1
|
Zhang Z, Hu H, Xu Z, Shan C, Chen H, Xie K, Wang K, Wang Y, Zhu Q, Yin Y, Cai H, Zhang Y, Li Z. A Chemically Defined Culture for Tooth Reconstitution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404345. [PMID: 39601338 PMCID: PMC11744639 DOI: 10.1002/advs.202404345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/10/2024] [Indexed: 11/29/2024]
Abstract
It is known for decades that dental epithelium and mesenchyme can reconstitute and regenerate a functional tooth. However, the mechanism of tooth reconstitution remains largely unknown due to the lack of an efficient in vitro model. Here, a chemically defined culture system is established that supports tooth reconstitution, further development with normal anatomy, and prompt response to chemical interference in key developmental signaling pathways, termed as toothoids. By using such a system, it is discovered that, during reconstitution, instead of resetting the developmental clock, dental cells reorganized and restarted from the respective developmental stage where they are originally isolated. Moreover, co-stimulation of Activin A and Hedgehog/Smoothened agonist (SAG) sustained the initial induction of tooth fate from the first branchial arch, which would be otherwise quickly lost in culture. Furthermore, activation of Bone Morphogenetic Protein (BMP) signaling triggered efficient enamel formation in the late-stage toothoids, without affecting the normal development of ameloblasts. Together, these data highlight the toothoid culture as a powerful tool to dissect the molecular mechanisms of tooth reconstitution and regeneration.
Collapse
Affiliation(s)
- Ziwei Zhang
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Hong Hu
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Zhiheng Xu
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Ce Shan
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Hanyi Chen
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Kun Xie
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Kun Wang
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Yifu Wang
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Qing Zhu
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
- Department of AnesthesiologyWest China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationSichuan UniversityNo. 20, Section 3, South Renmin RoadChengdu610041China
| | - Yike Yin
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Haoyang Cai
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Yunqiu Zhang
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Zhonghan Li
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
- Department of AnesthesiologyWest China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationSichuan UniversityNo. 20, Section 3, South Renmin RoadChengdu610041China
- State Key Laboratory of Oral DiseaseWest China Hospital of StomatologySichuan UniversityNo. 14, Section 3, South Renmin RoadChengdu610041China
- Yunnan Key Laboratory of StomatologyDepartment of Pediatric DentistryThe Affiliated Stomatology Hospital of Kunming Medical UniversityKunming Medical UniversityNo. 1088, Mid‐Haiyuan RoadKunming650500China
| |
Collapse
|
2
|
Kurtzeborn K, El-Dahr SS, Pakkasjärvi N, Tortelote GG, Kuure S. Kidney development at a glance: metabolic regulation of renal progenitor cells. Curr Top Dev Biol 2024; 163:15-44. [PMID: 40254344 DOI: 10.1016/bs.ctdb.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
The aberrant regulation of renal progenitor cells during kidney development leads to congenital kidney anomalies and dysplasia. Recently, significant progress has been made in understanding the metabolic needs of renal progenitor cells during mammalian kidney development, with evidence indicating that multiple metabolic pathways play essential roles in determining the cell fates of distinct renal progenitor populations. This review summarizes recent findings and explores the prospects of integrating this novel information into current diagnostic and treatment strategies for renal diseases. Reciprocal interactions between various embryonic kidney progenitor populations establish the foundation for normal kidney organogenesis, with the three principal kidney structures-the nephrons, the collecting duct network, and the stroma-being generated by nephron progenitor cells, ureteric bud/collecting duct progenitor cells, and interstitial progenitor cells. While energy metabolism is well recognized for its importance in organism development, physiological function regulation, and responses to environmental stimuli, research has primarily focused on nephron progenitor metabolism, highlighting its role in maintaining self-renewal. In contrast, studies on the metabolic requirements of ureteric bud/collecting duct and stromal progenitors remain limited. Given the importance of interactions between progenitor populations during kidney development, further research into the metabolic regulation of self-renewal and differentiation in ureteric bud and stromal progenitor cells will be critical.
Collapse
Affiliation(s)
- K Kurtzeborn
- Helsinki Institute of Life Science, University of Helsinki, Finland; Stem Cells and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Finland
| | - S S El-Dahr
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, United States
| | - N Pakkasjärvi
- Stem Cells and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Finland; Department of Pediatric Surgery, Section of Pediatric Urology, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - G G Tortelote
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, United States.
| | - S Kuure
- Helsinki Institute of Life Science, University of Helsinki, Finland; Stem Cells and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Finland; Laboratory Animal Centre, University of Helsinki, Finland.
| |
Collapse
|
3
|
Shoji JY, Davis RP, Mummery CL, Krauss S. Global Literature Analysis of Organoid and Organ-on-Chip Research. Adv Healthc Mater 2024; 13:e2301067. [PMID: 37479227 DOI: 10.1002/adhm.202301067] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Organoids and cells in organ-on-chip platforms replicate higher-level anatomical, physiological, or pathological states of tissues and organs. These technologies are widely regarded by academia, the pharmacological industry and regulators as key biomedical developments. To map advances in this emerging field, a literature analysis of 16,000 article metadata based on a quality-controlled text-mining algorithm is performed. The analysis covers titles, keywords, and abstracts of categorized academic publications in the literature and preprint databases published after 2010. The algorithm identifies and tracks 149 and 107 organs or organ substructures modeled as organoids and organ-on-chip, respectively, stem cell sources, as well as 130 diseases, and 16 groups of organisms other than human and mouse in which organoid/organ-on-chip technology is applied. The analysis illustrates changing diversity and focus in organoid/organ-on-chip research and captures its geographical distribution. The downloadable dataset provided is a robust framework for researchers to interrogate with their own questions.
Collapse
Affiliation(s)
- Jun-Ya Shoji
- Hybrid Technology Hub, Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0372, Norway
| | - Richard P Davis
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, 2300RC, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, 2300RC, the Netherlands
| | - Christine L Mummery
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, 2300RC, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, 2300RC, the Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, Enschede, 7522NB, the Netherlands
| | - Stefan Krauss
- Hybrid Technology Hub, Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0372, Norway
| |
Collapse
|
4
|
Yoon B, Kim H, Jung SW, Park J. Single-cell lineage tracing approaches to track kidney cell development and maintenance. Kidney Int 2024; 105:1186-1199. [PMID: 38554991 DOI: 10.1016/j.kint.2024.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 04/02/2024]
Abstract
The kidney is a complex organ consisting of various cell types. Previous studies have aimed to elucidate the cellular relationships among these cell types in developing and mature kidneys using Cre-loxP-based lineage tracing. However, this methodology falls short of fully capturing the heterogeneous nature of the kidney, making it less than ideal for comprehensively tracing cellular progression during kidney development and maintenance. Recent technological advancements in single-cell genomics have revolutionized lineage tracing methods. Single-cell lineage tracing enables the simultaneous tracing of multiple cell types within complex tissues and their transcriptomic profiles, thereby allowing the reconstruction of their lineage tree with cell state information. Although single-cell lineage tracing has been successfully applied to investigate cellular hierarchies in various organs and tissues, its application in kidney research is currently lacking. This review comprehensively consolidates the single-cell lineage tracing methods, divided into 4 categories (clustered regularly interspaced short palindromic repeat [CRISPR]/CRISPR-associated protein 9 [Cas9]-based, transposon-based, Polylox-based, and native barcoding methods), and outlines their technical advantages and disadvantages. Furthermore, we propose potential future research topics in kidney research that could benefit from single-cell lineage tracing and suggest suitable technical strategies to apply to these topics.
Collapse
Affiliation(s)
- Baul Yoon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hayoung Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Su Woong Jung
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea; Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea.
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| |
Collapse
|
5
|
Chambers BE, Weaver NE, Lara CM, Nguyen TK, Wingert RA. (Zebra)fishing for nephrogenesis genes. Tissue Barriers 2024; 12:2219605. [PMID: 37254823 PMCID: PMC11042071 DOI: 10.1080/21688370.2023.2219605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/14/2023] [Indexed: 06/01/2023] Open
Abstract
Kidney disease is a devastating condition affecting millions of people worldwide, where over 100,000 patients in the United States alone remain waiting for a lifesaving organ transplant. Concomitant with a surge in personalized medicine, single-gene mutations, and polygenic risk alleles have been brought to the forefront as core causes of a spectrum of renal disorders. With the increasing prevalence of kidney disease, it is imperative to make substantial strides in the field of kidney genetics. Nephrons, the core functional units of the kidney, are epithelial tubules that act as gatekeepers of body homeostasis by absorbing and secreting ions, water, and small molecules to filter the blood. Each nephron contains a series of proximal and distal segments with explicit metabolic functions. The embryonic zebrafish provides an ideal platform to systematically dissect the genetic cues governing kidney development. Here, we review the use of zebrafish to discover nephrogenesis genes.
Collapse
Affiliation(s)
- Brooke E. Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Nicole E. Weaver
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Caroline M. Lara
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Thanh Khoa Nguyen
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| |
Collapse
|
6
|
Gu M, Chen P, Zeng D, Jiang X, Lv Q, Li Y, Zhang F, Wan S, Zhou Q, Lu Y, Wang X, Li L. Preeclampsia impedes foetal kidney development by delivering placenta-derived exosomes to glomerular endothelial cells. Cell Commun Signal 2023; 21:336. [PMID: 37996949 PMCID: PMC10666440 DOI: 10.1186/s12964-023-01286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/19/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Foetal renal dysplasia is still the main cause of adult renal disease. Placenta-derived exosomes are an important communication tool, and they may play an important role in placental (both foetal and maternal) function. We hypothesize that in women with preeclampsia, foetal renal dysplasia is impeded by delivering placenta-derived exosomes to glomerular endothelial cells. METHODS In the present study, we established a PE trophoblast oxidative stress model to isolate exosomes from supernatants by ultracentrifugation (NO-exo and H/R-exo) and collected normal and PE umbilical cord blood plasma to isolate exosomes by ultracentrifugation combined with sucrose density gradient centrifugation (N-exo and PE-exo), then we investigated their effects on foetal kidney development by in vitro, ex vivo and in vivo models. RESULTS The PE trophoblast oxidative stress model was established successfully. After that, in in vitro studies, we found that H/R-exo and PE-exo could adversely affect glomerular endothelial cell proliferation, tubular formation, migration, and barrier functions. In ex vivo studies, H/R-exo and PE-exo both inhibited the growth and branch formation of kidney explants, along with the decrease of VE-cadherin and Occludin. In in vivo studies, we also found that H/R-exo and PE-exo could result in renal dysplasia, reduced glomerular number, and reduced barrier function in foetal mice. CONCLUSIONS In conclusion, we demonstrated that PE placenta-derived exosomes could lead to foetal renal dysplasia by delivering placenta-derived exosomes to foetal glomerular endothelial cells, which provides a novel understanding of the pathogenesis of foetal renal dysplasia. Video Abstract.
Collapse
Affiliation(s)
- Mengqi Gu
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Pengzheng Chen
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Dongmei Zeng
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaotong Jiang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Qingfeng Lv
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yuchen Li
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Fengyuan Zhang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shuting Wan
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Qian Zhou
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yuan Lu
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xietong Wang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, 250117, Shandong, China.
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, 328 Jingshi East Road, Jinan, 250025, Shandong, China.
| | - Lei Li
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, 250117, Shandong, China.
| |
Collapse
|
7
|
Lassé M, El Saghir J, Berthier CC, Eddy S, Fischer M, Laufer SD, Kylies D, Hutzfeldt A, Bonin LL, Dumoulin B, Menon R, Vega-Warner V, Eichinger F, Alakwaa F, Fermin D, Billing AM, Minakawa A, McCown PJ, Rose MP, Godfrey B, Meister E, Wiech T, Noriega M, Chrysopoulou M, Brandts P, Ju W, Reinhard L, Hoxha E, Grahammer F, Lindenmeyer MT, Huber TB, Schlüter H, Thiel S, Mariani LH, Puelles VG, Braun F, Kretzler M, Demir F, Harder JL, Rinschen MM. An integrated organoid omics map extends modeling potential of kidney disease. Nat Commun 2023; 14:4903. [PMID: 37580326 PMCID: PMC10425428 DOI: 10.1038/s41467-023-39740-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/27/2023] [Indexed: 08/16/2023] Open
Abstract
Kidney organoids are a promising model to study kidney disease, but their use is constrained by limited knowledge of their functional protein expression profile. Here, we define the organoid proteome and transcriptome trajectories over culture duration and upon exposure to TNFα, a cytokine stressor. Older organoids increase deposition of extracellular matrix but decrease expression of glomerular proteins. Single cell transcriptome integration reveals that most proteome changes localize to podocytes, tubular and stromal cells. TNFα treatment of organoids results in 322 differentially expressed proteins, including cytokines and complement components. Transcript expression of these 322 proteins is significantly higher in individuals with poorer clinical outcomes in proteinuric kidney disease. Key TNFα-associated protein (C3 and VCAM1) expression is increased in both human tubular and organoid kidney cell populations, highlighting the potential for organoids to advance biomarker development. By integrating kidney organoid omic layers, incorporating a disease-relevant cytokine stressor and comparing with human data, we provide crucial evidence for the functional relevance of the kidney organoid model to human kidney disease.
Collapse
Affiliation(s)
- Moritz Lassé
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jamal El Saghir
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Celine C Berthier
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Sean Eddy
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Matthew Fischer
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Sandra D Laufer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Kylies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arvid Hutzfeldt
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Bernhard Dumoulin
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Virginia Vega-Warner
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Felix Eichinger
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Fadhl Alakwaa
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Damian Fermin
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Anja M Billing
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Akihiro Minakawa
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Phillip J McCown
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Michael P Rose
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Bradley Godfrey
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Elisabeth Meister
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mercedes Noriega
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Paul Brandts
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wenjun Ju
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Linda Reinhard
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elion Hoxha
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja T Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Laura H Mariani
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Fatih Demir
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jennifer L Harder
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA.
| | - Markus M Rinschen
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Aarhus Institute of Advanced Studies (AIAS), Aarhus, Denmark.
| |
Collapse
|
8
|
Creating a kidney organoid-vasculature interaction model using a novel organ-on-chip system. Sci Rep 2022; 12:20699. [PMID: 36450835 PMCID: PMC9712653 DOI: 10.1038/s41598-022-24945-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Kidney organoids derived from human induced pluripotent stem cells (iPSCs) have proven to be a valuable tool to study kidney development and disease. However, the lack of vascularization of these organoids often leads to insufficient oxygen and nutrient supply. Vascularization has previously been achieved by implantation into animal models, however, the vasculature arises largely from animal host tissue. Our aim is to transition from an in vivo implantation model towards an in vitro model that fulfils the advantages of vascularization whilst being fully human-cell derived. Our chip system supported culturing of kidney organoids, which presented nephron structures. We also showed that organoids cultured on chip showed increased maturation of endothelial populations based on a colocalization analysis of endothelial markers. Moreover, we observed migration and proliferation of human umbilical vein endothelial cells (HUVECs) cultured in the channels of the chip inside the organoid tissue, where these HUVECs interconnected with endogenous endothelial cells and formed structures presenting an open lumen resembling vessels. Our results establish for the first-time vascularization of kidney organoids in HUVEC co-culture conditions using a microfluidic organ-on-chip. Our model therefore provides a useful insight into kidney organoid vascularization in vitro and presents a tool for further studies of kidney development and drug testing, both for research purposes and pre-clinical applications.
Collapse
|
9
|
Perl AJ, Schuh MP, Kopan R. Regulation of nephron progenitor cell lifespan and nephron endowment. Nat Rev Nephrol 2022; 18:683-695. [PMID: 36104510 PMCID: PMC11078284 DOI: 10.1038/s41581-022-00620-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Low nephron number - resulting, for example, from prematurity or developmental anomalies - is a risk factor for the development of hypertension, chronic kidney disease and kidney failure. Considerable interest therefore exists in the mechanisms that regulate nephron endowment and contribute to the premature cessation of nephrogenesis following preterm birth. The cessation of nephrogenesis in utero or shortly after birth is synchronized across multiple niches in all mammals, and is coupled with the exhaustion of nephron progenitor cells. Consequently, no nephrons are formed after the cessation of developmental nephrogenesis, and lifelong renal function therefore depends on the complement of nephrons generated during gestation. In humans, a tenfold variation in nephron endowment between individuals contributes to differences in susceptibility to kidney disease; however, the mechanisms underlying this variation are not yet clear. Salient advances in our understanding of environmental inputs, and of intrinsic molecular mechanisms that contribute to the regulation of cessation timing or nephron progenitor cell exhaustion, have the potential to inform interventions to enhance nephron endowment and improve lifelong kidney health for susceptible individuals.
Collapse
Affiliation(s)
- Alison J Perl
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Meredith P Schuh
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
10
|
Organs-on-chip technology: a tool to tackle genetic kidney diseases. Pediatr Nephrol 2022; 37:2985-2996. [PMID: 35286457 PMCID: PMC9587109 DOI: 10.1007/s00467-022-05508-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 01/10/2023]
Abstract
Chronic kidney disease (CKD) is a major healthcare burden that takes a toll on the quality of life of many patients. Emerging evidence indicates that a substantial proportion of these patients carry a genetic defect that contributes to their disease. Any effort to reduce the percentage of patients with a diagnosis of nephropathy heading towards kidney replacement therapies should therefore be encouraged. Besides early genetic screenings and registries, in vitro systems that mimic the complexity and pathophysiological aspects of the disease could advance the screening for targeted and personalized therapies. In this regard, the use of patient-derived cell lines, as well as the generation of disease-specific cell lines via gene editing and stem cell technologies, have significantly improved our understanding of the molecular mechanisms underlying inherited kidney diseases. Furthermore, organs-on-chip technology holds great potential as it can emulate tissue and organ functions that are not found in other, more simple, in vitro models. The personalized nature of the chips, together with physiologically relevant read-outs, provide new opportunities for patient-specific assessment, as well as personalized strategies for treatment. In this review, we summarize the major kidney-on-chip (KOC) configurations and present the most recent studies on the in vitro representation of genetic kidney diseases using KOC-driven strategies.
Collapse
|