1
|
Hu H, Xue H, Dong K, Li Y, Liu P, Wang H, Li L, Xiao X, Chen H. Strand displacement-enhanced CRISPR-Cas13a system for ultra-specific detection of RNA single nucleotide variation. Biosens Bioelectron 2025; 280:117445. [PMID: 40194350 DOI: 10.1016/j.bios.2025.117445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/25/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
RNA plays a critical role in biological systems, mediating genetic information transfer and regulating gene expression. However, RNA is susceptible to variations from endogenous and exogenous sources, with potentially profound biological consequences. The CRISPR-Cas13a system has emerged as a promising tool for RNA variation detection due to its cost-effectiveness, sensitivity, and user-friendly nature. Despite this, designing a simple, universal system with high discrimination factor (DF) for single-nucleotide variations remains a challenge. Here, we present the strand displacement-enhanced Cas13a single-nucleotide variation detection assay (SECND), a sensitive, universal, and easy-to-implement method with a high DF for RNA variations. Using SECND, we detected 5 types of single-nucleotide variations, achieving a maximum DF of 1083.2. We validated the assay's effectiveness on miRNA and SARS-CoV-2 genomic RNA simulants, incorporating a 4-way strand displacement mechanism to enhance detection limits to 10 pmol/L and 50 pmol/L, and to identify variations at frequencies as low as 0.01 % and 0.1 %. Additionally, we demonstrated SECND's utility in quantifying single-nucleotide variants of miR-200b and miR-200c in ovarian cancer and retinal glioma cells. This versatile tool not only advances RNA variation detection but also has significant implications for disease research, diagnostics, and viral classification, enhancing our understanding of the CRISPR-Cas13a system and its potential applications.
Collapse
Affiliation(s)
- Hao Hu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou, 510280, Guangdong, China; Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hanwen Xue
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kejun Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiyuan Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Pei Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haiyun Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Longjie Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xianjin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hui Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
2
|
Wood TWP, Henriques WS, Cullen HB, Romero M, Blengini CS, Sarathy S, Sorkin J, Bekele H, Jin C, Kim S, Wang X, Laureau R, Chemiakine A, Khondker RC, Isola JVV, Stout MB, Gennarino VA, Mogessie B, Jain D, Schindler K, Suh Y, Wiedenheft B, Berchowitz LE. The retrotransposon-derived capsid genes PNMA1 and PNMA4 maintain reproductive capacity. NATURE AGING 2025:10.1038/s43587-025-00852-y. [PMID: 40263616 DOI: 10.1038/s43587-025-00852-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 03/05/2025] [Indexed: 04/24/2025]
Abstract
Almost half of the human genome consists of retrotransposons-'parasitic' sequences that insert themselves into the host genome via an RNA intermediate. Although most of these sequences are silenced or mutationally deactivated, they can present opportunities for evolutionary innovation: mutation of a deteriorating retrotransposon can result in a gene that provides a selective advantage to the host in a process termed 'domestication'1-3. The PNMA family of gag-like capsid genes was domesticated from an ancient vertebrate retrotransposon of the Metaviridae clade at least 100 million years ago4,5. PNMA1 and PNMA4 are positively regulated by the master germ cell transcription factors MYBL1 and STRA8, and their transcripts are bound by the translational regulator DAZL during gametogenesis6. This developmental regulation of PNMA1 and PNMA4 expression in gonadal tissue suggested to us that they might serve a reproductive function. Through the analysis of donated human ovaries, genome-wide association studies (GWASs) and mouse models, we found that PNMA1 and PNMA4 are necessary for the maintenance of a normal reproductive lifespan. These proteins self-assemble into capsid-like structures that exit human cells, and we observed large PNMA4 particles in mouse male gonadal tissue that contain RNA and are consistent with capsid formation.
Collapse
Affiliation(s)
- Thomas W P Wood
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - William S Henriques
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Harrison B Cullen
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Mayra Romero
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Cecilia S Blengini
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Shreya Sarathy
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Julia Sorkin
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Hilina Bekele
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Chen Jin
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Seungsoo Kim
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Xifan Wang
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Raphaelle Laureau
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Alexei Chemiakine
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Rishad C Khondker
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - José V V Isola
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael B Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Vincenzo A Gennarino
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, New York, NY, USA
| | - Binyam Mogessie
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Devanshi Jain
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Karen Schindler
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Yousin Suh
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Luke E Berchowitz
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA.
- Taub Institute for Research on Alzheimer's and the Aging Brain, New York, NY, USA.
| |
Collapse
|
3
|
Rassoulzadegan M. RNA-Mediated Non-Mendelian Inheritance in Mice: The Power of Memory. Biomolecules 2025; 15:605. [PMID: 40305353 PMCID: PMC12024725 DOI: 10.3390/biom15040605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 05/02/2025] Open
Abstract
The mouse genome is transcribed at different rates in both directions from the newly formed genome after fertilization. During embryonic genomic activation (EGA/ZGA), the first RNA metabolism creates heterogeneity between blastomeres. Indeed, ZGA-dependent maternal RNA degradation is crucial to regulate gene expression and enable the initiation and acquisition of full developmental competence. Subsequently, from the new genome, in addition to mRNAs, a wide range of regulatory ncRNAs are also transcribed. Regulatory ncRNAs (non-coding RNAs) have profoundly influenced fields ranging from developmental biology to RNA-mediated non-Mendelian inheritance, exhibiting sequence-specific functions. To date, the database cataloging ncRNA is not exhaustive, but their high sequence diversity, length and low expression level can vary within the same genome depending on environmental conditions, making understanding their functions often ambiguous. Indeed, during transcription control, cellular RNA content varies continuously. This phenomenon is observed in genetically identical organisms studied-bacteria, flies, plants and mammals-due to changes in transcription rates, and therefore, it impacts cellular memory. Importantly, experimental data regarding the simple modification of RNAs levels by microinjection into fertilized mouse eggs suggest that they certainly play a driving role in establishing and transmitting newly formed expression information. The idea here is that, even in a stable genome, transcripts can vary rapidly and significantly in response to environmental changes, initiated by transcriptional variations in the genome, thus altering cellular memory.
Collapse
Affiliation(s)
- Minoo Rassoulzadegan
- Department of Medical Biology, Erciyes University, Kayseri 38039, Turkey;
- Centre de Biochimie Valrose, University of Nice Sophia Antipolis, 06000 Nice, France
| |
Collapse
|
4
|
Xu Q, Chen H. Applications of spatial transcriptomics in studying spermatogenesis. Andrology 2025. [PMID: 40202007 DOI: 10.1111/andr.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
Spermatogenesis is a complex differentiation process that is facilitated by a series of cellular and molecular events. High-throughput genomics approaches, such as single-cell RNA sequencing, have begun to enable the systematic characterization of these events. However, the loss of tissue context because of tissue disassociations in the single-cell isolation protocols limits our ability to understand the regulation of spermatogenesis and how defects in spermatogenesis lead to infertility. The recent advancement of spatial transcriptomics technologies enables the studying of the molecular signatures of various cell types and their interactions in the native tissue context. In this review, we discuss how spatial transcriptomics has been leveraged to identify spatially variable genes, characterize cellular neighborhood, delineate cell‒cell communications, and detect molecular changes under pathological conditions in the mammalian testis. We believe that spatial transcriptomics, along with other emerging spatially resolved omics assays, can be utilized to further our understanding of the underlying causes of male infertility, and to facilitate the development of new treatment approaches.
Collapse
Affiliation(s)
- Qianlan Xu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Haiqi Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Gao W, Wang T, Cui J, Huang N, Fan G, Pan T, Jiang C, Wang F, Liu X, Ma L, Le Q. Paternal heroin self-administration in rats increases drug-seeking behavior in male offspring via miR-19b downregulation in the nucleus accumbens. Neuropsychopharmacology 2025:10.1038/s41386-025-02081-8. [PMID: 40057637 DOI: 10.1038/s41386-025-02081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 04/07/2025]
Abstract
Accumulating evidence indicates that drug addiction may lead to adaptive behavioral changes in offspring, potentially due to epigenetic modifications in parental germline. However, the underlying mechanisms remain inadequately understood. In this study, we show that paternal heroin self-administration (SA) increased heroin-seeking behavior in the F1 generation, when compared with offspring sired by yoke-infused control males, indicating cross-generational impact of paternal voluntary heroin seeking behavior. Notably, the increase of heroin seeking behavior in offspring was replicated by zygotic microinjection of sperm RNAs derived from sperm of heroin-SA-experienced rats. Analysis of non-coding RNAs in spermatozoa revealed coordinated changes in miRNA content between the nucleus accumbens and spermatozoa. We validated that restoration of miR-19b downregulation in sperm RNA from self-administration-experienced rats, in parallel with its overexpression in the nucleus accumbens of F1 offspring sired by heroin-SA-experienced fathers, reversed the increased heroin SA observed in these F1 offspring. Taken together, our findings suggest in rats that paternal heroin self-administration induces epigenetic changes in both brain and sperm miRNA, with miR-19b downregulation playing a critical role in mediating the epigenetic inheritance of increased heroin self-administration behavior in the F1 generation.
Collapse
Affiliation(s)
- Wenjing Gao
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Tingting Wang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Cui
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Nan Huang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Guangyuan Fan
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Tao Pan
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Changyou Jiang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Feifei Wang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Xing Liu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Lan Ma
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China.
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China.
| | - Qiumin Le
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China.
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China.
| |
Collapse
|
6
|
Bromham L. The genotype concept and language evolution: Comment on "Language follows a distinct mode of extra-genomic evolution" by Balthasar Bickel, Anne-Lise Giraud, Klaus Zuberb..hler, Carel P. van Schaik. Phys Life Rev 2025; 52:23-26. [PMID: 39591725 DOI: 10.1016/j.plrev.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Affiliation(s)
- Lindell Bromham
- Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra ACT 2601 Australia.
| |
Collapse
|
7
|
Martinez MS, Chocobar YA, Fariz Y, Paira DA, Rivero VE, Motrich RD. Effects of semen inflammation on embryo implantation, placentation, pregnancy outcomes and offspring health. Placenta 2025:S0143-4004(25)00035-9. [PMID: 39939266 DOI: 10.1016/j.placenta.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/09/2025] [Accepted: 02/02/2025] [Indexed: 02/14/2025]
Abstract
This review explores the critical role of semen inflammation in sperm quality, embryo implantation, placentation, and its broader implications on reproductive health. Chronic inflammation of the male genital tract has been increasingly recognized as a significant factor contributing to infertility. This inflammation not only impairs semen quality but also disrupts the intricate immune cross-talk between the male and female genital tracts, which is essential for successful implantation, placentation and pregnancy. The review synthesizes existing research on the mechanisms by which inflammatory mediators in semen influence the female immune environment, leading to altered uterine receptivity, placental formation, and embryo implantation. Furthermore, the impact of these disruptions on the health and development of the offspring is discussed, highlighting the transgenerational effects of male genital tract inflammation. Through an examination of both animal models and human studies, this review underscores the need for a deeper understanding of the immune interactions in reproductive biology and the potential for novel therapeutic interventions aimed at mitigating the adverse outcomes associated with semen inflammation.
Collapse
Affiliation(s)
- María S Martinez
- CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; FOCIS Center of Excellence Centro de Inmunología Clínica de Córdoba (CICC), Córdoba, Argentina
| | - Yair A Chocobar
- CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; FOCIS Center of Excellence Centro de Inmunología Clínica de Córdoba (CICC), Córdoba, Argentina
| | - Yamila Fariz
- CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; FOCIS Center of Excellence Centro de Inmunología Clínica de Córdoba (CICC), Córdoba, Argentina
| | - Daniela A Paira
- CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; FOCIS Center of Excellence Centro de Inmunología Clínica de Córdoba (CICC), Córdoba, Argentina
| | - Virginia E Rivero
- CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; FOCIS Center of Excellence Centro de Inmunología Clínica de Córdoba (CICC), Córdoba, Argentina
| | - Rubén D Motrich
- CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; FOCIS Center of Excellence Centro de Inmunología Clínica de Córdoba (CICC), Córdoba, Argentina.
| |
Collapse
|
8
|
Kline BL, Siddall NA, Wijaya F, Stuart CJ, Orlando L, Bakhshalizadeh S, Afkhami F, Bell KM, Jaillard S, Robevska G, van den Bergen JA, Shahbazi S, van Hoof A, Ayers KL, Hime GR, Sinclair AH, Tucker EJ. Functional characterization of human recessive DIS3 variants in premature ovarian insufficiency†. Biol Reprod 2025; 112:102-118. [PMID: 39400047 PMCID: PMC11736438 DOI: 10.1093/biolre/ioae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/16/2024] [Indexed: 10/15/2024] Open
Abstract
Premature ovarian insufficiency (POI) is characterized by the loss or complete absence of ovarian activity in women under the age of 40. Clinical presentation of POI varies with phenotypic severity ranging from premature loss of menses to complete gonadal dysgenesis. POI is genetically heterogeneous with >100 causative gene variants identified thus far. The etiology of POI varies from syndromic, idiopathic, monogenic to autoimmune causes the condition. Genetic diagnoses are beneficial to those impacted by POI as it allows for improved clinical management and fertility preservation. Identifying novel variants in candidate POI genes, however, is insufficient to make clinical diagnoses. The impact of missense variants can be predicted using bioinformatic algorithms but computational approaches have limitations and can generate false positive and false negative predictions. Functional characterization of missense variants, is therefore imperative, particularly for genes lacking a well-established genotype:phenotype correlation. Here we used whole-exome sequencing (WES) to identify the first case of a homozygous missense variant in DIS3 (c.2320C > T; p.His774Tyr) a critical component of the RNA exosome in a POI patient. This adds to the previously described compound heterozygous patient. We perform the first functional characterization of a human POI-associated DIS3 variant. A slight defect in mitotic growth was caused by the variant in a Saccharomyces cerevisiae model. Transgenic rescue of Dis3 knockdown in Drosophila melanogaster with human DIS3 carrying the patient variant led to aberrant ovarian development and egg chamber degeneration. This supports a potential deleterious impact of the human c.2320C > T; p.His774Tyr variant.
Collapse
Affiliation(s)
- Brianna L Kline
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Melbourne, Australia
| | - Nicole A Siddall
- Department of Anatomy and Physiology, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Melbourne, Australia
| | - Fernando Wijaya
- Department of Anatomy and Physiology, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Melbourne, Australia
| | - Catherine J Stuart
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, 7000 Fannin, Suite 1706, Houston, TX 77030, USA
| | - Luisa Orlando
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, 7000 Fannin, Suite 1706, Houston, TX 77030, USA
| | - Shabnam Bakhshalizadeh
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Melbourne, Australia
| | - Fateme Afkhami
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran Province, Tehran, Jalal Al Ahmad St, P9CJ+HC9, Iran
| | - Katrina M Bell
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
| | - Sylvie Jaillard
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
- INSERM, Institut de Recherche en Santé, Environement et Travail, University of Rennes, 9 Av. du Professeur Léon Bernard, 35000, Rennes, France
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, 2 rue Henri Le Guilloux, 35033 Rennes CEDEX 9F-35033, France
| | - Gorjana Robevska
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
| | - Jocelyn A van den Bergen
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
| | - Shirin Shahbazi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran Province, Tehran, Jalal Al Ahmad St, P9CJ+HC9, Iran
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, 7000 Fannin, Suite 1706, Houston, TX 77030, USA
| | - Katie L Ayers
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Melbourne, Australia
| | - Gary R Hime
- Department of Anatomy and Physiology, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Melbourne, Australia
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Melbourne, Australia
| | - Elena J Tucker
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Melbourne, Australia
| |
Collapse
|
9
|
Webster AK, Phillips PC. Epigenetics and individuality: from concepts to causality across timescales. Nat Rev Genet 2025:10.1038/s41576-024-00804-z. [PMID: 39789149 DOI: 10.1038/s41576-024-00804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 01/12/2025]
Abstract
Traditionally, differences among individuals have been divided into genetic and environmental causes. However, both types of variation can underlie regulatory changes in gene expression - that is, epigenetic changes - that persist across cell divisions (developmental differentiation) and even across generations (transgenerational inheritance). Increasingly, epigenetic variation among individuals is recognized as an important factor in human diseases and ageing. Moreover, non-genetic inheritance can lead to evolutionary changes within populations that differ from those expected by genetic inheritance alone. Despite its importance, causally linking epigenetic variation to phenotypic differences across individuals has proven difficult, particularly when epigenetic variation operates independently of genetic variation. New genomic approaches are providing unprecedented opportunity to measure and perturb epigenetic variation, helping to elucidate the role of epigenetic variation in mediating the genotype-phenotype map. Here, we review studies that have advanced our understanding of how epigenetic variation contributes to phenotypic differences between individuals within and across generations, and provide a unifying framework that allows historical and mechanistic perspectives to more fully inform one another.
Collapse
Affiliation(s)
- Amy K Webster
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
10
|
Li W, Yu Z, Xu S, Li Z, Xia W. Extracellular Vesicles in the Aging Male Reproductive System: Progresses and Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:375-394. [PMID: 40301265 DOI: 10.1007/978-3-031-82990-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Extracellular vesicles (EVs) serve as crucial mediators of intercellular communication in spermatogenesis, steroidogenesis, and age-related pathophysiological processes within the male reproductive system. These EVs exhibit promising prospects for disease diagnosis and therapeutic administration. This review explores the impact of advanced paternal age on male fertility and testosterone decline, shedding light on the underlying mechanisms. It highlights the decline in semen quality, DNA damage, and alterations in sperm miRNA profiles associated with aging. The interplay between oxidative stress and antioxidants crucially regulates male reproductive aging. Currently, most studies focus on Sertoli cell-derived EVs, while understanding of Leydig cell-derived vesicles remains limited. Multi-omics integration will enhance the understanding of male reproductive aging and guide personalized interventions, revealing potential biomarkers and targets in the future.
Collapse
Affiliation(s)
- Wenbo Li
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Depart. of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Depart. of ART, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziwen Yu
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Shuai Xu
- Depart. of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Depart. of ART, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Li
- Depart. of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Depart. of ART, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Bengbu Hospital of Shanghai General Hospital (The Second Affiliated Hospital of Bengbu Medical University), Bengbu, Anhui, China.
| | - Weiliang Xia
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
11
|
Krasikova A, Kulikova T, Schelkunov M, Makarova N, Fedotova A, Plotnikov V, Berngardt V, Maslova A, Fedorov A. The first chicken oocyte nucleus whole transcriptomic profile defines the spectrum of maternal mRNA and non-coding RNA genes transcribed by the lampbrush chromosomes. Nucleic Acids Res 2024; 52:12850-12877. [PMID: 39494543 PMCID: PMC11602149 DOI: 10.1093/nar/gkae941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
Lampbrush chromosomes, with their unusually high rate of nascent RNA synthesis, provide a valuable model for studying mechanisms of global transcriptome up-regulation. Here, we obtained a whole-genomic profile of transcription along the entire length of all lampbrush chromosomes in the chicken karyotype. With nuclear RNA-seq, we obtained information about a wider set of transcripts, including long non-coding RNAs retained in the nucleus and stable intronic sequence RNAs. For a number of protein-coding genes, we visualized their nascent transcripts on the lateral loops of lampbrush chromosomes by RNA-FISH. The set of genes transcribed on the lampbrush chromosomes is required for basic cellular processes and is characterized by a broad expression pattern. We also present the first high-throughput transcriptome characterization of miRNAs and piRNAs in chicken oocytes at the lampbrush chromosome stage. Major targets of predicted piRNAs include CR1 and long terminal repeat (LTR) containing retrotransposable elements. Transcription of tandem repeat arrays was demonstrated by alignment against the whole telomere-to-telomere chromosome assemblies. We show that transcription of telomere-derived RNAs is initiated at adjacent LTR elements. We conclude that hypertranscription on the lateral loops of giant lampbrush chromosomes is required for synthesizing large amounts of transferred to the embryo maternal RNA for thousands of genes.
Collapse
Affiliation(s)
- Alla Krasikova
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Tatiana Kulikova
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Mikhail Schelkunov
- Genomics Core Facility, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Institute for Information Transmission Problems, Moscow, 127051, Russia
| | - Nadezhda Makarova
- Genomics Core Facility, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Anna Fedotova
- Genomics Core Facility, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladimir Plotnikov
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Valeria Berngardt
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Antonina Maslova
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Anton Fedorov
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| |
Collapse
|
12
|
Shaffer JF, Gupta A, Kharkwal G, Linares EE, Holmes AD, Swartz JR, Katzman S, Sharma U. Epididymis-specific RNase A family genes regulate fertility and small RNA processing. J Biol Chem 2024; 300:107933. [PMID: 39476961 DOI: 10.1016/j.jbc.2024.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
Sperm small RNAs are implicated in intergenerational transmission of paternal environmental effects. Small RNAs generated by the cleavage of tRNAs, known as tRNA fragments (tRFs) or tRNA-derived RNAs (tDRs or tsRNAs), are an abundant class of RNAs in mature sperm and can be modulated by environmental conditions. The biogenesis of tRFs in the male reproductive tract remains poorly understood. Angiogenin, a member of the ribonuclease A superfamily (RNase A), cleaves tRNAs to generate tRFs in response to cellular stress. Four paralogs of Angiogenin, namely Rnase9, Rnase10, Rnase11, and Rnase12, are specifically expressed in the epididymis-a long, convoluted tubule where sperm mature and acquire fertility and motility. Here, by generating mice deleted for all four genes (Rnase9-12-/-, termed "KO" for Knock Out), we report that these genes regulate fertility and small RNA levels. KO male mice are sterile; KO sperm fertilized oocytes in vitro but failed to efficiently fertilize oocytes in vivo due to an inability of sperm to pass through the utero-tubular junction. Intriguingly, there were decreased levels of tRFs and rRNAs (rRNA-derived small RNAs or rsRNAs) in the KO epididymis and epididymal luminal fluid, although RNases 9-12 did not show ribonucleolytic activity in vitro. Importantly, KO sperm showed a dramatic decrease in the levels of tRFs, demonstrating a role of epididymis-specific Rnase9-12 genes in regulating sperm small RNA composition. Together, our results reveal an unexpected role of four epididymis-specific noncanonical ribonuclease A family genes in regulating fertility and small RNA processing.
Collapse
Affiliation(s)
- Joshua F Shaffer
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, USA
| | - Alka Gupta
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, USA
| | | | - Edgardo E Linares
- University of Colorado Anshutz Medical Campus, Aurora, Colorado, USA
| | - Andrew D Holmes
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, USA
| | - Julian R Swartz
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, USA
| | - Sol Katzman
- Genomics Institute, University of California, Santa Cruz, California, USA
| | - Upasna Sharma
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, USA.
| |
Collapse
|
13
|
Shaffer JF, Gupta A, Kharkwal G, Linares EE, Holmes AD, Katzman S, Sharma U. Epididymis-specific RNase A family genes regulate fertility and small RNA processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.608813. [PMID: 39253511 PMCID: PMC11383283 DOI: 10.1101/2024.08.26.608813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Sperm small RNAs are implicated in intergenerational transmission of paternal environmental effects. Small RNAs generated by cleavage of tRNAs, known as tRNA fragments (tRFs), are an abundant class of RNAs in mature sperm, and can be modulated by environmental conditions. The ribonuclease(s) responsible for the biogenesis of tRFs in the male reproductive tract remains unknown. Angiogenin, a member of the Ribonuclease A superfamily (RNase A), cleaves tRNAs to generate tRFs in response to cellular stress. Four paralogs of Angiogenin, namely Rnase9, Rnase10, Rnase11, and Rnase12, are specifically expressed in the epididymis-a long, convoluted tubule where sperm mature and acquire fertility and motility. The biological functions of these genes remain largely unknown. Here, by generating mice deleted for all four genes (Rnase9-12-/-, termed "KO" for Knock Out), we report that these genes regulate fertility and RNA processing. KO mice showed complete male sterility. KO sperm fertilized oocytes in vitro but failed to efficiently fertilize oocytes in vivo, likely due to an inability of sperm to pass through the utero-tubular junction. Intriguingly, there were decreased levels of fragments of tRNAs (tRFs) and rRNAs (rRNA-derived small RNAs or rsRNAs) in the KO epididymis and epididymal luminal fluid, implying that Rnase9-12 regulate the biogenesis and/or stability of tRFs and rsRNAs. Importantly, KO sperm showed a dramatic decrease in the levels of tRFs, demonstrating a role of Rnase9-12 in regulating sperm RNA composition. Together, our results reveal an unexpected role of four epididymis-specific non-canonical RNase A family genes in fertility and RNA processing.
Collapse
Affiliation(s)
- Joshua F. Shaffer
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Alka Gupta
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Geetika Kharkwal
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Edgardo E. Linares
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Andrew D. Holmes
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Sol Katzman
- Genomics Institute, University of California, Santa Cruz, California, 95064
| | - Upasna Sharma
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| |
Collapse
|
14
|
Tahiri I, Llana SR, Fos-Domènech J, Milà-Guash M, Toledo M, Haddad-Tóvolli R, Claret M, Obri A. Paternal obesity induces changes in sperm chromatin accessibility and has a mild effect on offspring metabolic health. Heliyon 2024; 10:e34043. [PMID: 39100496 PMCID: PMC11296027 DOI: 10.1016/j.heliyon.2024.e34043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
The increasing global burden of metabolic disorders including obesity and diabetes necessitates a comprehensive understanding of their etiology, which not only encompasses genetic and environmental factors but also parental influence. Recent evidence has unveiled paternal obesity as a contributing factor to offspring's metabolic health via sperm epigenetic modifications. In this study, we investigated the impact of a Western diet-induced obesity in C57BL/6 male mice on sperm chromatin accessibility and the subsequent metabolic health of their progeny. Utilizing Assay for Transposase-Accessible Chromatin with sequencing, we discovered 450 regions with differential accessibility in sperm from obese fathers, implicating key developmental and metabolic pathways. Contrary to expectations, these epigenetic alterations in sperm were not predictive of long-term metabolic disorders in offspring, who exhibited only mild transient metabolic changes early in life. Both male and female F1 progeny showed no enduring predisposition to obesity or diabetes. These results underscore the biological resilience of offspring to paternal epigenetic inheritance, suggesting a complex interplay between inherited epigenetic modifications and the offspring's own developmental compensatory mechanisms. This study calls for further research into the biological processes that confer this resilience, which could inform interventional strategies to combat the heritability of metabolic diseases.
Collapse
Affiliation(s)
- Iasim Tahiri
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Sergio R. Llana
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Júlia Fos-Domènech
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Maria Milà-Guash
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Miriam Toledo
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Roberta Haddad-Tóvolli
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Marc Claret
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Arnaud Obri
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
15
|
Wu D, Zhang K, Guan K, Khan FA, Pandupuspitasari NS, Negara W, Sun F, Huang C. Future in the past: paternal reprogramming of offspring phenotype and the epigenetic mechanisms. Arch Toxicol 2024; 98:1685-1703. [PMID: 38460001 DOI: 10.1007/s00204-024-03713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 03/11/2024]
Abstract
That certain preconceptual paternal exposures reprogram the developmental phenotypic plasticity in future generation(s) has conceptualized the "paternal programming of offspring health" hypothesis. This transgenerational effect is transmitted primarily through sperm epigenetic mechanisms-DNA methylation, non-coding RNAs (ncRNAs) and associated RNA modifications, and histone modifications-and potentially through non-sperm-specific mechanisms-seminal plasma and circulating factors-that create 'imprinted' memory of ancestral information. The epigenetic landscape in sperm is highly responsive to environmental cues, due to, in part, the soma-to-germline communication mediated by epididymosomes. While human epidemiological studies and experimental animal studies have provided solid evidences in support of transgenerational epigenetic inheritance, how ancestral information is memorized as epigenetic codes for germline transmission is poorly understood. Particular elusive is what the downstream effector pathways that decode those epigenetic codes into persistent phenotypes. In this review, we discuss the paternal reprogramming of offspring phenotype and the possible underlying epigenetic mechanisms. Cracking these epigenetic mechanisms will lead to a better appreciation of "Paternal Origins of Health and Disease" and guide innovation of intervention algorithms to achieve 'healthier' outcomes in future generations. All this will revolutionize our understanding of human disease etiology.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
16
|
Wood TWP, Henriques WS, Cullen HB, Romero M, Blengini CS, Sarathy S, Sorkin J, Bekele H, Jin C, Kim S, Chemiakine A, Khondker RC, Isola JVV, Stout MB, Gennarino VA, Mogessie B, Jain D, Schindler K, Suh Y, Wiedenheft B, Berchowitz LE. The retrotransposon - derived capsid genes PNMA1 and PNMA4 maintain reproductive capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.592987. [PMID: 38798495 PMCID: PMC11118267 DOI: 10.1101/2024.05.11.592987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The human genome contains 24 gag -like capsid genes derived from deactivated retrotransposons conserved among eutherians. Although some of their encoded proteins retain the ability to form capsids and even transfer cargo, their fitness benefit has remained elusive. Here we show that the gag -like genes PNMA1 and PNMA4 support reproductive capacity. Six-week-old mice lacking either Pnma1 or Pnma4 are indistinguishable from wild-type littermates, but by six months the mutant mice become prematurely subfertile, with precipitous drops in sex hormone levels, gonadal atrophy, and abdominal obesity; overall they produce markedly fewer offspring than controls. Analysis of donated human ovaries shows that expression of both genes declines normally with aging, while several PNMA1 and PNMA4 variants identified in genome-wide association studies are causally associated with low testosterone, altered puberty onset, or obesity. These findings expand our understanding of factors that maintain human reproductive health and lend insight into the domestication of retrotransposon-derived genes.
Collapse
|
17
|
Argaw-Denboba A, Schmidt TSB, Di Giacomo M, Ranjan B, Devendran S, Mastrorilli E, Lloyd CT, Pugliese D, Paribeni V, Dabin J, Pisaniello A, Espinola S, Crevenna A, Ghosh S, Humphreys N, Boruc O, Sarkies P, Zimmermann M, Bork P, Hackett JA. Paternal microbiome perturbations impact offspring fitness. Nature 2024; 629:652-659. [PMID: 38693261 PMCID: PMC11096121 DOI: 10.1038/s41586-024-07336-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 03/20/2024] [Indexed: 05/03/2024]
Abstract
The gut microbiota operates at the interface of host-environment interactions to influence human homoeostasis and metabolic networks1-4. Environmental factors that unbalance gut microbial ecosystems can therefore shape physiological and disease-associated responses across somatic tissues5-9. However, the systemic impact of the gut microbiome on the germline-and consequently on the F1 offspring it gives rise to-is unexplored10. Here we show that the gut microbiota act as a key interface between paternal preconception environment and intergenerational health in mice. Perturbations to the gut microbiota of prospective fathers increase the probability of their offspring presenting with low birth weight, severe growth restriction and premature mortality. Transmission of disease risk occurs via the germline and is provoked by pervasive gut microbiome perturbations, including non-absorbable antibiotics or osmotic laxatives, but is rescued by restoring the paternal microbiota before conception. This effect is linked with a dynamic response to induced dysbiosis in the male reproductive system, including impaired leptin signalling, altered testicular metabolite profiles and remapped small RNA payloads in sperm. As a result, dysbiotic fathers trigger an elevated risk of in utero placental insufficiency, revealing a placental origin of mammalian intergenerational effects. Our study defines a regulatory 'gut-germline axis' in males, which is sensitive to environmental exposures and programmes offspring fitness through impacting placenta function.
Collapse
Affiliation(s)
- Ayele Argaw-Denboba
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Thomas S B Schmidt
- European Molecular Biology Laboratory (EMBL), Structural & Computational Biology Unit, Heidelberg, Germany
| | - Monica Di Giacomo
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Bobby Ranjan
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Saravanan Devendran
- European Molecular Biology Laboratory (EMBL), Structural & Computational Biology Unit, Heidelberg, Germany
| | - Eleonora Mastrorilli
- European Molecular Biology Laboratory (EMBL), Structural & Computational Biology Unit, Heidelberg, Germany
| | - Catrin T Lloyd
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Danilo Pugliese
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Violetta Paribeni
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Juliette Dabin
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Alessandra Pisaniello
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Sergio Espinola
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Alvaro Crevenna
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Subhanita Ghosh
- MRC London Institute for Medical Science (LMS), London, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Neil Humphreys
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Olga Boruc
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Peter Sarkies
- MRC London Institute for Medical Science (LMS), London, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Michael Zimmermann
- European Molecular Biology Laboratory (EMBL), Structural & Computational Biology Unit, Heidelberg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory (EMBL), Structural & Computational Biology Unit, Heidelberg, Germany
- Department of Bioinformatics, Biozentrum, University of Würzburg, Würzburg, Germany
- Yonsei Frontier Lab (YFL), Yonsei University, Seoul, South Korea
| | - Jamie A Hackett
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy.
| |
Collapse
|
18
|
Harris JC, Trigg NA, Goshu B, Yokoyama Y, Dohnalová L, White EK, Harman A, Murga-Garrido SM, Ting-Chun Pan J, Bhanap P, Thaiss CA, Grice EA, Conine CC, Kambayashi T. The microbiota and T cells non-genetically modulate inherited phenotypes transgenerationally. Cell Rep 2024; 43:114029. [PMID: 38573852 PMCID: PMC11102039 DOI: 10.1016/j.celrep.2024.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/21/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
The host-microbiota relationship has evolved to shape mammalian physiology, including immunity, metabolism, and development. Germ-free models are widely used to study microbial effects on host processes such as immunity. Here, we find that both germ-free and T cell-deficient mice exhibit a robust sebum secretion defect persisting across multiple generations despite microbial colonization and T cell repletion. These phenotypes are inherited by progeny conceived during in vitro fertilization using germ-free sperm and eggs, demonstrating that non-genetic information in the gametes is required for microbial-dependent phenotypic transmission. Accordingly, gene expression in early embryos derived from gametes from germ-free or T cell-deficient mice is strikingly and similarly altered. Our findings demonstrate that microbial- and immune-dependent regulation of non-genetic information in the gametes can transmit inherited phenotypes transgenerationally in mice. This mechanism could rapidly generate phenotypic diversity to enhance host adaptation to environmental perturbations.
Collapse
Affiliation(s)
- Jordan C Harris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natalie A Trigg
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bruktawit Goshu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuichi Yokoyama
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lenka Dohnalová
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ellen K White
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adele Harman
- Transgenic Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sofía M Murga-Garrido
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie Ting-Chun Pan
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Preeti Bhanap
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth A Grice
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Colin C Conine
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Pires da Silva A, Kelleher R, Reynoldson L. Decoding lifespan secrets: the role of the gonad in Caenorhabditis elegans aging. FRONTIERS IN AGING 2024; 5:1380016. [PMID: 38605866 PMCID: PMC11008531 DOI: 10.3389/fragi.2024.1380016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
The gonad has become a central organ for understanding aging in C. elegans, as removing the proliferating stem cells in the germline results in significant lifespan extension. Similarly, when starvation in late larval stages leads to the quiescence of germline stem cells the adult nematode enters reproductive diapause, associated with an extended lifespan. This review summarizes recent advancements in identifying the mechanisms behind gonad-mediated lifespan extension, including comparisons with other nematodes and the role of lipid signaling and transcriptional changes. Given that the gonad also mediates lifespan regulation in other invertebrates and vertebrates, elucidating the underlying mechanisms may help to gain new insights into the mechanisms and evolution of aging.
Collapse
|
20
|
Sato A, Mihirogi Y, Wood C, Suzuki Y, Truebano M, Bishop J. Heterogeneity in maternal mRNAs within clutches of eggs in response to thermal stress during the embryonic stage. BMC Ecol Evol 2024; 24:21. [PMID: 38347459 PMCID: PMC10860308 DOI: 10.1186/s12862-024-02203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The origin of variation is of central interest in evolutionary biology. Maternal mRNAs govern early embryogenesis in many animal species, and we investigated the possibility that heterogeneity in maternal mRNA provisioning of eggs can be modulated by environmental stimuli. RESULTS We employed two sibling species of the ascidian Ciona, called here types A and B, that are adapted to different temperature regimes and can be hybridized. Previous study showed that hybrids using type B eggs had higher susceptibility to thermal stress than hybrids using type A eggs. We conducted transcriptome analyses of multiple single eggs from crosses using eggs of the different species to compare the effects of maternal thermal stress on heterogeneity in egg provisioning, and followed the effects across generations. We found overall decreases of heterogeneity of egg maternal mRNAs associated with maternal thermal stress. When the eggs produced by the F1 AB generation were crossed with type B sperm and the progeny ('ABB' generation) reared unstressed until maturation, the overall heterogeneity of the eggs produced was greater in a clutch from an individual with a heat-stressed mother compared to one from a non-heat-stressed mother. By examining individual genes, we found no consistent overall effect of thermal stress on heterogeneity of expression in genes involved in developmental buffering. In contrast, heterogeneity of expression in signaling molecules was directly affected by thermal stress. CONCLUSIONS Due to the absence of batch replicates and variation in the number of reads obtained, our conclusions are very limited. However, contrary to the predictions of bet-hedging, the results suggest that maternal thermal stress at the embryo stage is associated with reduced heterogeneity of maternal mRNA provision in the eggs subsequently produced by the stressed individual, but there is then a large increase in heterogeneity in eggs of the next generation, although itself unstressed. Despite its limitations, our study presents a proof of concept, identifying a model system, experimental approach and analytical techniques capable of providing a significant advance in understanding the impact of maternal environment on developmental heterogeneity.
Collapse
Affiliation(s)
- Atsuko Sato
- Department of Biology, Ochanomizu University, Otsuka, Bunkyo-Ku, Tokyo, 112-8610, Japan.
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK.
- Human Life Innovation Center, Ochanomizu University, Otsuka, Bunkyo-Ku, Tokyo, 112-8610, Japan.
- Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza Aoba, Aoba-Ku, Sendai, 980-8578, Japan.
| | - Yukie Mihirogi
- Department of Biology, Ochanomizu University, Otsuka, Bunkyo-Ku, Tokyo, 112-8610, Japan
| | - Christine Wood
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwano-Ha, Chiba, 277-8561, Japan
| | - Manuela Truebano
- Marine Biology and Ecology Research Center, School of Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| | - John Bishop
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| |
Collapse
|
21
|
Elzer D, Bremser M, Zischler H. Human sperm heads harbor modified YsRNA as transgenerationally inherited non-coding RNAs. Front Genet 2023; 14:1294389. [PMID: 38162679 PMCID: PMC10756665 DOI: 10.3389/fgene.2023.1294389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Most epigenetic information is reprogrammed during gametogenesis and early development. However, some epigenetic information persists and can be inherited, a phenomenon that is common in plants. On the other hand, there are increasing examples of epigenetic inheritance in metazoans, especially for small non-coding RNAs. The presence of regulatory important RNAs in oocytes is undisputed, whereas the corresponding RNA payload in spermatozoa and its regulatory influence in the zygote and early embryogenesis is largely enigmatic. For humans, we herein describe small YRNA fragments (YsRNA) as a paternal contribution to the zygote. First, we trace the biogenesis of these YsRNAs from the source YRNAs with respect to the 5' and 3' modifications. Both the length and modifications make these YsRNAs reminiscent of canonical piRNAs that are not derived from piRNA clusters. Second, from the early stages of spermatogenesis to maturation in the epididymis, we observe distinct YsRNA profile dynamics in the male germline. We detected YsRNAs exclusively in mature sperm heads, the precursor of the male pronucleus in the zygote, suggesting an important role of the epididymis as a site for transmitting and modification of epigenetic information in the form of YsRNA between soma and germline in humans. Since this YsRNA-based epigenetic mechanism is effective across generations, we wondered whether this phenomenon of epigenetic inheritance has an adaptive value. Full-length YRNAs bind to Ro60, an RNA chaperone that additionally binds to non-coding RNAs. We described the profiles of non-coding RNAs bound to Ro60 in the human sperm head and detected specific binding profiles of RNA to Ro60 but no YRNA bound to Ro60. We hypothesize that the sperm head Ro60 system is functional. An adaptive phenotype mediated by the presence of a large amount of YsRNA in the sperm head, and thus as a paternal contribution in the zygote, might be related to an association of YsRNA with YRNA that prevents the adoption of a YRNA secondary structure capable of binding to Ro60. We hypothesize that preventing YRNAs from acting as Ro60-associated gatekeepers for misfolded RNAs in the zygote and early development may enhance RNA chaperoning and, thus, represent the adaptive molecular phenotype.
Collapse
Affiliation(s)
- Darja Elzer
- Division of Anthropology, Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Hans Zischler
- Division of Anthropology, Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
22
|
Golding MC. Teratogenesis and the epigenetic programming of congenital defects: Why paternal exposures matter. Birth Defects Res 2023; 115:1825-1834. [PMID: 37424262 PMCID: PMC10774456 DOI: 10.1002/bdr2.2215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Until recently, clinicians and researchers did not realize paternal exposures could impact child developmental outcomes. Indeed, although there is growing recognition that sperm carry a large amount of non-genomic information and that paternal stressors influence the health of the next generation, toxicologists are only now beginning to explore the role paternal exposures have in dysgenesis and the incidence of congenital malformations. In this commentary, I will briefly summarize the few studies describing congenital malformations resulting from preconception paternal stressors, argue for the theoretical expansion of teratogenic perspectives into the male preconception period, and discuss some of the challenges in this newly emerging branch of toxicology. I argue that we must consider gametes the same as any other malleable precursor cell type and recognize that environmentally-induced epigenetic changes acquired during the formation of the sperm and oocyte hold equal teratogenic potential as exposures during early development. Here, I propose the term epiteratogen to reference agents acting outside of pregnancy that, through epigenetic mechanisms, induce congenital malformations. Understanding the interactions between the environment, the essential epigenetic processes intrinsic to spermatogenesis, and their cumulative influences on embryo patterning is essential to addressing a significant blind spot in the field of developmental toxicology.
Collapse
Affiliation(s)
- Michael C. Golding
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| |
Collapse
|
23
|
Shen K, Durieux J, Mena CG, Webster BM, Kimberly Tsui C, Zhang H, Joe L, Berendzen K, Dillin A. The germline coordinates mitokine signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554217. [PMID: 37873079 PMCID: PMC10592821 DOI: 10.1101/2023.08.21.554217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The ability of mitochondria to coordinate stress responses across tissues is critical for health. In C. elegans , neurons experiencing mitochondrial stress elicit an inter-tissue signaling pathway through the release of mitokine signals, such as serotonin or the WNT ligand EGL-20, which activate the mitochondrial unfolded protein response (UPR MT ) in the periphery to promote organismal health and lifespan. We find that germline mitochondria play a surprising role in neuron-to-peripheral UPR MT signaling. Specifically, we find that germline mitochondria signal downstream of neuronal mitokines, like WNT and serotonin, and upstream of lipid metabolic pathways in the periphery to regulate UPR MT activation. We also find that the germline tissue itself is essential in UPR MT signaling. We propose that the germline has a central signaling role in coordinating mitochondrial stress responses across tissues, and germline mitochondria play a defining role in this coordination because of their inherent roles in germline integrity and inter-tissue signaling.
Collapse
|
24
|
Kyriazis M, Swas L, Orlova T. The Impact of Hormesis, Neuronal Stress Response, and Reproduction, upon Clinical Aging: A Narrative Review. J Clin Med 2023; 12:5433. [PMID: 37629475 PMCID: PMC10455615 DOI: 10.3390/jcm12165433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION The primary objective of researchers in the biology of aging is to gain a comprehensive understanding of the aging process while developing practical solutions that can enhance the quality of life for older individuals. This involves a continuous effort to bridge the gap between fundamental biological research and its real-world applications. PURPOSE In this narrative review, we attempt to link research findings concerning the hormetic relationship between neurons and germ cells, and translate these findings into clinically relevant concepts. METHODS We conducted a literature search using PubMed, Embase, PLOS, Digital Commons Network, Google Scholar and Cochrane Library from 2000 to 2023, analyzing studies dealing with the relationship between hormetic, cognitive, and reproductive aspects of human aging. RESULTS The process of hormesis serves as a bridge between the biology of neuron-germ cell interactions on one hand, and the clinical relevance of these interactions on the other. Details concerning these processes are discussed here, emphasizing new research which strengthens the overall concept. CONCLUSIONS This review presents a scientifically and clinically relevant argument, claiming that maintaining a cognitively active lifestyle may decrease age-related degeneration, and improve overall health in aging. This is a totally novel approach which reflects current developments in several relevant aspects of our biology, technology, and society.
Collapse
|
25
|
Risal S, Li C, Luo Q, Fornes R, Lu H, Eriksson G, Manti M, Ohlsson C, Lindgren E, Crisosto N, Maliqueo M, Echiburú B, Recabarren S, Petermann TS, Benrick A, Brusselaers N, Qiao J, Deng Q, Stener-Victorin E. Transgenerational transmission of reproductive and metabolic dysfunction in the male progeny of polycystic ovary syndrome. Cell Rep Med 2023; 4:101035. [PMID: 37148878 DOI: 10.1016/j.xcrm.2023.101035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/27/2022] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
The transgenerational maternal effects of polycystic ovary syndrome (PCOS) in female progeny are being revealed. As there is evidence that a male equivalent of PCOS may exists, we ask whether sons born to mothers with PCOS (PCOS-sons) transmit reproductive and metabolic phenotypes to their male progeny. Here, in a register-based cohort and a clinical case-control study, we find that PCOS-sons are more often obese and dyslipidemic. Our prenatal androgenized PCOS-like mouse model with or without diet-induced obesity confirmed that reproductive and metabolic dysfunctions in first-generation (F1) male offspring are passed down to F3. Sequencing of F1-F3 sperm reveals distinct differentially expressed (DE) small non-coding RNAs (sncRNAs) across generations in each lineage. Notably, common targets between transgenerational DEsncRNAs in mouse sperm and in PCOS-sons serum indicate similar effects of maternal hyperandrogenism, strengthening the translational relevance and highlighting a previously underappreciated risk of transmission of reproductive and metabolic dysfunction via the male germline.
Collapse
Affiliation(s)
- Sanjiv Risal
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Congru Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Qing Luo
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Romina Fornes
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Haojiang Lu
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Gustaw Eriksson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Manti
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Drug Treatment, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva Lindgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas Crisosto
- Endocrinology and Metabolism Laboratory, West Division, School of Medicine, University of Chile, Carlos Schachtebeck 299, Interior Quinta Normal, Santiago, Chile; Endocrinology Unit, Department of Medicine, Clínica Alemana de Santiago, Faculty of Medicine, Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Manuel Maliqueo
- Endocrinology and Metabolism Laboratory, West Division, School of Medicine, University of Chile, Carlos Schachtebeck 299, Interior Quinta Normal, Santiago, Chile
| | - Barbara Echiburú
- Endocrinology and Metabolism Laboratory, West Division, School of Medicine, University of Chile, Carlos Schachtebeck 299, Interior Quinta Normal, Santiago, Chile
| | - Sergio Recabarren
- Laboratory of Animal Physiology and Endocrinology, Faculty of Veterinary Sciences, University of Concepción, Chillán, Chile
| | - Teresa Sir Petermann
- Endocrinology and Metabolism Laboratory, West Division, School of Medicine, University of Chile, Carlos Schachtebeck 299, Interior Quinta Normal, Santiago, Chile
| | - Anna Benrick
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Nele Brusselaers
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Global Health Institute, Antwerp University, Antwerp, Belgium
| | - Jie Qiao
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | | |
Collapse
|
26
|
Lismer A, Kimmins S. Emerging evidence that the mammalian sperm epigenome serves as a template for embryo development. Nat Commun 2023; 14:2142. [PMID: 37059740 PMCID: PMC10104880 DOI: 10.1038/s41467-023-37820-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
Although more studies are demonstrating that a father's environment can influence child health and disease, the molecular mechanisms underlying non-genetic inheritance remain unclear. It was previously thought that sperm exclusively contributed its genome to the egg. More recently, association studies have shown that various environmental exposures including poor diet, toxicants, and stress, perturbed epigenetic marks in sperm at important reproductive and developmental loci that were associated with offspring phenotypes. The molecular and cellular routes that underlie how epigenetic marks are transmitted at fertilization, to resist epigenetic reprogramming in the embryo, and drive phenotypic changes are only now beginning to be unraveled. Here, we provide an overview of the state of the field of intergenerational paternal epigenetic inheritance in mammals and present new insights into the relationship between embryo development and the three pillars of epigenetic inheritance: chromatin, DNA methylation, and non-coding RNAs. We evaluate compelling evidence of sperm-mediated transmission and retention of paternal epigenetic marks in the embryo. Using landmark examples, we discuss how sperm-inherited regions may escape reprogramming to impact development via mechanisms that implicate transcription factors, chromatin organization, and transposable elements. Finally, we link paternally transmitted epigenetic marks to functional changes in the pre- and post-implantation embryo. Understanding how sperm-inherited epigenetic factors influence embryo development will permit a greater understanding related to the developmental origins of health and disease.
Collapse
Affiliation(s)
- Ariane Lismer
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, H3G 1Y6, Canada.
- Department of Pathology and Cell Biology, Faculty of Medicine, University of Montreal Hospital Research Centre, Montreal, QC, H2X 0A9, Canada.
| |
Collapse
|
27
|
Harris JC, Trigg NA, Goshu B, Yokoyama Y, Dohnalová L, White EK, Harman A, Thaiss CA, Grice EA, Conine CC, Kambayashi T. The microbiota and immune system non-genetically affect offspring phenotypes transgenerationally. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535940. [PMID: 37066207 PMCID: PMC10104111 DOI: 10.1101/2023.04.06.535940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The host-microbiota relationship has evolved to shape mammalian processes, including immunity, metabolism, and development 1-3 . Host phenotypes change in direct response to microbial exposures by the individual. Here we show that the microbiota induces phenotypic change not only in the individual but also in their succeeding generations of progeny. We found that germ-free mice exhibit a robust sebum secretion defect and transcriptional changes in various organs, persisting across multiple generations despite microbial colonization and breeding with conventional mice. Host-microbe interactions could be involved in this process, since T cell-deficient mice, which display defective sebum secretion 4 , also transgenerationally transmit their phenotype to progeny. These phenotypes are inherited by progeny conceived during in vitro fertilization using germ-free sperm and eggs, demonstrating that epigenetic information in the gametes is required for phenotypic transmission. Accordingly, small non-coding RNAs that can regulate embryonic gene expression 5 were strikingly and similarly altered in gametes of germ-free and T cell-deficient mice. Thus, we have uncovered a novel mechanism whereby the microbiota and immune system induce phenotypic changes in successive generations of offspring. This epigenetic form of inheritance could be advantageous for host adaptation to environmental perturbation, where phenotypic diversity can be introduced more rapidly than by genetic mutation.
Collapse
|
28
|
Ma Y, Ma QW, Sun Y, Chen XF. The emerging role of extracellular vesicles in the testis. Hum Reprod 2023; 38:334-351. [PMID: 36728671 DOI: 10.1093/humrep/dead015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/07/2022] [Indexed: 02/03/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized membrane-bounded particles, released by all cells and capable of transporting bioactive cargoes, proteins, lipids, and nucleic acids, to regulate a variety of biological functions. Seminal plasma is enriched in EVs, and extensive evidence has revealed the role of EVs (e.g. prostasomes and epididymosomes) in the male genital tract. Recently, EVs released from testicular cells have been isolated and identified, and some new insights have been generated on their role in maintaining normal spermatogenesis and steroidogenesis in the testis. In the seminiferous tubules, Sertoli cell-derived EVs can promote the differentiation of spermatogonial stem cells (SSCs), and EVs secreted from undifferentiated A spermatogonia can inhibit the proliferation of SSCs. In the testicular interstitium, EVs have been identified in endothelial cells, macrophages, telocytes, and Leydig cells, although their roles are still elusive. Testicular EVs can also pass through the blood-testis barrier and mediate inter-compartment communication between the seminiferous tubules and the interstitium. Immature Sertoli cell-derived EVs can promote survival and suppress the steroidogenesis of Leydig cells. Exosomes isolated from macrophages can protect spermatogonia from radiation-induced injury. In addition to their role in intercellular communication, testicular EVs may also participate in the removal of aberrant proteins and the delivery of antigens for immune tolerance. EVs released from testicular cells can be detected in seminal plasma, which makes them potential biomarkers reflecting testicular function and disease status. The testicular EVs in seminal plasma may also affect the female reproductive tract to facilitate conception and may even affect early embryogenesis through modulating sperm RNA. EVs represent a new type of intercellular messenger in the testis. A detailed understanding of the role of testicular EV may contribute to the discovery of new mechanisms causing male infertility and enable the development of new diagnostic and therapeutic strategies for the treatment of infertile men.
Collapse
Affiliation(s)
- Yi Ma
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Qin-Wen Ma
- Shanghai Xinzhu Middle School, Shanghai, China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Xiang-Feng Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.,Shanghai Human Sperm Bank, Shanghai, China
| |
Collapse
|
29
|
Spadafora C. The epigenetic basis of evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:57-69. [PMID: 36720315 DOI: 10.1016/j.pbiomolbio.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/17/2022] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
An increasing body of data are revealing key roles of epigenetics in evolutionary processes. The scope of this manuscript is to assemble in a coherent frame experimental evidence supporting a role of epigenetic factors and networks, active during embryogenesis, in orchestrating variation-inducing phenomena underlying evolution, seen as a global process. This process unfolds over two crucial levels: i) a flow of RNA-based information - predominantly small regulatory RNAs released from somatic cells exposed to environmental stimuli - taken up by spermatozoa and delivered to oocytes at fertilization and ii) the highly permissive and variation-prone environments offered by zygotes and totipotent early embryos. Totipotent embryos provide a variety of biological tools favouring the emergence of evolutionarily significant phenotypic novelties driven by RNA information. Under this light, neither random genomic mutations, nor the sieving role of natural selection are required, as the sperm-delivered RNA cargo conveys specific information and acts as "phenotypic-inducer" of defined environmentally acquired traits.
Collapse
Affiliation(s)
- Corrado Spadafora
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy.
| |
Collapse
|
30
|
Morgan CP, Meadows VE, Marx-Rattner R, Cisse YM, Bale TL. HA-tag CD63 is a novel conditional transgenic approach to track extracellular vesicle interactions with sperm and their transfer at conception. Sci Rep 2023; 13:707. [PMID: 36639735 PMCID: PMC9839718 DOI: 10.1038/s41598-023-27898-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Extracellular vesicles (EVs) are a unique mode of intercellular communication capable of specificity in transmitting signals and cargo to coordinate local and distant cellular functions. A key example of this is the essential role that EVs secreted by epithelial cells lining the lumen of the male reproductive tract play in post-spermatogenic sperm maturation. We recently showed in a preclinical mouse model that this fundamental process had a causal role in somatic-to-germline transmission of biological information regarding prior stress experience capable of altering the rate of fetal development. However, critical mechanistic questions remain unanswered as to the processes by which signaling occurs between EVs and sperm, and whether EVs or their cargo are delivered at conception and are detectable in the early embryo. Unfortunately, notable methodological limitations shared across EV biology, particularly in the isolation and labeling of EVs, complicate efforts to answer these important questions as well as questions on EV targeting specificity and mechanisms. In our current studies, we developed a novel approach to track EVs using a conditional transgenic construct designed to label EVs via conditional Cre-induced hemagglutinin (HA) tagging of the EV endogenous tetraspanin, CD63. In our exhaustive validation steps, this internal small molecular weight tag did not affect EV secretion or functionality, a common problem found in the previous design of EV tags using larger molecular weight proteins, including fluorescent proteins. Utilizing a stably transfected immortalized epididymal epithelial cell line, we first validated key parameters of the conditional HA-tagged protein packaged into secreted EVs. Importantly, we systematically confirmed that expression of the CD63-HA had no impact on the production, size distribution, or surface charge of secreted EVs, nor did it alter the tetraspanin or miRNA composition of these EVs. We also utilized the CD63-HA EVs to verify physical interactions with sperm. Finally, using in vitro fertilization we produced some of the first images confirming sperm delivered EV cargo at conception and still detectable in the early-stage embryo. As such, this construct serves as a methodological advance and as a valuable tool, with applications in the study of EV function across biomedical research areas.
Collapse
Affiliation(s)
- Christopher P Morgan
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Victoria E Meadows
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ruth Marx-Rattner
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yasmine M Cisse
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Tracy L Bale
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Psychiatry, University of Colorado School of Medicine, CU Anschutz Medical Campus, 12800 E. 19th Avenue, Aurora, CO, 80045, USA.
- The Anschutz Foundation Endowed Chair in Women's Integrated Mental and Physical Health Research at the Ludeman Center, Aurora, USA.
| |
Collapse
|
31
|
Scheuren M, Möhner J, Zischler H. R-loop landscape in mature human sperm: Regulatory and evolutionary implications. Front Genet 2023; 14:1069871. [PMID: 37139234 PMCID: PMC10149866 DOI: 10.3389/fgene.2023.1069871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
R-loops are three-stranded nucleic acid structures consisting of an RNA:DNA hybrid and a displaced DNA strand. While R-loops pose a potential threat to genome integrity, they constitute 5% of the human genome. The role of R-loops in transcriptional regulation, DNA replication, and chromatin signature is becoming increasingly clear. R-loops are associated with various histone modifications, suggesting that they may modulate chromatin accessibility. To potentially harness transcription-coupled repair mechanisms in the germline, nearly the entire genome is expressed during the early stages of male gametogenesis in mammals, providing ample opportunity for the formation of a transcriptome-dependent R-loop landscape in male germ cells. In this study, our data demonstrated the presence of R-loops in fully mature human and bonobo sperm heads and their partial correspondence to transcribed regions and chromatin structure, which is massively reorganized from mainly histone to mainly protamine-packed chromatin in mature sperm. The sperm R-loop landscape resembles characteristic patterns of somatic cells. Surprisingly, we detected R-loops in both residual histone and protamine-packed chromatin and localize them to still-active retroposons, ALUs and SINE-VNTR-ALUs (SVAs), the latter has recently arisen in hominoid primates. We detected both evolutionarily conserved and species-specific localizations. Comparing our DNA-RNA immunoprecipitation (DRIP) data with published DNA methylation and histone chromatin immunoprecipitation (ChIP) data, we hypothesize that R-loops epigenetically reduce methylation of SVAs. Strikingly, we observe a strong influence of R-loops on the transcriptomes of zygotes from early developmental stages before zygotic genome activation. Overall, these findings suggest that chromatin accessibility influenced by R-loops may represent a system of inherited gene regulation.
Collapse
|
32
|
Patlar B. On the Role of Seminal Fluid Protein and Nucleic Acid Content in Paternal Epigenetic Inheritance. Int J Mol Sci 2022; 23:ijms232314533. [PMID: 36498858 PMCID: PMC9739459 DOI: 10.3390/ijms232314533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The evidence supports the occurrence of environmentally-induced paternal epigenetic inheritance that shapes the offspring phenotype in the absence of direct or indirect paternal care and clearly demonstrates that sperm epigenetics is one of the major actors mediating these paternal effects. However, in most animals, while sperm makes up only a small portion of the seminal fluid, males also have a complex mixture of proteins, peptides, different types of small noncoding RNAs, and cell-free DNA fragments in their ejaculate. These seminal fluid contents (Sfcs) are in close contact with the reproductive cells, tissues, organs, and other molecules of both males and females during reproduction. Moreover, their production and use are adjusted in response to environmental conditions, making them potential markers of environmentally- and developmentally-induced paternal effects on the next generation(s). Although there is some intriguing evidence for Sfc-mediated paternal effects, the underlying molecular mechanisms remain poorly defined. In this review, the current evidence regarding the links between seminal fluid and environmental paternal effects and the potential pathways and mechanisms that seminal fluid may follow in mediating paternal epigenetic inheritance are discussed.
Collapse
Affiliation(s)
- Bahar Patlar
- Animal Ecology, Department of Zoology, Martin-Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
33
|
Bhadsavle SS, Golding MC. Paternal epigenetic influences on placental health and their impacts on offspring development and disease. Front Genet 2022; 13:1068408. [PMID: 36468017 PMCID: PMC9716072 DOI: 10.3389/fgene.2022.1068408] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 07/25/2023] Open
Abstract
Our efforts to understand the developmental origins of birth defects and disease have primarily focused on maternal exposures and intrauterine stressors. Recently, research into non-genomic mechanisms of inheritance has led to the recognition that epigenetic factors carried in sperm also significantly impact the health of future generations. However, although researchers have described a range of potential epigenetic signals transmitted through sperm, we have yet to obtain a mechanistic understanding of how these paternally-inherited factors influence offspring development and modify life-long health. In this endeavor, the emerging influence of the paternal epigenetic program on placental development, patterning, and function may help explain how a diverse range of male exposures induce comparable intergenerational effects on offspring health. During pregnancy, the placenta serves as the dynamic interface between mother and fetus, regulating nutrient, oxygen, and waste exchange and coordinating fetal growth and maturation. Studies examining intrauterine maternal stressors routinely describe alterations in placental growth, histological organization, and glycogen content, which correlate with well-described influences on infant health and adult onset of disease. Significantly, the emergence of similar phenotypes in models examining preconception male exposures indicates that paternal stressors transmit an epigenetic memory to their offspring that also negatively impacts placental function. Like maternal models, paternally programmed placental dysfunction exerts life-long consequences on offspring health, particularly metabolic function. Here, focusing primarily on rodent models, we review the literature and discuss the influences of preconception male health and exposure history on placental growth and patterning. We emphasize the emergence of common placental phenotypes shared between models examining preconception male and intrauterine stressors but note that the direction of change frequently differs between maternal and paternal exposures. We posit that alterations in placental growth, histological organization, and glycogen content broadly serve as reliable markers of altered paternal developmental programming, predicting the emergence of structural and metabolic defects in the offspring. Finally, we suggest the existence of an unrecognized developmental axis between the male germline and the extraembryonic lineages that may have evolved to enhance fetal adaptation.
Collapse
Affiliation(s)
| | - Michael C. Golding
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
34
|
Tzur YB. lncRNAs in fertility: redefining the gene expression paradigm? Trends Genet 2022; 38:1170-1179. [PMID: 35728988 DOI: 10.1016/j.tig.2022.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/02/2022] [Accepted: 05/26/2022] [Indexed: 01/24/2023]
Abstract
Comparative transcriptome approaches assume that highly or dynamically expressed genes are important. This has led to the identification of many genes critical for cellular activity and organism development. However, while testes express the highest levels of long noncoding RNAs (lncRNAs), there is scarcely any evidence for lncRNAs with significant roles in fertility. This was explained by changes in chromatin structure during spermatogenesis that lead to 'promiscuous transcription' with no functional roles for the transcripts. Recent discoveries offer novel and surprising alternatives. Here, I review the current knowledge regarding the involvement of lncRNAs in fertility, why I find gametogenesis different from other developmental processes, offer models to explain why the experimental evidence did not meet theoretical predictions, and suggest possible approaches to test the models.
Collapse
Affiliation(s)
- Yonatan B Tzur
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
35
|
Sun Y, Li Q, Kirkland JL. Targeting senescent cells for a healthier longevity: the roadmap for an era of global aging. LIFE MEDICINE 2022; 1:103-119. [PMID: 36699942 PMCID: PMC9869767 DOI: 10.1093/lifemedi/lnac030] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/05/2022] [Indexed: 01/28/2023]
Abstract
Aging is a natural but relentless process of physiological decline, leading to physical frailty, reduced ability to respond to physical stresses (resilience) and, ultimately, organismal death. Cellular senescence, a self-defensive mechanism activated in response to intrinsic stimuli and/or exogenous stress, is one of the central hallmarks of aging. Senescent cells cease to proliferate, while remaining metabolically active and secreting numerous extracellular factors, a feature known as the senescence-associated secretory phenotype. Senescence is physiologically important for embryonic development, tissue repair, and wound healing, and prevents carcinogenesis. However, chronic accumulation of persisting senescent cells contributes to a host of pathologies including age-related morbidities. By paracrine and endocrine mechanisms, senescent cells can induce inflammation locally and systemically, thereby causing tissue dysfunction, and organ degeneration. Agents including those targeting damaging components of the senescence-associated secretory phenotype or inducing apoptosis of senescent cells exhibit remarkable benefits in both preclinical models and early clinical trials for geriatric conditions. Here we summarize features of senescent cells and outline strategies holding the potential to be developed as clinical interventions. In the long run, there is an increasing demand for safe, effective, and clinically translatable senotherapeutics to address healthcare needs in current settings of global aging.
Collapse
Affiliation(s)
- Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- Department of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai 264003, China
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA 98195, USA
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - James L Kirkland
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
36
|
Genetically-biased fertilization in APOBEC1 complementation factor (A1cf) mutant mice. Sci Rep 2022; 12:13599. [PMID: 35948620 PMCID: PMC9365768 DOI: 10.1038/s41598-022-17948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
Meiosis, recombination, and gametogenesis normally ensure that gametes combine randomly. But in exceptional cases, fertilization depends on the genetics of gametes from both females and males. A key question is whether their non-random union results from factors intrinsic to oocytes and sperm, or from their interactions with conditions in the reproductive tracts. To address this question, we used in vitro fertilization (IVF) with a mutant and wild-type allele of the A1cf (APOBEC1 complementation factor) gene in mice that are otherwise genetically identical. We observed strong distortion in favor of mutant heterozygotes showing that bias depends on the genetics of oocyte and sperm, and that any environmental input is modest. To search for the potential mechanism of the 'biased fertilization', we analyzed the existing transcriptome data and demonstrated that localization of A1cf transcripts and its candidate mRNA targets is restricted to the spermatids in which they originate, and that these transcripts are enriched for functions related to meiosis, fertilization, RNA stability, translation, and mitochondria. We propose that failure to sequester mRNA targets in A1cf mutant heterozygotes leads to functional differences among spermatids, thereby providing an opportunity for selection among haploid gametes. The study adds to the understanding of the gamete interaction at fertilization. Discovery that bias is evident with IVF provides a new venue for future explorations of preference among genetically distinct gametes at fertilization for A1cf and other genes that display significant departure of Mendelian inheritance.
Collapse
|
37
|
Mendel's laws of heredity on his 200th birthday: What have we learned by considering exceptions? Heredity (Edinb) 2022; 129:1-3. [PMID: 35778507 DOI: 10.1038/s41437-022-00552-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/20/2022] Open
|
38
|
Korgan AC, Foxx CL, Hashmi H, Sago SA, Stamper CE, Heinze JD, O'Leary E, King JL, Perrot TS, Lowry CA, Weaver ICG. Effects of paternal high-fat diet and maternal rearing environment on the gut microbiota and behavior. Sci Rep 2022; 12:10179. [PMID: 35715467 PMCID: PMC9205913 DOI: 10.1038/s41598-022-14095-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Exposing a male rat to an obesogenic high-fat diet (HFD) influences attractiveness to potential female mates, the subsequent interaction of female mates with infant offspring, and the development of stress-related behavioral and neural responses in offspring. To examine the stomach and fecal microbiome's potential roles, fecal samples from 44 offspring and stomach samples from offspring and their fathers were collected and bacterial community composition was studied by 16 small subunit ribosomal RNA (16S rRNA) gene sequencing. Paternal diet (control, high-fat), maternal housing conditions (standard or semi-naturalistic housing), and maternal care (quality of nursing and other maternal behaviors) affected the within-subjects alpha-diversity of the offspring stomach and fecal microbiomes. We provide evidence from beta-diversity analyses that paternal diet and maternal behavior induced community-wide shifts to the adult offspring gut microbiome. Additionally, we show that paternal HFD significantly altered the adult offspring Firmicutes to Bacteroidetes ratio, an indicator of obesogenic potential in the gut microbiome. Additional machine-learning analyses indicated that microbial species driving these differences converged on Bifidobacterium pseudolongum. These results suggest that differences in early-life care induced by paternal diet and maternal care significantly influence the microbiota composition of offspring through the microbiota-gut-brain axis, having implications for adult stress reactivity.
Collapse
Affiliation(s)
- Austin C Korgan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Christine L Foxx
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
- Oak Ridge Institute for Science and Education Research Participation Program, Oak Ridge, TN, 37830, USA
- U.S. Department of Agriculture (USDA), National Animal Health Laboratory Network (NAHLN), Animal and Plant Health Inspection Service (APHIS), Ames, IA, 50010, USA
| | - Heraa Hashmi
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Saydie A Sago
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Christopher E Stamper
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
- Rocky Mountain MIRECC for Veteran Suicide Prevention, 1700 N Wheeling St, G-3-116M, Aurora, CO, 80045, USA
| | - Jared D Heinze
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Elizabeth O'Leary
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Jillian L King
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Tara S Perrot
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Brain Repair Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), The Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
| | - Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- Brain Repair Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- Department of Psychiatry, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
39
|
Van de Pette M, Dimond A, Galvão AM, Millership SJ, To W, Prodani C, McNamara G, Bruno L, Sardini A, Webster Z, McGinty J, French PMW, Uren AG, Castillo-Fernandez J, Watkinson W, Ferguson-Smith AC, Merkenschlager M, John RM, Kelsey G, Fisher AG. Epigenetic changes induced by in utero dietary challenge result in phenotypic variability in successive generations of mice. Nat Commun 2022; 13:2464. [PMID: 35513363 PMCID: PMC9072353 DOI: 10.1038/s41467-022-30022-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/13/2022] [Indexed: 11/22/2022] Open
Abstract
Transmission of epigenetic information between generations occurs in nematodes, flies and plants, mediated by specialised small RNA pathways, modified histones and DNA methylation. Similar processes in mammals can also affect phenotype through intergenerational or trans-generational mechanisms. Here we generate a luciferase knock-in reporter mouse for the imprinted Dlk1 locus to visualise and track epigenetic fidelity across generations. Exposure to high-fat diet in pregnancy provokes sustained re-expression of the normally silent maternal Dlk1 in offspring (loss of imprinting) and increased DNA methylation at the somatic differentially methylated region (sDMR). In the next generation heterogeneous Dlk1 mis-expression is seen exclusively among animals born to F1-exposed females. Oocytes from these females show altered gene and microRNA expression without changes in DNA methylation, and correct imprinting is restored in subsequent generations. Our results illustrate how diet impacts the foetal epigenome, disturbing canonical and non-canonical imprinting mechanisms to modulate the properties of successive generations of offspring.
Collapse
Affiliation(s)
- Mathew Van de Pette
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Andrew Dimond
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - António M Galvão
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Steven J Millership
- Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Wilson To
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Chiara Prodani
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Gráinne McNamara
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Ludovica Bruno
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Alessandro Sardini
- Whole Animal Physiology and Imaging, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Zoe Webster
- Transgenics and Embryonic Stem Cell Laboratory, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - James McGinty
- Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Paul M W French
- Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Anthony G Uren
- Cancer Genomics Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | | | - William Watkinson
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Anne C Ferguson-Smith
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Matthias Merkenschlager
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Rosalind M John
- Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge, CB2 0QQ, UK
| | - Amanda G Fisher
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
40
|
Lee GS, Conine CC. The Transmission of Intergenerational Epigenetic Information by Sperm microRNAs. EPIGENOMES 2022; 6:12. [PMID: 35466187 PMCID: PMC9036291 DOI: 10.3390/epigenomes6020012] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Epigenetic information is transmitted from one generation to the next, modulating the phenotype of offspring non-genetically in organisms ranging from plants to mammals. For intergenerational non-genetic inheritance to occur, epigenetic information must accumulate in germ cells. The three main carriers of epigenetic information-histone post-translational modifications, DNA modifications, and RNAs-all exhibit dynamic patterns of regulation during germ cell development. For example, histone modifications and DNA methylation are extensively reprogrammed and often eliminated during germ cell maturation and after fertilization during embryogenesis. Consequently, much attention has been given to RNAs, specifically small regulatory RNAs, as carriers of inherited epigenetic information. In this review, we discuss examples in which microRNAs have been implicated as key players in transmitting paternal epigenetic information intergenerationally.
Collapse
Affiliation(s)
- Grace S. Lee
- Pharmacology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| | - Colin C. Conine
- Departments of Genetics and Pediatrics—Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Reproduction and Women’s Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|