1
|
Barbosa Pereira PJ, Manso JA, Macedo-Ribeiro S. The structural plasticity of polyglutamine repeats. Curr Opin Struct Biol 2023; 80:102607. [PMID: 37178477 DOI: 10.1016/j.sbi.2023.102607] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
From yeast to humans, polyglutamine (polyQ) repeat tracts are found frequently in the proteome and are particularly prominent in the activation domains of transcription factors. PolyQ is a polymorphic motif that modulates functional protein-protein interactions and aberrant self-assembly. Expansion of the polyQ repeated sequences beyond critical physiological repeat length thresholds triggers self-assembly and is linked to severe pathological implications. This review provides an overview of the current knowledge on the structures of polyQ tracts in the soluble and aggregated states and discusses the influence of neighboring regions on polyQ secondary structure, aggregation, and fibril morphologies. The influence of the genetic context of the polyQ-encoding trinucleotides is briefly discussed as a challenge for future endeavors in this field.
Collapse
Affiliation(s)
- Pedro José Barbosa Pereira
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
| | - José A Manso
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| |
Collapse
|
2
|
Johnson SL, Prifti MV, Sujkowski A, Libohova K, Blount JR, Hong L, Tsou WL, Todi SV. Drosophila as a Model of Unconventional Translation in Spinocerebellar Ataxia Type 3. Cells 2022; 11:cells11071223. [PMID: 35406787 PMCID: PMC8997593 DOI: 10.3390/cells11071223] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/21/2022] Open
Abstract
RNA toxicity contributes to diseases caused by anomalous nucleotide repeat expansions. Recent work demonstrated RNA-based toxicity from repeat-associated, non-AUG-initiated translation (RAN translation). RAN translation occurs around long nucleotide repeats that form hairpin loops, allowing for translation initiation in the absence of a start codon that results in potentially toxic, poly-amino acid repeat-containing proteins. Discovered in Spinocerebellar Ataxia Type (SCA) 8, RAN translation has been documented in several repeat-expansion diseases, including in the CAG repeat-dependent polyglutamine (polyQ) disorders. The ATXN3 gene, which causes SCA3, also known as Machado–Joseph Disease (MJD), contains a CAG repeat that is expanded in disease. ATXN3 mRNA possesses features linked to RAN translation. In this paper, we examined the potential contribution of RAN translation to SCA3/MJD in Drosophila by using isogenic lines that contain homomeric or interrupted CAG repeats. We did not observe unconventional translation in fly neurons or glia. However, our investigations indicate differential toxicity from ATXN3 protein-encoding mRNA that contains pure versus interrupted CAG repeats. Additional work suggests that this difference may be due in part to toxicity from homomeric CAG mRNA. We conclude that Drosophila is not suitable to model RAN translation for SCA3/MJD, but offers clues into the potential pathogenesis stemming from CAG repeat-containing mRNA in this disorder.
Collapse
Affiliation(s)
- Sean L. Johnson
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.L.J.); (M.V.P.); (A.S.); (K.L.); (J.R.B.); (L.H.); (W.-L.T.)
| | - Matthew V. Prifti
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.L.J.); (M.V.P.); (A.S.); (K.L.); (J.R.B.); (L.H.); (W.-L.T.)
| | - Alyson Sujkowski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.L.J.); (M.V.P.); (A.S.); (K.L.); (J.R.B.); (L.H.); (W.-L.T.)
| | - Kozeta Libohova
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.L.J.); (M.V.P.); (A.S.); (K.L.); (J.R.B.); (L.H.); (W.-L.T.)
| | - Jessica R. Blount
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.L.J.); (M.V.P.); (A.S.); (K.L.); (J.R.B.); (L.H.); (W.-L.T.)
| | - Luke Hong
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.L.J.); (M.V.P.); (A.S.); (K.L.); (J.R.B.); (L.H.); (W.-L.T.)
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.L.J.); (M.V.P.); (A.S.); (K.L.); (J.R.B.); (L.H.); (W.-L.T.)
| | - Sokol V. Todi
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.L.J.); (M.V.P.); (A.S.); (K.L.); (J.R.B.); (L.H.); (W.-L.T.)
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence:
| |
Collapse
|
3
|
Quintero ME, Pontes JGDM, Tasic L. Metabolomics in degenerative brain diseases. Brain Res 2021; 1773:147704. [PMID: 34744014 DOI: 10.1016/j.brainres.2021.147704] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 12/23/2022]
Abstract
Among the most studied diseases that affect the central nervous system are Parkinson's, Alzheimer's, and Huntington's diseases, but the lack of effective biomarkers, accurate diagnosis, and precise treatment for each of them is currently an issue. Due to the contribution of biomarkers in supporting diagnosis, many recent efforts have focused on their identification and validation at the beginning or during the progression of the mental illness. Metabolome reveals the metabolic processes that result from protein activities under the guided gene expression and environmental factors, either in healthy or pathological conditions. In this context, metabolomics has proven to be a valuable approach. Currently, magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) are the most commonly used bioanalytical techniques for metabolomics. MS-assisted profiling is considered the most versatile technique, and the NMR is the most reproductive. However, each one of them has its drawbacks. In this review, we summarized several alterations in metabolites that have been reported for these three classic brain diseases using MS and NMR-based research, which might suggest some possible biomarkers to support the diagnosis and/or new targets for their treatment.
Collapse
Affiliation(s)
- Melissa Escobar Quintero
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - João Guilherme de Moraes Pontes
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ljubica Tasic
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|