed by microorganisms that produce an exopolysaccharide matrix, protecting function and supporting for nutrients. Among the various bacterial species capable of forming biofilms, Staphylococcus epidermidis, a commensal organism found on human skin and mucous membranes, has emerged as a prominent opportunistic pathogen, when introduced into the body via medical devices, such as catheters, prosthetic joints, and heart valves. The formation of biofilms by S. epidermidis on these surfaces facilitates colonization and provides protection against host immune responses and antibiotic therapies, leading to persistent and difficult-to-treat infections. The possible involvement of biofilms for breast oncogenesis has recently created the curiosity. This paper therefore delves into S. epidermidis biofilm involvement in breast cancer. S. epidermidis biofilms can create a sustained inflammatory environment through their metabolites and can break DNA in breast tissue, promoting cellular proliferation, angiogenesis, and genetic instability. Preventing biofilm formation primarily involves preventing bacterial proliferation using prophylactic measures and sterilization of medical devices and equipment. In cancer treatment, common modalities include chemotherapy, surgery, immunotherapy, alkylating agents, and various anticancer drugs. Understanding the relationship between anticancer drugs and bacterial biofilms is crucial, especially for those undergoing cancer treatment who may be at increased risk of bacterial infections, for improving patient outcomes. By elucidating these interactions, strategies to prevent or disrupt biofilm formation, thereby reducing the incidence of infections associated with medical devices and implants, can be identified.
Collapse
Affiliation(s)
- D. Allen-Taylor
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - G. Boro
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - P.M. Cabato
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - C. Mai
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - K. Nguyen
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - G. Rijal
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| |
Collapse
|
10
|
Qiu X, Zhang Y, Zhu Y, Yang M, Tao L. Association of the Inflammatory Burden Index With Increased Mortality Among Cancer Patients: Insights From the NHANES Study. Immun Inflamm Dis 2024; 12:e70067. [PMID: 39641241 PMCID: PMC11621858 DOI: 10.1002/iid3.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The systemic inflammatory response significantly influences the progression and prognosis of various cancers. The novel Inflammatory Burden Index (IBI) was recently introduced as a biomarker to gauge systemic inflammation and evaluate cancer patient prognosis. However, studies investigating the relationship between IBI and mortality rates in cancer patients remain limited. METHODS This study analyzed data from 2748 cancer patients enrolled in the National Health and Nutrition Examination Surveys between 1999 and 2018. We used weighted Cox regression analysis and restricted cubic spline models to examine the relationship between the IBI and mortality due to all causes, cardiovascular disease (CVD), and cancer. Furthermore, we employed Kaplan-Meier survival curves, subgroup analyses, and receiver operating characteristic curves to elaborate on these associations. RESULTS Over a median follow-up period of 112 months, the cohort experienced 1067 deaths, including 320 from cancer, 239 attributable to heart disease, and 508 from various other causes. The Kaplan-Meier curve indicated that individuals in the higher quartiles of the IBI faced significantly increased mortality risks compared to those in lower quartiles. Analyses using weighted Cox proportional hazards models demonstrated that subjects in the top IBI quartile were at a substantially higher risk for all-cause mortality (Hazard Ratio [HR] 2.09, 95% Confidence Interval [CI] 1.67-2.62, p < 0.001), CVD mortality (HR = 1.95, 95% CI= 1.18-3.23, p = 0.010), and cancer mortality (HR = 2.06, 95% CI = 1.31-3.26, p = 0.002). Furthermore, stratification and interaction analyses affirmed the uniformity of these initial findings. The areas under the curve for the 3-, 5-, and 10-year survival predictions for all-cause mortality were 0.62, 0.62, and 0.67, respectively; for cardiovascular mortality, they were 0.64, 0.64, and 0.70; and for cancer mortality, they were 0.62, 0.77, and 0.70. CONCLUSION In cancer patients, higher IBI levels significantly correlate with increased mortality from all causes, CVD, and cancer-specific deaths. This index could possess considerable diagnostic and prognostic importance, possibly acting as a new biomarker for evaluating outcomes in cancer patients.
Collapse
Affiliation(s)
- Xiuxiu Qiu
- Department of OncologyLonghua Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yiyi Zhang
- Department of Intensive Care UnitLonghua Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yingjie Zhu
- Department of OncologyLonghua Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ming Yang
- Department of Good Clinical PracticeLonghua Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Li Tao
- Department of OncologyLonghua Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
11
|
Zhou K, Zhang M, Zhai D, Wang Z, Liu T, Xie Y, Shi Y, Shi H, Chen Q, Li X, Xu J, Cai Z, Zhang Y, Shao N, Lin Y. Genomic and transcriptomic profiling of inflammatory breast cancer reveals distinct molecular characteristics to non-inflammatory breast cancers. Breast Cancer Res Treat 2024; 208:441-459. [PMID: 39030466 DOI: 10.1007/s10549-024-07437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
PURPOSE Inflammatory breast cancer (IBC), a rare and highly aggressive form of breast cancer, accounts for 10% of breast cancer-related deaths. Previous omics studies of IBC have focused solely on one of genomics or transcriptomics and did not discover common differences that could distinguish IBC from non-IBC. METHODS Seventeen IBC patients and five non-IBC patients as well as additional thirty-three Asian breast cancer samples from TCGA-BRCA were included for the study. We performed whole-exon sequencing (WES) to investigate different somatic genomic alterations, copy number variants, and large structural variants between IBC and non-IBC. Bulk RNA sequencing (RNA-seq) was performed to examine the differentially expressed genes, pathway enrichment, and gene fusions. WES and RNA-seq data were further investigated in combination to discover genes that were dysregulated in both genomics and transcriptomics. RESULTS Copy number variation analysis identified 10 cytobands that showed higher frequency in IBC. Structural variation analysis showed more frequent deletions in IBC. Pathway enrichment and immune infiltration analysis indicated increased immune activation in IBC samples. Gene fusions including CTSC-RAB38 were found to be more common in IBC. We demonstrated more commonly dysregulated RAS pathway in IBC according to both WES and RNA-seq. Inhibitors targeting RAS signaling and its downstream pathways were predicted to possess promising effects in IBC treatment. CONCLUSION We discovered differences unique in Asian women that could potentially explain IBC etiology and presented RAS signaling pathway as a potential therapeutic target in IBC treatment.
Collapse
Affiliation(s)
- Kaiwen Zhou
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mengmeng Zhang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Duanyang Zhai
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zilin Wang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ting Liu
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yubin Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yawei Shi
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qianjun Chen
- Department of Breast Oncology, Traditional Chinese Medicine Hospital of Guangdong Province, Guangzhou, Guangdong, China
| | - Xiaoping Li
- Department of Breast Oncology, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Juan Xu
- Department of Breast Oncology, Maternal and Child Health Care Hospital of Guangdong Province, Guangzhou, China
| | - Zhenhai Cai
- Department of Breast Oncology, Jieyang People's Hospital, Jieyang, Guangdong, China
| | - Yunjian Zhang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Nan Shao
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
12
|
Ashkarran AA, Lin Z, Rana J, Bumpers H, Sempere L, Mahmoudi M. Impact of Nanomedicine in Women's Metastatic Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301385. [PMID: 37269217 PMCID: PMC10693652 DOI: 10.1002/smll.202301385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Indexed: 06/04/2023]
Abstract
Metastatic breast cancer is responsible for 90% of mortalities among women suffering from various types of breast cancers. Traditional cancer treatments such as chemotherapy and radiation therapy can cause significant side effects and may not be effective in many cases. However, recent advances in nanomedicine have shown great promise in the treatment of metastatic breast cancer. For example, nanomedicine demonstrated robust capacity in detection of metastatic cancers at early stages (i.e., before the metastatic cells leave the initial tumor site), which gives clinicians a timely option to change their treatment process (for example, instead of endocrine therapy they may use chemotherapy). Here recent advances in nanomedicine technology in the identification and treatment of metastatic breast cancers are reviewed.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Zijin Lin
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Jatin Rana
- Division of Hematology and Oncology, Michigan State University, East Lansing, MI, 48824, USA
| | - Harvey Bumpers
- Department of Surgery, Michigan State University, East Lansing, MI, 48824, USA
| | - Lorenzo Sempere
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
- Connors Center for Women's Health & Gender Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
13
|
Lin Y, Chen J, Xin S, Lin Y, Chen Y, Zhou X, Chen H, Li X. CYP24A1 affected macrophage polarization through degradation of vitamin D as a candidate biomarker for ovarian cancer prognosis. Int Immunopharmacol 2024; 138:112575. [PMID: 38963981 DOI: 10.1016/j.intimp.2024.112575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Ovarian cancer (OC) is a fatal gynecological malignancy with a poor prognosis in which mitochondria-related genes are involved deeply. In this study, we aim to screen mitochondria-related genes that play a role in OC prognosis and investigate its effects. Through single-cell sequencing technology and bioinformatics analysis, including TCGA ovarian cancer data analysis, gene expression signature analysis (GES), immune infiltration analysis, Gene Ontology (GO) enrichment analysis, Gene Set Enrichment Analysis (GSEA), and Principal Component Analysis (PCA), our findings revealed that CYP24A1 regulated macrophage polarization through vitamin D (VD) degradation and served as a target gene for the second malignant subtype of OC through bioinformatics analyses. For further validation, the expression and function of CYP24A1 in OC cells was investigated. And the expression of CYP24A1 was much higher in carcinoma than in paracancerous tissue, whereas the VD content decreased in the OC cell lines with CYP24A1 overexpression. Moreover, macrophages were polarized towards M1 after the intervention of VD-treated OC cell lines and inhibited the malignant phenotypes of OC. However, the effect could be reversed by overexpressing CYP24A1, resulting in the polarization of M2 macrophages, thereby promoting tumor progression, as verified by constructing xenograft models in vitro. In conclusion, our findings suggested that CYP24A1 induced M2 macrophage polarization through interaction with VD, thus promoting the malignant progression of OC.
Collapse
Affiliation(s)
- YaoXiang Lin
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - JiongFei Chen
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - SiJia Xin
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Ya Lin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - YongChao Chen
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Xiaojing Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Hao Chen
- Department of Pathology, Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, People's Republic of China.
| | - XiangJuan Li
- Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, People's Republic of China.
| |
Collapse
|
14
|
Zhang Y, Ding X, Zhang X, Li Y, Xu R, Li HJ, Zuo D, Chen G. Unveiling the contribution of tumor-associated macrophages in driving epithelial-mesenchymal transition: a review of mechanisms and therapeutic Strategies. Front Pharmacol 2024; 15:1404687. [PMID: 39286635 PMCID: PMC11402718 DOI: 10.3389/fphar.2024.1404687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Tumor-associated macrophages (TAMs), fundamental constituents of the tumor microenvironment (TME), significantly influence cancer development, primarily by promoting epithelial-mesenchymal transition (EMT). EMT endows cancer cells with increased motility, invasiveness, and resistance to therapies, marking a pivotal juncture in cancer progression. The review begins with a detailed exposition on the origins of TAMs and their functional heterogeneity, providing a foundational understanding of TAM characteristics. Next, it delves into the specific molecular mechanisms through which TAMs induce EMT, including cytokines, chemokines and stromal cross-talking. Following this, the review explores TAM-induced EMT features in select cancer types with notable EMT characteristics, highlighting recent insights and the impact of TAMs on cancer progression. Finally, the review concludes with a discussion of potential therapeutic targets and strategies aimed at mitigating TAM infiltration and disrupting the EMT signaling network, thereby underscoring the potential of emerging treatments to combat TAM-mediated EMT in cancer. This comprehensive analysis reaffirms the necessity for continued exploration into TAMs' regulatory roles within cancer biology to refine therapeutic approaches and improve patient outcomes.
Collapse
Affiliation(s)
- Yijia Zhang
- Department of Pharmacy, Taizhou Second People's Hospital (Mental Health Center affiliated to Taizhou University School of Medicine), Taizhou University, Taizhou, Zhejiang, China
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaofei Ding
- Department of Pharmacology, Taizhou University, Taizhou, Zhejiang, China
| | - Xue Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Ye Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Rui Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Hai-Jun Li
- Department of Pharmacy, Taizhou Second People's Hospital (Mental Health Center affiliated to Taizhou University School of Medicine), Taizhou University, Taizhou, Zhejiang, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Guang Chen
- Department of Pharmacy, Taizhou Second People's Hospital (Mental Health Center affiliated to Taizhou University School of Medicine), Taizhou University, Taizhou, Zhejiang, China
- Department of Pharmacology, Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
15
|
Zakic T, Pekovic-Vaughan V, Cvoro A, Korac A, Jankovic A, Korac B. Redox and metabolic reprogramming in breast cancer and cancer-associated adipose tissue. FEBS Lett 2024; 598:2106-2134. [PMID: 38140817 DOI: 10.1002/1873-3468.14794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Redox and metabolic processes are tightly coupled in both physiological and pathological conditions. In cancer, their integration occurs at multiple levels and is characterized by synchronized reprogramming both in the tumor tissue and its specific but heterogeneous microenvironment. In breast cancer, the principal microenvironment is the cancer-associated adipose tissue (CAAT). Understanding how the redox-metabolic reprogramming becomes coordinated in human breast cancer is imperative both for cancer prevention and for the establishment of new therapeutic approaches. This review aims to provide an overview of the current knowledge of the redox profiles and regulation of intermediary metabolism in breast cancer while considering the tumor and CAAT of breast cancer as a unique Warburg's pseudo-organ. As cancer is now recognized as a systemic metabolic disease, we have paid particular attention to the cell-specific redox-metabolic reprogramming and the roles of estrogen receptors and circadian rhythms, as well as their crosstalk in the development, growth, progression, and prognosis of breast cancer.
Collapse
Affiliation(s)
- Tamara Zakic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Vanja Pekovic-Vaughan
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, UK
| | | | | | - Aleksandra Jankovic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Bato Korac
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Serbia
| |
Collapse
|
16
|
Calanca N, Faldoni FLC, Souza CP, Souza JS, de Souza Alves BE, Soares MBP, Wong DVT, Lima-Junior RCP, Marchi FA, Rainho CA, Rogatto SR. Inflammatory breast cancer microenvironment repertoire based on DNA methylation data deconvolution reveals actionable targets to enhance the treatment efficacy. J Transl Med 2024; 22:735. [PMID: 39103878 DOI: 10.1186/s12967-024-05553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Although the clinical signs of inflammatory breast cancer (IBC) resemble acute inflammation, the role played by infiltrating immune and stromal cells in this aggressive disease is uncharted. The tumor microenvironment (TME) presents molecular alterations, such as epimutations, prior to morphological abnormalities. These changes affect the distribution and the intricate communication between the TME components related to cancer prognosis and therapy response. Herein, we explored the global DNA methylation profile of IBC and surrounding tissues to estimate the microenvironment cellular composition and identify epigenetically dysregulated markers. METHODS We used the HiTIMED algorithm to deconvolve the bulk DNA methylation data of 24 IBC and six surrounding non-tumoral tissues (SNT) (GSE238092) and determine their cellular composition. The prognostic relevance of cell types infiltrating IBC and their relationship with clinicopathological variables were investigated. CD34 (endothelial cell marker) and CD68 (macrophage marker) immunofluorescence staining was evaluated in an independent set of 17 IBC and 16 non-IBC samples. RESULTS We found lower infiltration of endothelial, stromal, memory B, dendritic, and natural killer cells in IBC than in SNT samples. Higher endothelial cell (EC) and stromal cell content were related to better overall survival. EC proportions positively correlated with memory B and memory CD8+ T infiltration in IBC. Immune and EC markers exhibited distinct DNA methylation profiles between IBC and SNT samples, revealing hypermethylated regions mapped to six genes (CD40, CD34, EMCN, HLA-G, PDPN, and TEK). We identified significantly higher CD34 and CD68 protein expression in IBC compared to non-IBC. CONCLUSIONS Our findings underscored cell subsets that distinguished patients with better survival and dysregulated markers potentially actionable through combinations of immunotherapy and epigenetic drugs.
Collapse
Affiliation(s)
- Naiade Calanca
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, Vejle, DK, 7100, Denmark
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Flavia Lima Costa Faldoni
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, Vejle, DK, 7100, Denmark
| | - Cristiano Pádua Souza
- Medical Oncology Department, Barretos Cancer Hospital, Pio XII Foundation, Barretos, SP, 14784-400, Brazil
| | | | - Bianca Elen de Souza Alves
- Department of Physiology and Pharmacology, Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceará, Fortaleza, 60430-270, Brazil
| | - Milena Botelho Pereira Soares
- Health Technology Institute, SENAI CIMATEC, Salvador, BA, 41650-010, Brazil
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA, 40296-710, Brazil
| | - Deysi Viviana Tenazoa Wong
- Department of Physiology and Pharmacology, Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceará, Fortaleza, 60430-270, Brazil
| | - Roberto César Pereira Lima-Junior
- Department of Physiology and Pharmacology, Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceará, Fortaleza, 60430-270, Brazil
| | - Fabio Albuquerque Marchi
- Department of Head and Neck Surgery, University of São Paulo Medical School, São Paulo, SP, 05402-000, Brazil
- Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), São Paulo, SP, 01246-000, Brazil
| | - Claudia Aparecida Rainho
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, Vejle, DK, 7100, Denmark.
- Institute of Regional Health Research, University of Southern Denmark, Odense, 5000, Denmark.
- Botucatu Medical School Hospital, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
17
|
Faldoni FLC, Bizinelli D, Souza CP, Santana IVV, Marques MMC, Rainho CA, Marchi FA, Rogatto SR. DNA methylation profile of inflammatory breast cancer and its impact on prognosis and outcome. Clin Epigenetics 2024; 16:89. [PMID: 38971778 PMCID: PMC11227707 DOI: 10.1186/s13148-024-01695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/16/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is a rare disease characterized by rapid progression, early metastasis, and a high mortality rate. METHODS Genome-wide DNA methylation analysis (EPIC BeadChip platform, Illumina) and somatic gene variants (105 cancer-related genes) were performed in 24 IBCs selected from a cohort of 140 cases. RESULTS We identified 46,908 DMPs (differentially methylated positions) (66% hypomethylated); CpG islands were predominantly hypermethylated (39.9%). Unsupervised clustering analysis revealed three clusters of DMPs characterized by an enrichment of specific gene mutations and hormone receptor status. The comparison among DNA methylation findings and external datasets (TCGA-BRCA stages III-IV) resulted in 385 shared DMPs mapped in 333 genes (264 hypermethylated). 151 DMPs were associated with 110 genes previously detected as differentially expressed in IBC (GSE45581), and 68 DMPs were negatively correlated with gene expression. We also identified 4369 DMRs (differentially methylated regions) mapped on known genes (2392 hypomethylated). BCAT1, CXCL12, and TBX15 loci were selected and evaluated by bisulfite pyrosequencing in 31 IBC samples. BCAT1 and TBX15 had higher methylation levels in triple-negative compared to non-triple-negative, while CXCL12 had lower methylation levels in triple-negative than non-triple-negative IBC cases. TBX15 methylation level was associated with obesity. CONCLUSIONS Our findings revealed a heterogeneous DNA methylation profile with potentially functional DMPs and DMRs. The DNA methylation data provided valuable insights for prognostic stratification and therapy selection to improve patient outcomes.
Collapse
Affiliation(s)
- Flavia Lima Costa Faldoni
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
- Department of Gynecology and Obstetrics, Medical School, São Paulo State University (UNESP), Botucatu, SP, 18618-687, Brazil
| | - Daniela Bizinelli
- Interunit Graduate Program in Bioinformatics, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | | | | | | | - Claudia Aparecida Rainho
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Fabio Albuquerque Marchi
- Department of Head and Neck Surgery, University of São Paulo Medical School, São Paulo, SP, 05402-000, Brazil
- Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), São Paulo, SP, 01246-000, Brazil
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark.
- Institute of Regional Health Research, University of Southern Denmark, 5000, Odense, Denmark.
| |
Collapse
|
18
|
Peng Z, Yi Y, Nie Y, Wang T, Tang J, Hong S, Liu Y, Huang W, Sun S, Tan H, Wu M. Softening the tumor matrix through cholesterol depletion breaks the physical barrier for enhanced antitumor therapy. J Control Release 2024; 371:29-42. [PMID: 38763389 DOI: 10.1016/j.jconrel.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
The tumor develops defense tactics, including conversing the mechanical characteristics of tumor cells and their surrounding environment. A recent study reported that cholesterol depletion stiffens tumor cells, which could enhance adaptive T-cell immunotherapy. However, it remains unclear whether reducing the cholesterol in tumor cells contributes to re-educating the stiff tumor matrix, which serves as a physical barrier against drug penetration. Herein, we found that depleting cholesterol from tumor cells can demolish the intratumor physical barrier by disrupting the mechanical signal transduction between tumor cells and the extracellular matrix through the destruction of lipid rafts. This disruption allows nanoparticles (H/S@hNP) to penetrate deeply, resulting in improved photodynamic treatment. Our research also indicates that cholesterol depletion can inhibit the epithelial-mesenchymal transition and repolarize tumor-associated macrophages from M2 to M1, demonstrating the essential role of cholesterol in tumor progression. Overall, this study reveals that a cholesterol-depleted, softened tumor matrix reduces the difficulty of drug penetration, leading to enhanced antitumor therapeutics.
Collapse
Affiliation(s)
- Zhangwen Peng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yunfei Yi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yichu Nie
- Department of Translational Medicine Research Institute, First People's Hospital of Foshan, Foshan 528000, China
| | - Tianqi Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Jia Tang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Sheng Hong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yuanqi Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Wenxin Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Shengjie Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen 518038, China.
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
19
|
Rakoczy K, Kaczor J, Sołtyk A, Szymańska N, Stecko J, Drąg-Zalesińska M, Kulbacka J. The Immune Response of Cancer Cells in Breast and Gynecologic Neoplasms. Int J Mol Sci 2024; 25:6206. [PMID: 38892394 PMCID: PMC11172873 DOI: 10.3390/ijms25116206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer diseases constitute a major health problem which leads to the death of millions of people annually. They are unique among other diseases because cancer cells can perfectly adapt to the environment that they create themselves. This environment is usually highly hostile and for normal cells it would be hugely difficult to survive, however neoplastic cells not only can survive but also manage to proliferate. One of the reasons is that they can alter immunological pathways which allow them to be flexible and change their phenotype to the one needed in specific conditions. The aim of this paper is to describe some of these immunological pathways that play significant roles in gynecologic neoplasms as well as review recent research in this field. It is of high importance to possess extensive knowledge about these processes, as greater understanding leads to creating more specialized therapies which may prove highly effective in the future.
Collapse
Affiliation(s)
- Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.)
| | - Justyna Kaczor
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.)
| | - Adam Sołtyk
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.)
| | - Natalia Szymańska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.)
| | - Jakub Stecko
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.)
| | - Małgorzata Drąg-Zalesińska
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubińskiego 6a, 50-368 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine Santariškių g. 5, LT-08406 Vilnius, Lithuania
| |
Collapse
|
20
|
Iwase T, Cohen EN, Gao H, Alexander A, Kai M, Chiv V, Wang X, Krishnamurthy S, Liu D, Shen Y, Kida K, Reuben A, Layman R, Ramirez D, Tripathy D, Moulder SL, Yam C, Valero V, Lim B, Reuben JM, Ueno NT. Maintenance Pembrolizumab Therapy in Patients with Metastatic HER2-negative Breast Cancer with Prior Response to Chemotherapy. Clin Cancer Res 2024; 30:2424-2432. [PMID: 38629963 PMCID: PMC11147689 DOI: 10.1158/1078-0432.ccr-23-2947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/16/2024] [Accepted: 04/04/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE Accumulating toxicities hinder indefinite chemotherapy for many patients with metastatic/recurrent HER2-negative breast cancer. We conducted a phase II trial of pembrolizumab monotherapy following induction chemotherapy to determine the efficacy of maintenance immunotherapy in patients with metastatic HER2-negative inflammatory breast cancer (IBC) and non-IBC triple-negative breast cancer (TNBC) and a biomarker study. PATIENTS AND METHODS Patients with a complete response, partial response, or stable disease (SD) after at least three cycles of chemotherapy for HER2-negative breast cancer received pembrolizumab, regardless of programmed death-ligand 1 expression. Pembrolizumab (200 mg) was administered every 3 weeks until disease progression, intolerable toxicity, or 2 years of pembrolizumab exposure. The endpoints included the 4-month disease control rate (DCR), progression-free survival (PFS), overall survival, and response biomarkers in the blood. RESULTS Of 43 treated patients, 11 had metastatic IBC and 32 non-IBC TNBC. The 4-month DCR was 58.1% [95% confidence interval (CI), 43.4-72.9]. For all patients, the median PFS was 4.8 months (95% CI, 3.0-7.1 months). The toxicity profile was similar to the previous pembrolizumab monotherapy study. Patients with high T-cell clonality at baseline had a longer PFS with pembrolizumab treatment than did those with low T-cell clonality (10.4 vs. 3.6 months, P = 0.04). Patients who achieved SD also demonstrated a significant increase in T-cell clonality during therapy compared with those who did not achieve SD (20% vs. 5.9% mean increase, respectively; P = 0.04). CONCLUSIONS Pembrolizumab monotherapy achieved durable treatment responses. Patients with a high baseline T-cell clonality had prolonged disease control with pembrolizumab.
Collapse
MESH Headings
- Humans
- Female
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Middle Aged
- Receptor, ErbB-2/metabolism
- Aged
- Adult
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/administration & dosage
- Biomarkers, Tumor
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/pathology
- Triple Negative Breast Neoplasms/mortality
- Neoplasm Metastasis
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Breast Neoplasms/mortality
- Maintenance Chemotherapy
Collapse
Affiliation(s)
- Toshiaki Iwase
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Translational and Clinical Research Program, University of Hawai’i Cancer Center, Honolulu, Hawaii
| | - Evan N. Cohen
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hui Gao
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Angela Alexander
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Megumi Kai
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivian Chiv
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaoping Wang
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Translational and Clinical Research Program, University of Hawai’i Cancer Center, Honolulu, Hawaii
| | - Savitri Krishnamurthy
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Diane Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yu Shen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kumiko Kida
- Department of Breast Surgery, St. Luke’s International Hospital, Tokyo, Japan
| | - Alexandre Reuben
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rachel Layman
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Ramirez
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Oncology/Medicine, Baylor College of Medicine, Houston, Texas
| | - James M Reuben
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Translational and Clinical Research Program, University of Hawai’i Cancer Center, Honolulu, Hawaii
| |
Collapse
|
21
|
Xie H, Wei L, Ruan G, Zhang H, Shi H. Inflammaging score as a potential prognostic tool for cancer: A population-based cohort study. Mech Ageing Dev 2024; 219:111939. [PMID: 38744412 DOI: 10.1016/j.mad.2024.111939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
This study aimed to develop a clinically applicable inflammaging score by combining the inflammatory status and age of patients. Kaplan-Meier analysis was used to compare survival differences among patients with different grades of inflammation scores. Cox proportional hazard regression analysis was used to explore the relationship between the inflammaging score and survival. As the age of patients increased, their levels of systemic inflammation gradually increased. A unique inverse relationship was found between the level of inflammation and cancer prognosis during the ageing process. Mediation analysis indicated that systemic inflammation mediates 10.1%-17.8% of the association between ageing and poor prognosis. With an increase in the inflammaging score from grades I to V, the survival rate showed a gradient decline. The inflammation score could effectively stratify the prognosis of patients with lung, bronchial, gastrointestinal, and other types of cancers. Compared with grade I, the hazard ratios for grades II-V were 1.239, 1.604, 1.724, and 2.348, respectively. In the external validation cohort, the inflammaging score remained an independent factor affecting the prognosis of patients with cancer. The inflammaging score, which combines ageing and inflammation, is a robust prognostic assessment tool for cancer patients.
Collapse
Affiliation(s)
- Hailun Xie
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China; Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China; Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China; Laboratory for Clinical Medicine,Capital Medical University, Beijing, China
| | - Lishuang Wei
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China; Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China; Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China; Laboratory for Clinical Medicine,Capital Medical University, Beijing, China
| | - Guotian Ruan
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China; Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China; Laboratory for Clinical Medicine,Capital Medical University, Beijing, China
| | - Heyang Zhang
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China; Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China; Laboratory for Clinical Medicine,Capital Medical University, Beijing, China
| | - Hanping Shi
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China; Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China; Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China; Laboratory for Clinical Medicine,Capital Medical University, Beijing, China.
| |
Collapse
|
22
|
Li K, Yang M, Dai Y, Huang J, Zhu P, Qiuzhen L. Microcystin-LR improves anti-tumor efficacy of oxaliplatin through induction of M1 macrophage polarization. Toxicon 2024; 243:107723. [PMID: 38663519 DOI: 10.1016/j.toxicon.2024.107723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/29/2024]
Abstract
Tumor-associated macrophages within the tumor microenvironment play an immunosuppressive role by promoting tumor growth and immune evasion. Macrophages are highly plastic and can be stimulated to adopt an anti-tumor M1 phenotype. In this study, we used microcystin-LR (MC-LR), a cyclic heptapeptide produced by cyanobacteria, to induce in vitro macrophage innate immunity and transition into the anti-tumor M1 phenotype. MC-LR was also tested in vivo in a mouse model of colorectal cancer. An intraperitoneal injection of MC-LR increased the proportion of CD86⁺ M1 macrophages and triggered the maturation of CD11c⁺ dendritic cells within tumor tissues. MC-LR combined with the chemotherapeutic drug oxaliplatin significantly inhibited tumor growth in vivo. Flow cytometry analysis revealed increased infiltration of activated cytotoxic (CD8⁺, PD-1⁺) T-cells and anti-tumor cytokines (IFNγ and Granzyme B) in the tumor tissues of the combination therapy group, suggesting that this may be the primary mechanism behind the anti-tumor effect of the combination treatment. These findings indicate that MC-LR regulates the immune stimulation of macrophage polarization and dendritic cell maturation, effectively reversing tumor immunosuppression, activating an anti-tumor immune response, and enhancing tumor therapy.
Collapse
Affiliation(s)
- Keyi Li
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, Guangdong, 518118, China
| | - Minzhu Yang
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, Guangdong, 518118, China
| | - Yuxin Dai
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Jinyan Huang
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Peng Zhu
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, Guangdong, 518118, China.
| | - Liu Qiuzhen
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, Guangdong, 518118, China; Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China.
| |
Collapse
|
23
|
Priedigkeit N, Harrison B, Shue R, Hughes M, Li Y, Kirkner GJ, Spurr LF, Remolano MC, Strauss S, Files J, Feeney AM, Grant L, Mohammed-Abreu A, Garrido-Castro A, Sousa RB, Bychkovsky B, Nakhlis F, Bellon JR, King TA, Winer EP, Lindeman N, Johnson BE, Sholl L, Dillon D, Overmoyer B, Tolaney SM, Cherniack A, Lin NU, Lynce F. Clinicogenomic characterization of inflammatory breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592972. [PMID: 38766070 PMCID: PMC11100693 DOI: 10.1101/2024.05.07.592972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Inflammatory breast cancer (IBC) is a rare and poorly characterized type of breast cancer with an aggressive clinical presentation. The biological mechanisms driving the IBC phenotype are relatively undefined-partially due to a lack of comprehensive, large-scale genomic studies and limited clinical cohorts. Patients and Methods A retrospective analysis of 2457 patients with metastatic breast cancer who underwent targeted tumor-only DNA-sequencing was performed at Dana-Farber Cancer Institute. Clinicopathologic, single nucleotide variant (SNV), copy number variant (CNV) and tumor mutational burden (TMB) comparisons were made between clinically confirmed IBC cases within a dedicated IBC center versus non-IBC cases. Results Clinicopathologic differences between IBC and non-IBC cases were consistent with prior reports-including IBC being associated with younger age at diagnosis, higher grade, and enrichment with hormone receptor (HR)-negative and HER2-positive tumors. The most frequent somatic alterations in IBC involved TP53 (72%), ERBB2 (32%), PIK3CA (24%), CCND1 (12%), MYC (9%), FGFR1 (8%) and GATA3 (8%). A multivariate logistic regression analysis revealed a significant enrichment in TP53 SNVs in IBC; particularly in HER2-positive and HR-positive disease which was associated with worse outcomes. Tumor mutational burden (TMB) did not differ substantially between IBC and non-IBC cases and a pathway analysis revealed an enrichment in NOTCH pathway alterations in HER2-positive disease. Conclusion Taken together, this study provides a comprehensive, clinically informed landscape of somatic alterations in a large cohort of patients with IBC. Our data support higher frequency of TP53 mutations and a potential enrichment in NOTCH pathway activation-but overall; a lack of major genomic differences. These results both reinforce the importance of TP53 alterations in IBC pathogenesis as well as their influence on clinical outcomes; but also suggest additional analyses beyond somatic DNA-level changes are warranted.
Collapse
Affiliation(s)
- Nolan Priedigkeit
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Beth Harrison
- Harvard Medical School, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Robert Shue
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- The Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Melissa Hughes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston MA, USA
| | - Yvonne Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- The Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Gregory J. Kirkner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Liam F. Spurr
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- The Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | | | - Sarah Strauss
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Janet Files
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anne-Marie Feeney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Libby Grant
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Ana Garrido-Castro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston MA, USA
| | | | - Brittany Bychkovsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston MA, USA
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Faina Nakhlis
- Harvard Medical School, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston MA, USA
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jennifer R. Bellon
- Harvard Medical School, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston MA, USA
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Tari A. King
- Harvard Medical School, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston MA, USA
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Eric P. Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston MA, USA
| | - Neal Lindeman
- Harvard Medical School, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Bruce E. Johnson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lynette Sholl
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Deborah Dillon
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Beth Overmoyer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston MA, USA
| | - Sara M. Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston MA, USA
| | - Andrew Cherniack
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Nancy U. Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston MA, USA
| | - Filipa Lynce
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston MA, USA
| |
Collapse
|
24
|
Van Berckelaer C, Van Laere S, Lee S, Morse MA, Geradts J, Dirix L, Kockx M, Bertucci F, Van Dam P, Devi GR. XIAP overexpressing inflammatory breast cancer patients have high infiltration of immunosuppressive subsets and increased TNFR1 signaling targetable with Birinapant. Transl Oncol 2024; 43:101907. [PMID: 38412664 PMCID: PMC10907867 DOI: 10.1016/j.tranon.2024.101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/29/2024] Open
Abstract
OBJECTIVE To assess the expression pattern of X-linked inhibitor of apoptosis protein (XIAP), a cellular stress sensor, and delineate the associated changes in the tumor immune microenvironment (TiME) for prognostic value and new therapeutic targets in inflammatory breast cancer (IBC). METHODS Immunohistochemistry was conducted to assess the spatial localization of immune subsets, XIAP, and PDL1 expression in IBC and non-inflammatory breast cancer (nIBC) pretreatment tumors (n = 142). Validation and further exploration were performed by gene expression analysis of patient tumors along with signaling studies in a co-culture model. RESULTS High XIAP in 37/81 IBC patients correlated significantly with high PD-L1, increased infiltration of FOXP3+ Tregs, CD163+ tumor-associated macrophages (TAMs), low CD8/CD163 ratio in both tumor stroma (TS) and invasive margins (IM), and higher CD8+ T cells and CD79α+ B cells in the IM. Gene set enrichment analysis identified cellular stress response- and inflammation-related genes along with tumor necrosis factor receptor 1 (TNFR1) expression in high-XIAP IBC tumors. Induction of TNFR1 and XIAP was observed when patient-derived SUM149 IBC cells were co-cultured with human macrophage-conditioned media simulating TAMs, further demonstrating that the TNF-α signaling pathway is a likely candidate governing TAM-induced XIAP overexpression in IBC cells. Finally, addition of Birinapant, a pan IAP antagonist, induced cell death in the pro-survival cytokine-enriched conditions. CONCLUSION Using immunophenotyping and gene expression analysis in patient biospecimens along with in silico modeling and a preclinical model with a pan-IAP antagonist, this study revealed an interplay between increased TAMs, TNF-α signaling, and XIAP activation during (immune) stress in IBC. These data demonstrate the potential of IAP antagonists as immunomodulators for improving IBC therapeutic regimens.
Collapse
Affiliation(s)
- Christophe Van Berckelaer
- Multidisciplinary Breast Clinic, Antwerp University Hospital (UZA), Molecular Imaging, Pathology, Radiotherapy, Oncology (MIPRO); Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Steven Van Laere
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Seayoung Lee
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA; Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Michael A Morse
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA; Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA
| | - Joseph Geradts
- Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA; Department of Pathology, East Carolina University Brody School of Medicine, Greenville, NC, USA
| | - Luc Dirix
- Department of Oncology, GZA Hospitals, University of Antwerp, Antwerpen, Belgium
| | | | - François Bertucci
- Predictive Oncology team, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Peter Van Dam
- Multidisciplinary Breast Clinic, Antwerp University Hospital (UZA), Molecular Imaging, Pathology, Radiotherapy, Oncology (MIPRO); Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Gayathri R Devi
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA; Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
25
|
Yang Z, Chen H, Yin S, Mo H, Chai F, Luo P, Li Y, Ma L, Yi Z, Sun Y, Chen Y, Wu J, Wang W, Yin T, Zhu J, Shi C, Zhang F. PGR-KITLG signaling drives a tumor-mast cell regulatory feedback to modulate apoptosis of breast cancer cells. Cancer Lett 2024; 589:216795. [PMID: 38556106 DOI: 10.1016/j.canlet.2024.216795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
The immune microenvironment constructed by tumor-infiltrating immune cells and the molecular phenotype defined by hormone receptors (HRs) have been implicated as decisive factors in the regulation of breast cancer (BC) progression. Here, we found that the infiltration of mast cells (MCs) informed impaired prognoses in HR(+) BC but predicted improved prognoses in HR(-) BC. However, molecular features of MCs in different BC remain unclear. We next discovered that HR(-) BC cells were prone to apoptosis under the stimulation of MCs, whereas HR(+) BC cells exerted anti-apoptotic effects. Mechanistically, in HR(+) BC, the KIT ligand (KITLG), a major mast cell growth factor in recruiting and activating MCs, could be transcriptionally upregulated by the progesterone receptor (PGR), and elevate the production of MC-derived granulin (GRN). GRN attenuates TNFα-induced apoptosis in BC cells by competitively binding to TNFR1. Furthermore, disruption of PGR-KITLG signaling by knocking down PGR or using the specific KITLG-cKIT inhibitor iSCK03 potently enhanced the sensitivity of HR(+) BC cells to MC-induced apoptosis and exerted anti-tumor activity. Collectively, these results demonstrate that PGR-KITLG signaling in BC cells preferentially induces GRN expression in MCs to exert anti-apoptotic effects, with potential value in developing precision medicine approaches for diagnosis and treatment.
Collapse
Affiliation(s)
- Zeyu Yang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China; Graduate School of Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hongdan Chen
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Supeng Yin
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Hongbiao Mo
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Fan Chai
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yao Li
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ziying Yi
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Yizeng Sun
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Yan Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jie Wu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Weihua Wang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Tingjie Yin
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Junping Zhu
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Fan Zhang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China; Graduate School of Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
26
|
Zhang Z, Wu H, Shen C, Zhou F. Comprehensive Characterization of Immune Cell Infiltration Characteristics and Drug Sensitivity Analysis in Inflammatory Breast Cancer Based on Bioinformatic Strategy. Biochem Genet 2024; 62:1021-1039. [PMID: 37517031 DOI: 10.1007/s10528-023-10460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Inflammatory breast cancer (IBC) is a rare and highly invasive form of breast cancer, renowned for its aggressive behavior, malignant capacity, and unfavorable prognosis. Despite considerable advancements in comprehending the underlying biology of IBC, the immune cell infiltration (ICI) profile in IBC remains inadequately elucidated. The current work endeavors to investigate the ICI characteristics of IBC and ascertain the pivotal immune cell subtypes and genes that impact its prognosis. The present study employed microarray data from the GEO database to demonstrate that IBC exhibited a lower abundance of activated mast cells (AMC) in comparison to non-inflammatory breast cancer (nIBC) or normal breast tissue (NBT). Additionally, the mRNA expression level of the gene polo-like kinase 5 (PLK5), which was correlated with AMC, was found to be lower in IBC relative to nIBC or NBT. Furthermore, this investigation provided compelling evidence indicating a potential association between a decreased mRNA expression level of PLK5 and a shorter progression-free survival in patients with breast cancer. The gene set enrichment analysis performed on PLK5 revealed that the gene expression in IBC was closely associated with diverse immune functions and pathways. Besides, a negative correlation has been established between PLK5 mRNA expression level and a majority of immune checkpoint-related genes, thereby suggesting the potential suitability of immunotherapy treatment for IBC. In summary, this study offers valuable insights into the ICI profile of IBC and identifies potential target PLK5 for improving its clinical management.
Collapse
Affiliation(s)
- Zhengguang Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Haitao Wu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cunsi Shen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fuqiong Zhou
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, China.
| |
Collapse
|
27
|
Sahraoui G, Rahoui N, Driss M, Mrad K. Inflammatory breast cancer: An overview about the histo-pathological aspect and diagnosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 384:47-61. [PMID: 38637099 DOI: 10.1016/bs.ircmb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Inflammatory Breast Cancer (IBC) is a rare and aggressive form of locally advanced breast cancer, classified as stage T4d according to the tumor-node-metastasis staging criteria. This subtype of breast cancer is known for its rapid progression and significantly lower survival rates compared to other forms of breast cancer. Despite its distinctive clinical features outlined by the World Health Organization, the histopathological characteristics of IBC remain not fully elucidated, presenting challenges in its diagnosis and treatment. Histologically, IBC tumors often exhibit a ductal phenotype, characterized by emboli composed of pleomorphic cells with a high nuclear grade. These emboli are predominantly found in the papillary and reticular dermis of the skin overlaying the breast, suggesting a primary involvement of the lymphatic vessels. The tumor microenvironment in IBC is a complex network involving various cells such as macrophages, monocytes, and predominantly T CD8+ lymphocytes, and elements including blood vessels and extracellular matrix molecules, which play a pivotal role in the aggressive nature of IBC. A significant aspect of IBC is the frequent loss of expression of hormone receptors like estrogen and progesterone receptors, a phenomenon that is still under active investigation. Moreover, the overexpression of ERBB2/HER2 and TP53 in IBC cases is a topic of ongoing debate, with studies indicating a higher prevalence in IBC compared to non-inflammatory breast cancer. This overview seeks to provide a comprehensive understanding of the histopathological features and diagnostic approaches to IBC, emphasizing the critical areas that require further research.
Collapse
Affiliation(s)
- Ghada Sahraoui
- Department of histopathology, Salah Azaiez Cancer Institute, Tunisia.
| | - Nabil Rahoui
- Department of Pathology and Laboratory Medicine, University of North Carolina Chapel Hill, United States
| | - Maha Driss
- Department of histopathology, Salah Azaiez Cancer Institute, Tunisia
| | - Karima Mrad
- Department of histopathology, Salah Azaiez Cancer Institute, Tunisia
| |
Collapse
|
28
|
Wei C, Liang Y, Mo D, Lin Q, Liu Z, Li M, Qin Y, Fang M. Cost-effective prognostic evaluation of breast cancer: using a STAR nomogram model based on routine blood tests. Front Endocrinol (Lausanne) 2024; 15:1324617. [PMID: 38529388 PMCID: PMC10961337 DOI: 10.3389/fendo.2024.1324617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Background Breast cancer (BC) is the most common and prominent deadly disease among women. Predicting BC survival mainly relies on TNM staging, molecular profiling and imaging, hampered by subjectivity and expenses. This study aimed to establish an economical and reliable model using the most common preoperative routine blood tests (RT) data for survival and surveillance strategy management. Methods We examined 2863 BC patients, dividing them into training and validation cohorts (7:3). We collected demographic features, pathomics characteristics and preoperative 24-item RT data. BC risk factors were identified through Cox regression, and a predictive nomogram was established. Its performance was assessed using C-index, area under curves (AUC), calibration curve and decision curve analysis. Kaplan-Meier curves stratified patients into different risk groups. We further compared the STAR model (utilizing HE and RT methodologies) with alternative nomograms grounded in molecular profiling (employing second-generation short-read sequencing methodologies) and imaging (utilizing PET-CT methodologies). Results The STAR nomogram, incorporating subtype, TNM stage, age and preoperative RT data (LYM, LYM%, EOSO%, RDW-SD, P-LCR), achieved a C-index of 0.828 in the training cohort and impressive AUCs (0.847, 0.823 and 0.780) for 3-, 5- and 7-year OS rates, outperforming other nomograms. The validation cohort showed similar impressive results. The nomogram calculates a patient's total score by assigning values to each risk factor, higher scores indicating a poor prognosis. STAR promises potential cost savings by enabling less intensive surveillance in around 90% of BC patients. Compared to nomograms based on molecular profiling and imaging, STAR presents a more cost-effective, with potential savings of approximately $700-800 per breast cancer patient. Conclusion Combining appropriate RT parameters, STAR nomogram could help in the detection of patient anemia, coagulation function, inflammation and immune status. Practical implementation of the STAR nomogram in a clinical setting is feasible, and its potential clinical impact lies in its ability to provide an early, economical and reliable tool for survival prediction and surveillance strategy management. However, our model still has limitations and requires external data validation. In subsequent studies, we plan to mitigate the potential impact on model robustness by further updating and adjusting the data and model.
Collapse
Affiliation(s)
- Caibiao Wei
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yihua Liang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Dan Mo
- Department of Breast, Guangxi Zhuang Autonomous Region Maternal and Child Health Care Hospital, Nanning, China
| | - Qiumei Lin
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Zhimin Liu
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Meiqin Li
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yuling Qin
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Min Fang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| |
Collapse
|
29
|
Rypens C, Van Berckelaer C, Berditchevski F, van Dam P, Van Laere S. Deciphering the molecular biology of inflammatory breast cancer through molecular characterization of patient samples and preclinical models. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 384:77-112. [PMID: 38637101 DOI: 10.1016/bs.ircmb.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Inflammatory breast cancer is an aggressive subtype of breast cancer with dismal patient prognosis and a unique clinical presentation. In the past two decades, molecular profiling technologies have been used in order to gain insight into the molecular biology of IBC and to search for possible targets for treatment. Although a gene signature that accurately discriminates between IBC and nIBC patient samples and preclinical models was identified, the overall genomic and transcriptomic differences are small and ambiguous, mainly due to the limited sample sizes of the evaluated patient series and the failure to correct for confounding effects of the molecular subtypes. Nevertheless, data collected over the past 20 years by independent research groups increasingly support the existence of several IBC-specific biological characteristics. In this review, these features are classified as established, emerging and conceptual hallmarks based on the level of evidence reported in the literature. In addition, a synoptic model is proposed that integrates all hallmarks and that can explain how cancer cell intrinsic mechanisms (i.e. NF-κB activation, genomic instability, MYC-addiction, TGF-β resistance, adaptive stress response, chromatin remodeling, epithelial-to-mesenchymal transition) can contribute to the establishment of the dynamic immune microenvironment associated with IBC. It stands to reason that future research projects are needed to further refine (parts of) this model and to investigate its clinical translatability.
Collapse
Affiliation(s)
- Charlotte Rypens
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; CellCarta N V, Wilrijk, Belgium
| | - Christophe Van Berckelaer
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Fedor Berditchevski
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Peter van Dam
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Multidisciplinary Oncological Centre Antwerp (MOCA), Antwerp University Hospital, Drie Eikenstraat 655, Edegem, Belgium
| | - Steven Van Laere
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
30
|
Ren J, Han B, Feng P, Shao G, Chang Y. Mechanism of miR-7 mediating TLR4/TRAF6/NF-κB inflammatory pathway in colorectal cancer. Funct Integr Genomics 2024; 24:24. [PMID: 38315263 PMCID: PMC10844457 DOI: 10.1007/s10142-024-01307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 02/07/2024]
Abstract
This study is aimed at investigating the roles of Toll-like receptor 4 (TLR4) and microRNA-7 (miR-7) in colorectal cancer (CRC) development and progression. We assessed TLR4 and miR-7 expression in CRC cells and tissues using reverse transcription-quantitative polymerase chain reaction. The relationship between miR-7 and TLR4 was analyzed through dual luciferase reporter assays. MTT, wound healing, and cell invasion assays were conducted to examine the effects of TLR4 and miR-7 on CRC cell proliferation, migration, and invasion. Western blotting was used to explore the involvement of the TRAF6/NF-κB signaling pathway. miR-7 was underexpressed in CRC, while TLR4 levels were increased. miR-7 negatively regulated TLR4 expression and its knockdown enhanced CRC cell proliferation, migration, and invasion. TLR4 knockdown had the opposite effects. The TRAF6/NF-κB pathway was linked to TLR4's role in tumor progression. miR-7 might inhibit TRAF6/NF-κB target a signaling pathway of TLR4 and promote CRC occurrence. miR-7 may therefore be used as a sensitive biomarker in CRC patients.
Collapse
Affiliation(s)
- Jianfeng Ren
- Department of Gastroenterology, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Bing Han
- Department of Gastroenterology, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Ping Feng
- Department of Gastroenterology, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Gang Shao
- Department of Gastroenterology, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Yunli Chang
- Department of Gastroenterology, Pudong New Area People's Hospital, 490 Chuanhuan Nan Lu, Pudong New Area, Shanghai, China.
| |
Collapse
|
31
|
Xu Z, Wang X, Sun W, Xu F, Kou H, Hu W, Zhang Y, Jiang Q, Tang J, Xu Y. RelB-activated GPX4 inhibits ferroptosis and confers tamoxifen resistance in breast cancer. Redox Biol 2023; 68:102952. [PMID: 37944384 PMCID: PMC10641764 DOI: 10.1016/j.redox.2023.102952] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/21/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Tamoxifen (TAM) resistance remains a major obstacle in the treatment of advanced breast cancer (BCa). In addition to the competitive inhibition of the estrogen receptor (ER) signaling pathway, damping of mitochondrial function by increasing reactive oxygen species (ROS) is critical for enhancing TAM pharmacodynamics. Here, we showed that RelB contributes to TAM resistance by inhibiting TAM-provoked ferroptosis. TAM-induced ROS level promoted ferroptosis in TAM-sensitive cells, but the effect was alleviated in TAM-resistant cells with high constitutive levels of RelB. Mechanistically, RelB inhibited ferroptosis by transcriptional upregulating glutathione peroxidase 4 (GPX4). Consequently, elevating RelB and GPX4 in sensitive cells increased TAM resistance, and conversely, depriving RelB and GPX4 in resistant cells decreased TAM resistance. Furthermore, suppression of RelB transcriptional activation resensitized TAM-resistant cells by enhancing ferroptosis in vitro and in vivo. The inactivation of GPX4 in TAM-resistant cells consistently resensitized TAM by increasing ferroptosis-mediated cell death. Together, this study uncovered that inhibition of ferroptosis contributes to TAM resistance of BCa via RelB-upregulated GPX4.
Collapse
Affiliation(s)
- Zhi Xu
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China; Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China; Phase 1 Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xiumei Wang
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longman Avenue, Nanjing, 211166, China
| | - Wenbo Sun
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longman Avenue, Nanjing, 211166, China
| | - Fan Xu
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China; Affiliated Cancer Hospital, Nanjing Medical University, 42 Baiziting Avenue, Nanjing, 210009, China
| | - Hengyuan Kou
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longman Avenue, Nanjing, 211166, China
| | - Weizi Hu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longman Avenue, Nanjing, 211166, China
| | - Yanyan Zhang
- Affiliated Cancer Hospital, Nanjing Medical University, 42 Baiziting Avenue, Nanjing, 210009, China
| | - Qin Jiang
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China.
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Yong Xu
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longman Avenue, Nanjing, 211166, China; Affiliated Cancer Hospital, Nanjing Medical University, 42 Baiziting Avenue, Nanjing, 210009, China.
| |
Collapse
|
32
|
Gaud G, Achar S, Bourassa FXP, Davies J, Hatzihristidis T, Choi S, Kondo T, Gossa S, Lee J, Juneau P, Taylor N, Hinrichs CS, McGavern DB, François P, Altan-Bonnet G, Love PE. CD3ζ ITAMs enable ligand discrimination and antagonism by inhibiting TCR signaling in response to low-affinity peptides. Nat Immunol 2023; 24:2121-2134. [PMID: 37945821 PMCID: PMC11482260 DOI: 10.1038/s41590-023-01663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
The T cell antigen receptor (TCR) contains ten immunoreceptor tyrosine-based activation motif (ITAM) signaling sequences distributed within six CD3 subunits; however, the reason for such structural complexity and multiplicity is unclear. Here we evaluated the effect of inactivating the three CD3ζ chain ITAMs on TCR signaling and T cell effector responses using a conditional 'switch' mouse model. Unexpectedly, we found that T cells expressing TCRs containing inactivated (non-signaling) CD3ζ ITAMs (6F-CD3ζ) exhibited reduced ability to discriminate between low- and high-affinity ligands, resulting in enhanced signaling and cytokine responses to low-affinity ligands because of a previously undetected inhibitory function of CD3ζ ITAMs. Also, 6F-CD3ζ TCRs were refractory to antagonism, as predicted by a new in silico adaptive kinetic proofreading model that revises the role of ITAM multiplicity in TCR signaling. Finally, T cells expressing 6F-CD3ζ displayed enhanced cytolytic activity against solid tumors expressing low-affinity ligands, identifying a new counterintuitive approach to TCR-mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Guillaume Gaud
- Hematopoiesis and Lymphocyte Biology Section, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Sooraj Achar
- Immunodynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - François X P Bourassa
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Quebec, Canada
- Department of Physics, McGill University, Montréal QC, Canada
| | - John Davies
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department of Safety Assessment, Genentech, Inc., San Francisco, CA, USA
| | - Teri Hatzihristidis
- Hematopoiesis and Lymphocyte Biology Section, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Seeyoung Choi
- Hematopoiesis and Lymphocyte Biology Section, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Taisuke Kondo
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Selamawit Gossa
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Jan Lee
- Hematopoiesis and Lymphocyte Biology Section, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Paul Juneau
- National Institutes of Health Library, Office of Research Services, National Institutes of Health, Bethesda, MD, USA
| | - Naomi Taylor
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christian S Hinrichs
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Duncan and Nancy MacMillan Cancer Immunology and Metabolism Center of Excellence, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Dorian B McGavern
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Paul François
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Quebec, Canada
- Mila Québec, Montréal, Quebec, Canada
| | - Grégoire Altan-Bonnet
- Immunodynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Paul E Love
- Hematopoiesis and Lymphocyte Biology Section, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA.
| |
Collapse
|
33
|
Ghorbian M, Ghorbian S. Usefulness of machine learning and deep learning approaches in screening and early detection of breast cancer. Heliyon 2023; 9:e22427. [PMID: 38076050 PMCID: PMC10709063 DOI: 10.1016/j.heliyon.2023.e22427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 10/16/2024] Open
Abstract
Breast cancer (BC) is one of the most common types of cancer in women, and its prevalence is on the rise. The diagnosis of this disease in the first steps can be highly challenging. Hence, early and rapid diagnosis of this disease in its early stages increases the likelihood of a patient's recovery and survival. This study presents a systematic and detailed analysis of the various ML approaches and mechanisms employed during the BC diagnosis process. Further, this study provides a comprehensive and accurate overview of techniques, approaches, challenges, solutions, and important concepts related to this process in order to provide healthcare professionals and technologists with a deeper understanding of new screening and diagnostic tools and approaches, as well as identify new challenges and popular approaches in this field. Therefore, this study has attempted to provide a comprehensive taxonomy of applying ML techniques to BC diagnosis, focusing on the data obtained from the clinical methods diagnosis. The taxonomy presented in this study has two major components. Clinical diagnostic methods such as MRI, mammography, and hybrid methods are presented in the first part of the taxonomy. The second part involves implementing machine learning approaches such as neural networks (NN), deep learning (DL), and hybrid on the dataset in the first part. Then, the taxonomy will be analyzed based on implementing ML approaches in clinical diagnosis methods. The findings of the study demonstrated that the approaches based on NN and DL are the most accurate and widely used models for BC diagnosis compared to other diagnostic techniques, and accuracy (ACC), sensitivity (SEN), and specificity (SPE) are the most commonly used performance evaluation criteria. Additionally, factors such as the advantages and disadvantages of using machine learning techniques, as well as the objectives of each research, separately for ML technology and BC detection, as well as evaluation criteria, are discussed in this study. Lastly, this study provides an overview of open and unresolved issues related to using ML for BC diagnosis, along with a proposal to resolve each issue to assist researchers and healthcare professionals.
Collapse
Affiliation(s)
- Mohsen Ghorbian
- Department of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran
| | - Saeid Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| |
Collapse
|
34
|
Bessaad M, Habel A, Hadj Ahmed M, Xu W, Stayoussef M, Bouaziz H, Hachiche M, Mezlini A, Larbi A, Yaacoubi-Loueslati B. Assessing serum cytokine profiles in inflammatory breast cancer patients using Luminex® technology. Cytokine 2023; 172:156409. [PMID: 37918053 DOI: 10.1016/j.cyto.2023.156409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Inflammatory breast cancer (IBC), accounts for the majority of deaths associated with breast tumors. Because this form is aggressive from its appearance and has a strong metastatic potential. The majority of patients are not diagnosed until late stages, highlighting the need for the development of novel diagnostic biomarkers. Immune mediators may affect IBC progression and metastasis installation. AIM OF THE STUDY Analysis of serum proteins to identify a panel of prognostic biomarkers for IBC. PATIENTS AND METHODS Serum levels of 65 analytes were determined in IBC and Non-IBC patients with the ProcartaPlex Human Immune Monitoring 65-Plex Panel. RESULTS Fifteen analytes: 5 cytokines (IL-8, IL-16, IL-21, IL-22 and MIF), 7 chemokines (Eotaxin, eotaxin-3, Fractalkine, IP-10, MIP-1α, MIP-1β and SDF-1α), One growth factors (FGF-2) and 2 soluble receptors (TNFRII and Tweak); were significantly differentially expressed between the two groups. ROC curves showed that twelve of them (IL-8, IL-16, IL-21, IL-22, MIF, MIP-1α, MIP-1β, SDF-1α, TNFRII, FGF-2, Eotaxin-3, and Fractalkine) had AUC values greater than 0.70 and thus had potential clinical utility. Moreover, seven cytokines: IL-8, IL-16, MIF, Eotaxin-3, MIP-1α, MIP-1β, and CD-30 are positively associated with patients who developed distant metastasis. Ten analytes: Eotaxin-3, Fractalkine, IL-16, IL-1α, IL-22, IL-8, MIF, MIP-1α, MIP-1β, and TNFRII are positively associated with patients who had Lymph-Nodes invasion. CONCLUSION This study has uncovered a set of 8 analytes (Eotaxin-3, Fractalkine, IL-16, IL-8, IL-22, MIF, MIP-1α, MIP-1β) that can be used as biomarkers of IBC, and can be utilized for early detection of IBC, preventing metastasis and lymph-Nodes invasion.
Collapse
Affiliation(s)
- Maryem Bessaad
- University of Tunis El Manar (UTM), Faculty of Sciences of Tunis (FST), Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Tunisia
| | - Azza Habel
- University of Tunis El Manar (UTM), Faculty of Sciences of Tunis (FST), Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Tunisia
| | - Mariem Hadj Ahmed
- University of Tunis El Manar (UTM), Faculty of Sciences of Tunis (FST), Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Tunisia
| | - Weili Xu
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Mouna Stayoussef
- University of Tunis El Manar (UTM), Faculty of Sciences of Tunis (FST), Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Tunisia
| | - Hanen Bouaziz
- Salah Azaiez Oncology Institute, Avenue 9 April, 1006, Bab Saadoun, Tunis, Tunisia
| | - Monia Hachiche
- Salah Azaiez Oncology Institute, Avenue 9 April, 1006, Bab Saadoun, Tunis, Tunisia
| | - Amel Mezlini
- Salah Azaiez Oncology Institute, Avenue 9 April, 1006, Bab Saadoun, Tunis, Tunisia
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Besma Yaacoubi-Loueslati
- University of Tunis El Manar (UTM), Faculty of Sciences of Tunis (FST), Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Tunisia.
| |
Collapse
|
35
|
Alnahdi AS, Idrees M. Nonlinear dynamics of estrogen receptor-positive breast cancer integrating experimental data: A novel spatial modeling approach. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:21163-21185. [PMID: 38124592 DOI: 10.3934/mbe.2023936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Oncology research has focused extensively on estrogen hormones and their function in breast cancer proliferation. Mathematical modeling is essential for the analysis and simulation of breast cancers. This research presents a novel approach to examine the therapeutic and inhibitory effects of hormone and estrogen therapies on the onset of breast cancer. Our proposed mathematical model comprises a nonlinear coupled system of partial differential equations, capturing intricate interactions among estrogen, cytotoxic T lymphocytes, dormant cancer cells, and active cancer cells. The model's parameters are meticulously estimated through experimental studies, and we conduct a comprehensive global sensitivity analysis to assess the uncertainty of these parameter values. Remarkably, our findings underscore the pivotal role of hormone therapy in curtailing breast tumor growth by blocking estrogen's influence on cancer cells. Beyond this crucial insight, our proposed model offers an integrated framework to delve into the complexity of tumor progression and immune response under hormone therapy. We employ diverse experimental datasets encompassing gene expression profiles, spatial tumor morphology, and cellular interactions. Integrating multidimensional experimental data with mathematical models enhances our understanding of breast cancer dynamics and paves the way for personalized treatment strategies. Our study advances our comprehension of estrogen receptor-positive breast cancer and exemplifies a transformative approach that merges experimental data with cutting-edge mathematical modeling. This framework promises to illuminate the complexities of cancer progression and therapy, with broad implications for oncology.
Collapse
Affiliation(s)
- Abeer S Alnahdi
- Department of Mathematics and Statistics, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Muhammad Idrees
- Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
36
|
Valenza C, Trapani D, Curigliano G. Immunotherapy for inflammatory breast cancer: current evidences and future perspectives. Curr Opin Oncol 2023; 35:507-512. [PMID: 37621167 DOI: 10.1097/cco.0000000000000967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
PURPOSE OF REVIEW Inflammatory breast cancer (IBC) is the most fatal type presentation of clinical breast cancer. The immune tumor microenvironment (TME) of IBC is characterized by signals of immune evasion but suggests actionable vulnerability to immune-checkpoint inhibitors (ICIs). In this review, we aimed to summarize the most important preclinical evidences of IBC immune-vulnerability and the first data from clinical trials evaluating ICIs in IBC. RECENT FINDINGS IBC is characterized by a preexisting active immune TME suppressed by mechanisms of immune-escape, including inhibitory immune-checkpoints, whose expression is higher than in non-IBC. Clinical trials evaluating ICIs in patients with IBC are burdened by slow accrual and low enrollment. SUMMARY Because of the limited data from clinical trials, no conclusions about the activity of ICIs in IBC can be drawn. Ongoing clinical trials are assessing many promising ICI-based combination approaches. An enhanced multicenter collaboration to evaluate ICIs in patients with this aggressive form of disease and to improve clinical outcomes is required.
Collapse
Affiliation(s)
- Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
37
|
Fu X, Li J, Wu Y, Mao C, Jiang Y. PAR2 deficiency tunes inflammatory microenvironment to magnify STING signalling for mitigating cancer metastasis via anionic CRISPR/Cas9 nanoparticles. J Control Release 2023; 363:733-746. [PMID: 37827223 DOI: 10.1016/j.jconrel.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/13/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Metastasis is one of the most significant causes for deterioration of breast cancer, contributing to the clinical failure of anti-tumour drugs. Excessive inflammatory responses intensively promote the occurrence and development of tumour, while protease-activated receptor 2 (PAR2) as a cell membrane receptor actively participates in both tumour cell functions and inflammatory responses. However, rare investigations linked PAR2-mediated inflammatory environment to tumour progression. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology is an emerging and powerful gene editing technique and can be applied for probing the new role of PAR2 in breast cancer metastasis, but it still needs the development of an efficient and safe delivery system. This work constructed anionic bovine serum albumin (BSA) nanoparticles to encapsulate CRISPR/Cas9 plasmid encoding PAR2 sgRNA and Cas9 (tBSA/Cas9-PAR2) for triggering PAR2 deficiency. tBSA/Cas9-PAR2 remarkably promoted CRISPR/Cas9 to enter and transfect both inflammatory and cancer cells, initiating precise PAR2 gene editing in vitro and in vivo. PAR2 deficiency by tBSA/Cas9-PAR2 effectively suppressed NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome signalling in inflammatory microenvironment to magnify stimulator of interferon genes (STING) signalling, reactive oxygen species (ROS) accumulation and epithelial-mesenchymal transition (EMT) reversal, consequently preventing breast cancer metastasis. Therefore, this study not only demonstrated the involvement and underlying mechanism of PAR2 in tumour progression via modulating inflammatory microenvironment, but also suggested PAR2 deficiency by tBSA/Cas9-PAR2 as an attractive therapeutic strategy candidate for breast cancer metastasis.
Collapse
Affiliation(s)
- Xiujuan Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianbin Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yue Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Canquan Mao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuhong Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
38
|
Ji X, Williams KP, Zheng W. Applying a Gene Reversal Rate Computational Methodology to Identify Drugs for a Rare Cancer: Inflammatory Breast Cancer. Cancer Inform 2023; 22:11769351231202588. [PMID: 37846218 PMCID: PMC10576937 DOI: 10.1177/11769351231202588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/01/2023] [Indexed: 10/18/2023] Open
Abstract
The aim of this study was to utilize a computational methodology based on Gene Reversal Rate (GRR) scoring to repurpose existing drugs for a rare and understudied cancer: inflammatory breast cancer (IBC). This method uses IBC-related gene expression signatures (GES) and drug-induced gene expression profiles from the LINCS database to calculate a GRR score for each candidate drug, and is based on the idea that a compound that can counteract gene expression changes of a disease may have potential therapeutic applications for that disease. Genes related to IBC with associated differential expression data (265 up-regulated and 122 down-regulated) were collated from PubMed-indexed publications. Drug-induced gene expression profiles were downloaded from the LINCS database and candidate drugs to treat IBC were predicted using their GRR scores. Thirty-two (32) drug perturbations that could potentially reverse the pre-compiled list of 297 IBC genes were obtained using the LINCS Canvas Browser (LCB) analysis. Binary combinations of the 32 perturbations were assessed computationally to identify combined perturbations with the highest GRR scores, and resulted in 131 combinations with GRR greater than 80%, that reverse up to 264 of the 297 genes in the IBC-GES. The top 35 combinations involve 20 unique individual drug perturbations, and 19 potential drug candidates. A comprehensive literature search confirmed 17 of the 19 known drugs as having either anti-cancer or anti-inflammatory activities. AZD-7545, BMS-754807, and nimesulide target known IBC relevant genes: PDK, Met, and COX, respectively. AG-14361, butalbital, and clobenpropit are known to be functionally relevant in DNA damage, cell cycle, and apoptosis, respectively. These findings support the use of the GRR approach to identify drug candidates and potential combination therapies that could be used to treat rare diseases such as IBC.
Collapse
Affiliation(s)
- Xiaojia Ji
- BRITE Institute and Department of Pharmaceutical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC, USA
| | - Kevin P Williams
- BRITE Institute and Department of Pharmaceutical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC, USA
| | - Weifan Zheng
- BRITE Institute and Department of Pharmaceutical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC, USA
| |
Collapse
|
39
|
Gadde M, Mehrabi-Dehdezi M, Debeb BG, Woodward WA, Rylander MN. Influence of Macrophages on Vascular Invasion of Inflammatory Breast Cancer Emboli Measured Using an In Vitro Microfluidic Multi-Cellular Platform. Cancers (Basel) 2023; 15:4883. [PMID: 37835577 PMCID: PMC10571588 DOI: 10.3390/cancers15194883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Inflammatory breast cancer (IBC) is an aggressive disease with a poor prognosis and a lack of effective treatments. It is widely established that understanding the interactions between tumor-associated macrophages (TAMs) and the tumor microenvironment is essential for identifying distinct targeting markers that help with prognosis and subsequent development of effective treatments. In this study, we present a 3D in vitro microfluidic IBC platform consisting of THP1 M0, M1, or M2 macrophages, IBC cells, and endothelial cells. The platform comprises a collagen matrix that includes an endothelialized vessel, creating a physiologically relevant environment for cellular interactions. Through the utilization of this platform, it was discovered that the inclusion of tumor-associated macrophages (TAMs) led to an increase in the formation of new blood vessel sprouts and enhanced permeability of the endothelium, regardless of the macrophage phenotype. Interestingly, the platforms containing THP-1 M1 or M2 macrophages exhibited significantly greater porosity in the collagen extracellular matrix (ECM) compared to the platforms containing THP-1 M0 and the MDA-IBC3 cells alone. Cytokine analysis revealed that IL-8 and MMP9 showed selective increases when macrophages were cultured in the platforms. Notably, intravasation of tumor cells into the vessels was observed exclusively in the platform containing MDA-IBC3 and M0 macrophages.
Collapse
Affiliation(s)
- Manasa Gadde
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; (M.G.); (M.M.-D.)
| | - Melika Mehrabi-Dehdezi
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; (M.G.); (M.M.-D.)
| | - Bisrat G. Debeb
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Wendy A. Woodward
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marissa Nichole Rylander
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; (M.G.); (M.M.-D.)
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Oden Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
40
|
Zare N, Dana N, Mosayebi A, Vaseghi G, Javanmard SH. Evaluation of Expression Level of miR-3135b-5p in Blood Samples of Breast Cancer Patients Experiencing Chemotherapy-Induced Cardiotoxicity. Indian J Clin Biochem 2023; 38:536-540. [PMID: 37746544 PMCID: PMC10516830 DOI: 10.1007/s12291-022-01075-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
The efficacy of chemotherapeutics in the treatment of breast cancer is limited by cardiotoxicity, which could lead to irreversible heart failure. The evaluation of miRNA levels as a vital biomarker could predict cardiotoxicity induced by chemotherapy. According to our previous meta-analysis study on patients with heart failure, we found that miR-3135b had a significant increase in patients with heart failure. Therefore, the present study aimed to evaluate the expression level of miR-3135b in the blood sample of patients experiencing chemotherapy-induced cardiotoxicity. Blood samples were collected from breast cancer patients or breast cancer patients who had received chemotherapy and had not experienced any chemotherapy-induced cardiotoxicity (N = 37, control group) and breast cancer patients experiencing chemotherapy-induced cardiotoxicity after chemotherapy (N = 33). The expression level of miR-3135b was evaluated using real-time polymerase chain reaction (RT-PCR). The 2-ΔCt values of miR-3135b were compared between two groups. We observed a significant increase in the expression level of miR-3135b between patients experiencing chemotherapy-induced cardiotoxicity and the control group (P = 0.0001). Besides, the ejection fraction parameter was correlated with the expression level of miR-3135b (r = 0.5 and P = 0.0001). To sum up, miR-3135b might be useful as a promising circulating biomarker in predicting cardiotoxicity induced by chemotherapy. However, more studies are needed to validate miR-3135b as a biomarker for the diagnosis of chemotherapy-induced cardiotoxicity. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-022-01075-3.
Collapse
Affiliation(s)
- Nasrin Zare
- School of Medicine, Najafabad Branch, Islamic Azad University, Najafabad, Iran
- Clinical Research Development Centre, Najafabad branch, Islamic Azad university, Najafabad, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azam Mosayebi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golnaz Vaseghi
- Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Department of Physiology, Applied Physiology Research Center, Cardiovascular Research Institute , Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Physiology, Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Hezar jerib Avenue, Isfahan, Iran
| |
Collapse
|
41
|
Adesoye T, Everidge S, Chen J, Sun SX, Teshome M, Valero V, Woodward WA, Lucci A. Low Rates of Local-Regional Recurrence Among Inflammatory Breast Cancer Patients After Contemporary Trimodal Therapy. Ann Surg Oncol 2023; 30:6232-6240. [PMID: 37479842 DOI: 10.1245/s10434-023-13906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Inflammatory breast cancer (IBC) represents a rare (2-3 %) but aggressive subset of breast cancer with a historically reported 5-year overall survival rate of 50 % and a 3-year local-regional recurrence (LRR) rate of 20 %. This study aimed to evaluate long-term LRR in a contemporary cohort of non-metastatic IBC patients undergoing trimodal therapy at a single institution and identify factors associated with local and distant failure. METHODS The study identified 262 patients with non-metastatic IBC who received trimodal therapy (neoadjuvant chemotherapy, modified radical mastectomy, adjuvant radiation) from an institutional prospective database (2007-2019). Long-term outcomes of local-regional and distant metastasis were reported. Survival outcomes were analyzed using the Cox proportional hazards regression model. RESULTS The median age at diagnosis was 52 years, and the median follow-up period was 5.1 years. In this cohort, 82 (31.3 %) patients achieved a pathologic complete response (pCR) in the breast and axilla. Local-regional recurrence was observed in 18 (6.9 %) patients (11 isolated to the chest wall, 4 isolated to regional nodes, and 3 involving chest wall and ipsilateral axillary nodes). Distant metastasis was observed in 92 (35.1 %) patients. During the follow-up period, 90 deaths occurred. In the multivariate analysis, pCR was associated with improved disease-free survival (hazard ratio [HR], 0.26; 95 % confidence interval [CI], 0.13-0.51; p = 0.001) and overall survival (HR, 0.31; 95 % CI, 0.15-0.65; p = 002). CONCLUSIONS During a median follow-up period longer than 5 years, the local-regional relapse rate for the IBC patients treated with contemporary trimodal therapy was 6.9%, similar to that for the non-IBC patients. After chemotherapy, surgical resection with modified radical mastectomy to negative margins and postmastectomy radiation therapy resulted in excellent long-term local-regional control.
Collapse
Affiliation(s)
- Taiwo Adesoye
- Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Shlermine Everidge
- Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Chen
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Susie X Sun
- Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mediget Teshome
- Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vicente Valero
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wendy A Woodward
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anthony Lucci
- Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
42
|
Falcone N, Ermis M, Tamay DG, Mecwan M, Monirizad M, Mathes TG, Jucaud V, Choroomi A, de Barros NR, Zhu Y, Vrana NE, Kraatz HB, Kim HJ, Khademhosseini A. Peptide Hydrogels as Immunomaterials and Their Use in Cancer Immunotherapy Delivery. Adv Healthc Mater 2023; 12:e2301096. [PMID: 37256647 PMCID: PMC10615713 DOI: 10.1002/adhm.202301096] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Indexed: 06/01/2023]
Abstract
Peptide-based hydrogel biomaterials have emerged as an excellent strategy for immune system modulation. Peptide-based hydrogels are supramolecular materials that self-assemble into various nanostructures through various interactive forces (i.e., hydrogen bonding and hydrophobic interactions) and respond to microenvironmental stimuli (i.e., pH, temperature). While they have been reported in numerous biomedical applications, they have recently been deemed promising candidates to improve the efficacy of cancer immunotherapies and treatments. Immunotherapies seek to harness the body's immune system to preemptively protect against and treat various diseases, such as cancer. However, their low efficacy rates result in limited patient responses to treatment. Here, the immunomaterial's potential to improve these efficacy rates by either functioning as immune stimulators through direct immune system interactions and/or delivering a range of immune agents is highlighted. The chemical and physical properties of these peptide-based materials that lead to immuno modulation and how one may design a system to achieve desired immune responses in a controllable manner are discussed. Works in the literature that reports peptide hydrogels as adjuvant systems and for the delivery of immunotherapies are highlighted. Finally, the future trends and possible developments based on peptide hydrogels for cancer immunotherapy applications are discussed.
Collapse
Affiliation(s)
- Natashya Falcone
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Dilara Goksu Tamay
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, 06800, Turkey
- Department of Biotechnology, Middle East Technical University, Ankara, 06800, Turkey
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Mahsa Monirizad
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Tess Grett Mathes
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Auveen Choroomi
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Nihal Engin Vrana
- SPARTHA Medical, CRBS 1 Rue Eugene Boeckel, Strasbourg, 67000, France
| | - Heinz-Bernhard Kraatz
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| |
Collapse
|
43
|
Kong J, Bandyopadhyay S, Chen W, Al-Mufarrej F, Choi L, Kosir MA. Improved Rate of Negative Margins for Inflammatory Breast Cancer Using Intraoperative Frozen Section Analysis. Cancers (Basel) 2023; 15:4597. [PMID: 37760566 PMCID: PMC10526412 DOI: 10.3390/cancers15184597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is a rare and aggressive form of breast cancer with a poor survival rate. Modified radical mastectomy (MRM) with negative pathologic margins is critical for improved survival. We aim to study the potential benefit of intraoperative frozen section analysis (FSA) to improve disease-free margins. METHODS This prospective, monocentric study included 19 patients who underwent MRM for IBC. For each patient, a 2 mm continuous skin edge was sent for FSA to guide further resection. The rate of tumor-free margins and the concurrence between the FSA and permanent pathological results were analyzed. RESULTS Overall, 15 of the 19 patients achieved negative margins, including four patients who would have had positive margins without FSA. The odds ratio of achieving a negative final margin with FSA was infinity (p = 0.031), and there was a strong agreement between the FSA and permanent pathological results (Kappa-0.83; p < 0.0001). CONCLUSIONS The FSA technique decreased the number of positive margins in IBC patients undergoing MRM, thereby potentially reducing the need for re-operation, allowing immediate wound closure, and preventing delays in the administration of adjuvant radiation therapy. More extensive trials are warranted to establish the use of intraoperative FSA in IBC treatment.
Collapse
Affiliation(s)
- Joshua Kong
- Department of Surgery, Wayne State University, 4160 John R, Suite 400, Detroit, MI 48201, USA
| | - Sudeshna Bandyopadhyay
- Karmanos Cancer Institute, 4100 John R, Detroit, MI 48201, USA (W.C.)
- Department of Pathology, Wayne State University, 540 E. Canfield, Ste. 9374, Detroit, MI 48201, USA
| | - Wei Chen
- Karmanos Cancer Institute, 4100 John R, Detroit, MI 48201, USA (W.C.)
| | - Faisal Al-Mufarrej
- Karmanos Cancer Institute, 4100 John R, Detroit, MI 48201, USA (W.C.)
- Division of Plastic Surgery, Department of Surgery, Wayne State University, 4160 John R, Suite 400, Detroit, MI 48201, USA
| | - Lydia Choi
- Department of Surgery, Wayne State University, 4160 John R, Suite 400, Detroit, MI 48201, USA
- Karmanos Cancer Institute, 4100 John R, Detroit, MI 48201, USA (W.C.)
| | - Mary A. Kosir
- Department of Surgery, Wayne State University, 4160 John R, Suite 400, Detroit, MI 48201, USA
- Karmanos Cancer Institute, 4100 John R, Detroit, MI 48201, USA (W.C.)
| |
Collapse
|
44
|
Barreno L, Sevane N, Valdivia G, Alonso-Miguel D, Suarez-Redondo M, Alonso-Diez A, Fiering S, Beiss V, Steinmetz NF, Perez-Alenza MD, Peña L. Transcriptomics of Canine Inflammatory Mammary Cancer Treated with Empty Cowpea Mosaic Virus Implicates Neutrophils in Anti-Tumor Immunity. Int J Mol Sci 2023; 24:14034. [PMID: 37762335 PMCID: PMC10531449 DOI: 10.3390/ijms241814034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Canine inflammatory mammary cancer (IMC) is a highly aggressive and lethal cancer in dogs serving as a valuable animal model for its human counterpart, inflammatory breast cancer (IBC), both lacking effective therapies. Intratumoral immunotherapy (IT-IT) with empty cowpea mosaic virus (eCPMV) nanoparticles has shown promising results, demonstrating a reduction in tumor size, longer survival rates, and improved quality of life. This study compares the transcriptomic profiles of tumor samples from female dogs with IMC receiving eCPMV IT-IT and medical therapy (MT) versus MT alone. Transcriptomic analyses, gene expression profiles, signaling pathways, and cell type profiling of immune cell populations in samples from four eCPMV-treated dogs with IMC and four dogs with IMC treated with MT were evaluated using NanoString Technologies using a canine immune-oncology panel. Comparative analyses revealed 34 differentially expressed genes between treated and untreated samples. Five genes (CXCL8, S100A9, CCL20, IL6, and PTGS2) involved in neutrophil recruitment and activation were upregulated in the treated samples, linked to the IL17-signaling pathway. Cell type profiling showed a significant increase in neutrophil populations in the tumor microenvironment after eCPMV treatment. These findings highlight the role of neutrophils in the anti-tumor response mediated by eCPMV IT-IT and suggest eCPMV as a novel therapeutic approach for IBC/IMC.
Collapse
Affiliation(s)
- Lucia Barreno
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (L.B.); (G.V.); (D.A.-M.); (M.S.-R.); (A.A.-D.); (M.D.P.-A.); (L.P.)
| | - Natalia Sevane
- Department of Animal Production, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Guillermo Valdivia
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (L.B.); (G.V.); (D.A.-M.); (M.S.-R.); (A.A.-D.); (M.D.P.-A.); (L.P.)
| | - Daniel Alonso-Miguel
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (L.B.); (G.V.); (D.A.-M.); (M.S.-R.); (A.A.-D.); (M.D.P.-A.); (L.P.)
| | - María Suarez-Redondo
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (L.B.); (G.V.); (D.A.-M.); (M.S.-R.); (A.A.-D.); (M.D.P.-A.); (L.P.)
| | - Angela Alonso-Diez
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (L.B.); (G.V.); (D.A.-M.); (M.S.-R.); (A.A.-D.); (M.D.P.-A.); (L.P.)
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Veronique Beiss
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA; (V.B.); (N.F.S.)
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA; (V.B.); (N.F.S.)
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Maria Dolores Perez-Alenza
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (L.B.); (G.V.); (D.A.-M.); (M.S.-R.); (A.A.-D.); (M.D.P.-A.); (L.P.)
| | - Laura Peña
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (L.B.); (G.V.); (D.A.-M.); (M.S.-R.); (A.A.-D.); (M.D.P.-A.); (L.P.)
| |
Collapse
|
45
|
Valenza C, Trapani D, Fusco N, Wang X, Cristofanilli M, Ueno NT, Curigliano G. The immunogram of inflammatory breast cancer. Cancer Treat Rev 2023; 119:102598. [PMID: 37437342 DOI: 10.1016/j.ctrv.2023.102598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Inflammatory breast cancer (IBC) is the most aggressive and fatal clinical presentation of breast cancer. Despite the term "inflammatory", based on the clinical presentation, IBC is biologically driven by an immunosuppressive tumor microenvironment (TME). Whether IBC can be switched into an immune-inflamed TME by immune-checkpoint inhibitors (ICIs) is a matter of debate. Presently, measurable biomarkers of IBC-TME have never been synthetized into a comprehensive portray of the immune-milieu (i.e., an immunogram), describing the immune-vulnerability of IBC and potentially predicting the response to ICIs. We propose an immunogram for IBC, based on preclinical and clinical studies, including six parameters: the presence of immune-effector cells, of immune-suppressive cells and of immune checkpoints, the general immune status, the activation of immune-suppressive pathways, the tumor foreignness. The IBC immunogram suggests the existence of a preexisting immune TME that is suppressed by mechanisms of immune-escape but might be restored by ICIs. The combination of chemotherapy and ICIs in patients with IBC is based on a strong biological rationale. However, the design and the development of clinical trials assessing the incorporation of ICIs raise many methodological and practical issues. In parallel with the further comprehension of IBC biology, the prospective validation and integration of biomarkers predictive of response to ICIs are warranted.
Collapse
Affiliation(s)
- Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of Pathology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Xiaoping Wang
- The University of Texas MD Anderson Cancer Center, Department of Breast Medical Oncology, Houston, TX, USA
| | - Massimo Cristofanilli
- Division of Medical Oncology, Internal Medicine Department, Weill Cornell Medicine, New York, NY, USA
| | - Naoto T Ueno
- University of Hawai'i Cancer Center, Honolulu, HI 96813, USA
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
46
|
Haiduk TS, Sicking M, Brücksken KA, Espinoza-Sánchez NA, Eder KM, Kemper B, Eich HT, Götte M, Greve B, Troschel FM. Dysregulated Stem Cell Markers Musashi-1 and Musashi-2 are Associated with Therapy Resistance in Inflammatory Breast Cancer. Arch Med Res 2023; 54:102855. [PMID: 37481823 DOI: 10.1016/j.arcmed.2023.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND AND AIM While preliminary evidence points to pro-tumorigenic roles for the Musashi (MSI) RNA-binding proteins Musashi-1 (MSI1) and Musashi-2 (MSI2) in some breast cancer subtypes, no data exist for inflammatory breast cancer (IBC). METHODS MSI gene expression was quantified in IBC SUM149PT cells. We then used small interfering RNA-based MSI1 and MSI2 double knockdown (DKD) to understand gene expression and functional changes upon MSI depletion. We characterized cancer stem cell characteristics, cell apoptosis and cell cycle progression via flow cytometry, mammospheres via spheroid assays, migration and proliferation via digital holographic microscopy, and cell viability using BrdU assays. Chemoresistance was determined for paclitaxel and cisplatin with MTT assays and radioresistance was assessed with clonogenic analyses. In parallel, we supported our in vitro data by analyzing publicly available patient IBC gene expression datasets. RESULTS MSI1 and MSI2 are upregulated in breast cancer generally and IBC specifically. MSI2 is more commonly expressed compared to MSI1. MSI DKD attenuated proliferation, cell cycle progression, migration, and cell viability while increasing apoptosis. Stem cell characteristics CD44(+)/CD24(-), TERT and Oct4 were associated with MSI expression in vivo and were decreased in vitro after MSI DKD as was ALDH expression and mammosphere formation. In vivo, chemoresistant tumors were characterized by MSI upregulation upon chemotherapy application. In vitro, MSI DKD was able to alleviate chemo- and radioresistance. CONCLUSIONS The Musashi RNA binding proteins are dysregulated in IBC and associated with tumor proliferation, cancer stem cell phenotype, chemo- and radioresistance. MSI downregulation alleviates therapy resistance and attenuates tumor proliferation in vitro.
Collapse
Affiliation(s)
- Tiffany S Haiduk
- Department of Radiation Oncology, University Hospital Münster, Münster, Germany
| | - Mark Sicking
- Department of Radiation Oncology, University Hospital Münster, Münster, Germany
| | - Kathrin A Brücksken
- Department of Radiation Oncology, University Hospital Münster, Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Radiation Oncology, University Hospital Münster, Münster, Germany; Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany
| | - Kai Moritz Eder
- Biomedical Technology Center, Medical Faculty, University of Münster, Münster, Germany
| | - Björn Kemper
- Biomedical Technology Center, Medical Faculty, University of Münster, Münster, Germany
| | - Hans Theodor Eich
- Department of Radiation Oncology, University Hospital Münster, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany
| | - Burkhard Greve
- Department of Radiation Oncology, University Hospital Münster, Münster, Germany
| | - Fabian M Troschel
- Department of Radiation Oncology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
47
|
Chen Y, Wu W, Jin C, Cui J, Diao Y, Wang R, Xu R, Yao Z, Li X. Integrating Single-Cell RNA-Seq and Bulk RNA-Seq Data to Explore the Key Role of Fatty Acid Metabolism in Breast Cancer. Int J Mol Sci 2023; 24:13209. [PMID: 37686016 PMCID: PMC10487665 DOI: 10.3390/ijms241713209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer immune escape is associated with the metabolic reprogramming of the various infiltrating cells in the tumor microenvironment (TME), and combining metabolic targets with immunotherapy shows great promise for improving clinical outcomes. Among all metabolic processes, lipid metabolism, especially fatty acid metabolism (FAM), plays a major role in cancer cell survival, migration, and proliferation. However, the mechanisms and functions of FAM in the tumor immune microenvironment remain poorly understood. We screened 309 fatty acid metabolism-related genes (FMGs) for differential expression, identifying 121 differentially expressed genes. Univariate Cox regression models in The Cancer Genome Atlas (TCGA) database were then utilized to identify the 15 FMGs associated with overall survival. We systematically evaluated the correlation between FMGs' modification patterns and the TME, prognosis, and immunotherapy. The FMGsScore was constructed to quantify the FMG modification patterns using principal component analysis. Three clusters based on FMGs were demonstrated in breast cancer, with three patterns of distinct immune cell infiltration and biological behavior. An FMGsScore signature was constructed to reveal that patients with a low FMGsScore had higher immune checkpoint expression, higher immune checkpoint inhibitor (ICI) scores, increased immune microenvironment infiltration, better survival advantage, and were more sensitive to immunotherapy than those with a high FMGsScore. Finally, the expression and function of the signature key gene NDUFAB1 were examined by in vitro experiments. This study significantly demonstrates the substantial impact of FMGs on the immune microenvironment of breast cancer, and that FMGsScores can be used to guide the prediction of immunotherapy efficacy in breast cancer patients. In vitro experiments, knockdown of the NDUFAB1 gene resulted in reduced proliferation and migration of MCF-7 and MDA-MB-231 cell lines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaofeng Li
- Department of Epidemiology and Health Statistics, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
48
|
Chu Q, Xie C, Cao G, Hu Z, Li F, Fu Y, Han G, Li X. An Alternative Thinking in Tumor Therapeutics: Living Yeast Armored with Silicate. ACS NANO 2023; 17:16264-16273. [PMID: 37523324 DOI: 10.1021/acsnano.3c06311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
A hybrid platform, constructed via the surface "armoring" of living yeasts by a manganese silicate compound (MS@Yeast), is investigated for combinational cancer treatment. The intrinsic characteristics of living yeasts, in both acidophilic and anaerobic conditions, empower the hybrid platform with activated selected colonization in tumors. While silicate particles are delivered in a targeting manner, yeast fermentation occurs at the cancerous region, inducing both alcohol and CO2. The excessive content of alcohol causes the hemangiectasis of tumor tissue, facilitating the penetration of therapeutics into central tumors and subsequent endocytosis. The catalytic Mn2+ ions, released from silicate particles, react with CO2 to induce forceful oxidative stress in tumor cells, ablating the primary tumors. More interestingly, the debris of sacrificed tumor cells and yeasts triggers considerable antitumor immune responses, rejecting both rechallenged and metastatic tumors. The integration of biologically active microorganisms and functional materials, illustrated in this study, provides distinctive perspectives in the exploration of potential therapeutics for tackling cancer.
Collapse
Affiliation(s)
- Qiang Chu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- Tea Research Institute, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Congkun Xie
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Guodong Cao
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Zefeng Hu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Feiyu Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yike Fu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, People's Republic of China
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, People's Republic of China
| |
Collapse
|
49
|
Carbajal-Ochoa WH, Johnson D, Alvarez A, Bernal AM, Anampa JD. Racial disparities in treatment and outcomes between non-Hispanic Black and non-Hispanic White women with nonmetastatic inflammatory breast cancer. Breast Cancer Res Treat 2023:10.1007/s10549-023-07018-7. [PMID: 37442877 DOI: 10.1007/s10549-023-07018-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
PURPOSE The incidence rate of inflammatory breast cancer (IBC) is higher among non-Hispanic Black (NHB) than non-Hispanic White (NHW) women. We examined the differences in treatment and outcomes between NHB and NHW women with IBC, accounting for demographic, clinicopathological, and socioeconomic factors. METHODS We collected data from the Surveillance, Epidemiology, and End Results database for NHB and NHW women with IBC diagnosed between 2010-2016. We analyzed the odds of receiving chemotherapy, radiation, and surgery between NHB and NHW women. We evaluated overall survival (OS) with Kaplan-Meier methods and Cox proportional hazards methods. Competing risk analysis was used to compare the risk of breast cancer death between NHB and NHW women. We also evaluated the magnitude of survival disparities within the strata of demographic, socioeconomic, and treatment factors. RESULTS Among 1,652 NHW and 371 NHB women with IBC, the odds of receiving chemotherapy, surgery, and radiation were similar for NHB and NHW. After 39-month follow-up, the median OS was 40 and 81 months for NHB and NHW, respectively (p < 0.0001). The risk of breast cancer death was higher for NHB than NHW women (5-year risk of breast cancer death, 51% vs. 35%, p < 0.0001). CONCLUSION After adjustment for demographic, clinicopathological, and socioeconomic factors; NHB women with IBC had similar odds of receiving surgery, chemotherapy, and radiation therapy, but were more likely to die of the disease compared to their NHW counterparts. Our findings suggest the presence of masked tumor biology, treatment, or socioeconomic factors associated with race that can lead to worse IBC outcomes.
Collapse
Affiliation(s)
- Walter H Carbajal-Ochoa
- Department of Medical Oncology, Catalan Institute of Oncology/Josep Trueta Hospital, Girona, Spain
| | - Devin Johnson
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alvaro Alvarez
- Department of Medicine, Hematology/Oncology, Carole and Ray Neag Comprehensive Cancer Center, UCONN Health, Farmington, CT, USA
| | - Ana M Bernal
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, 1695 Eastchester Rd, Bronx, NY, 10461, USA
| | - Jesus D Anampa
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, 1695 Eastchester Rd, Bronx, NY, 10461, USA.
| |
Collapse
|
50
|
Zhang Y, Wang W, Min J, Liu S, Wang Q, Wang Y, Xiao Y, Li X, Zhou Z, Liu S. ZNF451 favors triple-negative breast cancer progression by enhancing SLUG-mediated CCL5 transcriptional expression. Cell Rep 2023; 42:112654. [PMID: 37342906 DOI: 10.1016/j.celrep.2023.112654] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/01/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype with limited effective therapies because of the absence of definitive targets. Here, we demonstrate that the expression of ZNF451, a poorly characterized vertebrate zinc-finger protein, is upregulated in TNBC and associated with a poor prognosis. Elevated ZNF451 expression facilitates TNBC progression by interacting with and enhancing the activity of the transcriptional activator snail family transcriptional repressor 2 (SLUG). Mechanistically, the ZNF451-SLUG complex preferentially recruits the acetyltransferase p300/CBP-associated factor (PCAF) to the CCL5 promoter, selectively facilitating CCL5 transcription by enhancing the acetylation of SLUG and local chromatin, leading to recruitment and activation of tumor-associated macrophages (TAMs). Disturbing the ZNF451-SLUG interaction using a peptide suppresses TNBC progression by reducing CCL5 expression and counteracting the migration and activation of TAMs. Collectively, our work provides mechanistic insights into the oncogene-like functions of ZNF451 and suggests that ZNF451 is a potential target for development of effective therapies against TNBC.
Collapse
Affiliation(s)
- Yu Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Wanyu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiali Min
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Suosi Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Qianrong Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China.
| |
Collapse
|