1
|
Wang T, Dai JL, Jiang YF, Yan S, Wang JY. Construction of C-S and C-Se Bonds via Photocatalytic Aromatization-Driven Deconstructive Diversification of Spiro-Dihydroquinazolinones Derived from Unstrained Ketones. J Org Chem 2025; 90:6776-6788. [PMID: 40360484 DOI: 10.1021/acs.joc.5c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
A novel and robust deconstructive functionalization reaction of spiro-dihydroquinazolinones with sulfenylating reagents in the presence of base has been realized under visible light irradiation. This reaction enabled the direct ring-opening of unstrained cyclic ring systems, producing skeletally diverse functionalized quinazolinones with moderate to good yields. A range variety of sulfenylating reagents including diaryl disulfide, thiosulfonate, dithiosulfonate and 1-[(trifluoromethyl)thio]-2,5-pyrrolidinedione were compatible for this transformation. In addition, diaryl diselenide and selenosulfonate could also couple with spiro-dihydroquinazolinones to form C-Se Bonds. Mechanistic studies revealed that the reaction proceeds via a radical-radical coupling pathway.
Collapse
Affiliation(s)
- Tao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Jin-Long Dai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Yi-Feng Jiang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Shenghu Yan
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Jia-Yin Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
2
|
Singha T, Kasu JVN, Hari DP. Deconstructive Functionalization of Cyclic Ketones via Electrochemical Interrupted Dowd-Beckwith Reaction. Angew Chem Int Ed Engl 2025:e202505155. [PMID: 40387576 DOI: 10.1002/anie.202505155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/18/2025] [Accepted: 05/16/2025] [Indexed: 05/20/2025]
Abstract
Deconstructive functionalization of cyclic molecules has recently emerged as a prominent strategy to access unique architectures that are challenging to prepare through traditional methods. While significant progress has been made in the deconstructive functionalization of cyclic alcohols and amines, the strategies for deconstructing cyclic ketones remain largely unexplored. The Dowd-Beckwith reaction, a ring-expansion of cyclic ketones, is a powerful method for synthesizing medium- and large-ring compounds. Herein, we developed the first interrupted Dowd-Beckwith (IDB) reaction for highly regioselective deconstructive functionalization of cyclic ketones using electricity as the sole oxidant. This protocol is widely applicable for the deconstruction of small, medium-sized, and macrocyclic ketones bearing a diverse range of functional groups. Remarkably, various naturally occurring complex cyclic ketones were successfully deconstructed into acyclic molecules, which are difficult to access by known strategies. The method was applied to the asymmetric synthesis of planococcol, citrilol acetate, maconelliol, and its derivatives. Furthermore, the functional groups incorporated during the transformation provided versatile handles for subsequent synthetic modifications. Mechanistic experiments and computational studies support an oxidative radical-polar crossover followed by deconstructive functionalization.
Collapse
Affiliation(s)
- Tushar Singha
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Jyothirlatha V N Kasu
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Durga Prasad Hari
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
3
|
Gao WC, Teng Y, Yang J, Li WD, Li WG, Huang KX, Li T. Dual-nickel/photoredox-catalyzed acylation of spiro-dihydroquinazolinones with carboxylic acids via an aromatization-driven deconstructive strategy. Chem Commun (Camb) 2025. [PMID: 40387597 DOI: 10.1039/d5cc01289a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Dual-nickel/photoredox-catalyzed aromatization-mediated deconstruction and acylation of spiro-dihydroquinazolinones with carboxylic acids serving as acyl electrophiles is described. A series of synthetical ketone scaffolds with functional group tolerance could be obtained under mild conditions. A radical pathway involving an N-centered radical inducing β-scission to form a C-centered radical is proposed for these transformations.
Collapse
Affiliation(s)
- Wen-Chao Gao
- Engineering Technology Research Centre of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, Henan, P. R. China
| | - Yong Teng
- Engineering Technology Research Centre of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, Henan, P. R. China
| | - Jie Yang
- Engineering Technology Research Centre of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, Henan, P. R. China
| | - Wen-Dian Li
- Research and Development Centre, China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610066, Sichuan, P. R. China
| | - Wen-Guang Li
- Engineering Technology Research Centre of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, Henan, P. R. China
| | - Ke-Xin Huang
- School of Biological and Chemical Engineering, Nanyang, Nanyang Institute Technology, Nanyang, 473061, Henan, P. R. China
| | - Ting Li
- Engineering Technology Research Centre of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, Henan, P. R. China
| |
Collapse
|
4
|
Šimek M, Dworkin JH, Kwon O. Synthesis through C(sp 3)-C(sp 2) Bond Scission in Alkenes and Ketones. Acc Chem Res 2025; 58:1547-1561. [PMID: 40233283 PMCID: PMC12075848 DOI: 10.1021/acs.accounts.5c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
ConspectusThe homolytic cleavage of C-C bonds adjacent to functional groups has recently become a popular strategy for restructuring the skeletons of complex organic molecules. In contrast to the traditional reactivity profiles of polar bond disconnections, homolytic scission furnishes carbon-centered free radicals primed for controlled termination with a diverse range of radicophiles. Beyond standard radical capture, transition-metal catalysis facilitates sophisticated C-C and C-heteroatom bond-forming reactions. Intensive efforts have been focused over many years into the cleavage of the neighboring C-C bonds of carboxylic acids and alcohols. Despite the ubiquity of alkenes and ketones in natural products, feedstock chemicals, and common synthetic intermediates, much less attention has been paid to exploiting their potential in diversifying chiral pool materials, such as terpenes and terpenoids. Defunctionalization in this manner is a powerful approach for synthesizing high-value chemicals and advanced synthetic intermediates because of the possibility to reconstruct and further decorate chirality-bearing carbon skeletons. Motivated by synthetic necessity, since 2018 our group has focused on developing ozonolysis-based dealkenylative molecular diversification, and we expanded into deacylation in 2025. In this Account, we chronicle our initial motivation, describe the historical background, and summarize our research into dealkenylative and deacylative synthesis. Our dealkenylative approach capitalizes on the ozonolysis of alkenes in MeOH to generate α-methoxyhydroperoxides primed for a reaction with reducing agents. Their reduction through single electron transfer, mediated by a transition metal, leads to the formation of an alkoxyl radical that undergoes rapid β-scission, furnishing both a carbon-centered free radical and an ester group derived from the acetal carbon atom. The produced free radical can be strategically terminated by radicophiles, thereby delivering remodeled chiral molecules. Using this concept, we have developed hydrodealkenylation (through hydrogen atom transfer from benzenethiol), dealkenylative thiylation (through thiyl group transfer from diaryl disulfides), alkenylation (through addition/elimination with nitrostyrenes), and oxodealkenylation (through treatment with TEMPO followed by oxidation). Furthermore, kinetic analysis has enabled the development of a catalytic FeII/vitamin C system for dealkenylative alkynylation and halodealkenylation. Synergizing ozonolysis and copper catalysis has recently enabled aminodealkenylation through net-redox-neutral C-C cleavage followed by C-N bond formation. Although the high oxidation potential of ozone relative to organic compounds makes alkene-to-peroxide conversion possible, it also limits the applicability of dealkenylative techniques for substrates featuring ozone-sensitive functional groups. We recently overcame this constraint by first applying Isayama-Mukayiama peroxidation to olefins and then using a novel catalytic system─catalytic FeIII and PhSH with stoichiometric γ-terpinene─for ozone-free hydrodealkenylation. Beyond alkenes, we have developed a straightforward methodology for the homolytic deacylative cleavage of ketones as well, including cycloalkanones. This process is applicable in total syntheses and in the late-stage modifications of complex ketone-containing natural products.
Collapse
Affiliation(s)
- Michal Šimek
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1569, United States; Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague 6, Czech Republic
| | - Jeremy H. Dworkin
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1569, United States
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States
| |
Collapse
|
5
|
Chakraborty S, Singha Mohapatra A, Paul ND. Hydrogen-Bond-Assisted Ru(III)-Catalyzed C-C Bond Activation in 1,3-Dicarbonyls: A Direct Route to Multi-Substituted Pyrroles. J Org Chem 2025; 90:5281-5291. [PMID: 40191886 DOI: 10.1021/acs.joc.5c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Unprecedented CO-Cα bond cleavage of 1,3-dicarbonyls and enaminone, catalyzed by a well-defined Ru(III)-complex (1) featuring a redox-active triamine ligand (L1) with a free -NH2 arm, opening a new route to accessing substituted pyrroles with broad substrate scope and functional group tolerance in good isolated yields via multicomponent coupling of 1,3-dicarbonyls, amines, and diol, is reported. The hydrogen bonding interaction offered by 1 facilitates the formation of critical reaction intermediates, favoring the formation of pyrroles.
Collapse
Affiliation(s)
- Santana Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Arijit Singha Mohapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
6
|
Wei X, Shen C, Ye P, Liu X, Xu S, Wang YZ. Highly adaptable oxidative upcycling of polyolefins to multifunctional chemicals containing oxygen and nitrogen. MATERIALS HORIZONS 2025. [PMID: 40145239 DOI: 10.1039/d5mh00132c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Highly adaptable upcycling of waste polyolefins was demonstrated to obtain high-value nitro-containing polycarboxylic acids in high carbon yields. This method is applicable to a wide range of polyolefins, mixed PP/PE in any ratio, as well as actual polyolefin products and their mixtures. Moreover, the obtained products are homogenized with similarity in molecular weight and functional groups, enabling direct reutilization as fine chemicals or feedstocks for preparation of recyclable high-performance/functional materials. This work provided a new universal and efficient upcycling strategy for waste polyolefins, which may reshape the model of waste plastics recycling, while providing alternative functional chemicals and materials to achieve sustainable development.
Collapse
Affiliation(s)
- Xiangyue Wei
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Chengfeng Shen
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Pengbo Ye
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xuehui Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Architecture and Environment, Sichuan University, Chengdu, 610064, China
| | - Shimei Xu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
7
|
Cao L, Yan S, Hu F, Wang F, Li SS, Pan M, Yan Y, Zhang XM. Hydride Transfer-Enabled Dearomative Spirocyclization of Isoxazoles with O-Alkyl ortho-Oxybenzaldehydes. Org Lett 2025; 27:1835-1840. [PMID: 39960009 DOI: 10.1021/acs.orglett.5c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The TfOH-catalyzed dearomative [5 + 1] annulations were developed for the construction of chromane-fused spiroisoxazolines from readily available 5-amino-isoxazoles and O-alkyl ortho-oxybenzaldehydes. The "two-birds-with-one-stone" strategy featuring dearomatization of 5-amino-isoxazoles and α-C(sp3)-H bond functionalization of oxygen was disclosed via a cascade condensation/[1,5]-hydride transfer/dearomative spirocyclization process. In addition, the unprecedented direct dearomative spirocyclization of isoxazoles was achieved, which introduced a new family member of dearomative spirocyclization for dearomatization chemistry.
Collapse
Affiliation(s)
- Lianyi Cao
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Shihai Yan
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Rd. #700, Qingdao 266109, P. R. China
| | - Fangzhi Hu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Rd. #700, Qingdao 266109, P. R. China
| | - Fei Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Rd. #700, Qingdao 266109, P. R. China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Rd. #700, Qingdao 266109, P. R. China
| | - Mengzhe Pan
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Rd. #700, Qingdao 266109, P. R. China
| | - Yingkun Yan
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Xiao-Mei Zhang
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| |
Collapse
|
8
|
Chen S, Xu Z, Yuan B, Gou XY, Ackermann L. Difunctionalization of bicyclo[1.1.0]butanes enabled by merging C-C cleavage and ruthenium-catalysed remote C-H activation. NATURE SYNTHESIS 2025; 4:655-663. [PMID: 40375955 PMCID: PMC12075002 DOI: 10.1038/s44160-025-00745-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/22/2025] [Indexed: 05/18/2025]
Abstract
The high fraction of sp 3-hybridized carbon atom (Fsp 3) character of cyclobutane derivatives renders them as highly promising bioisosteres for otherwise typically flat arenes. Here, to address the current needs in medicinal chemistry for Fsp 3-rich molecules, we disclose a distinct strategy that exploits the merger of C-C scission in bicyclo[1.1.0]butanes (BCBs) with ruthenium-catalysed remote C-H functionalization of heteroarenes, affording densely substituted cyclobutanes in a chemo-controlled manner. This approach enabled the rapid and efficient synthesis of versatile tri- and tetrasubstituted cyclobutanes by coupling a wide range of mono- or disubstituted BCBs with heteroarenes and alkyl halides under mild reaction conditions, featuring ample substrate scope. The C-C/C-H functionalization was ensured by a multifunctional ruthenium(II) catalyst that enabled ruthenacycle-mediated halogen-atom transfer (Ru-XAT), as well as the selective functionalization of BCBs by strain release. Experimental and computational mechanistic studies unravelled a multi-catalysis manifold, while the C-H/C-C functionalization strategy allowed for telescoping late-stage modification.
Collapse
Affiliation(s)
- Shan Chen
- Wöhler-Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Zhimin Xu
- Wöhler-Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Binbin Yuan
- Wöhler-Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Xue-Ya Gou
- Wöhler-Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Lutz Ackermann
- Wöhler-Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
9
|
Shakenov A, Gnyawali KP, Yi CS. Stereoselective Synthesis of ( Z)-Acrylic Nitriles from the Ruthenium-Catalyzed Coupling Reaction of Nitriles with Unsaturated Carbonyl Compounds via C-C Bond Cleavage. J Org Chem 2025; 90:1733-1739. [PMID: 39847036 DOI: 10.1021/acs.joc.4c01988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Acrylic nitriles are a versatile class of synthetic precursors for a variety of pharmaceutically active compounds, as well as for nitrile polymers. We devised a stereoselective synthesis of (Z)-acrylic nitriles from the Ru-catalyzed coupling reaction of nitriles with unsaturated carbonyl compounds via C-C bond cleavage. Both carbon KIE and Hammett correlation data indicated that C-C bond cleavage is the rate-determining step for the coupling reaction. Several bioactive (Z)-acrylic nitriles were synthesized by using the catalytic coupling method.
Collapse
Affiliation(s)
- Aldiyar Shakenov
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | | | - Chae S Yi
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| |
Collapse
|
10
|
Šimek M, Mahato S, Dehnert BW, Kwon O. Deacylative Homolysis of Ketone C(sp 3)-C(sp 2) Bonds: Streamlining Natural Product Transformations. J Am Chem Soc 2025; 147:2664-2674. [PMID: 39772625 PMCID: PMC12075819 DOI: 10.1021/jacs.4c15045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The homolytic cleavage of C-C bonds adjacent to specific functional groups has lately emerged as a versatile approach for molecular diversification. Despite the ubiquity and synthetic utility of ketones, radical fragmentation of their α-C-C bonds has proven to be a formidable challenge. Here, we present a broadly applicable deacylative strategy designed to homolytically cleave aliphatic ketones of various complexities, including transformations of cycloalkanones into carboxylic acids tethered to C-centered free radicals that can be engaged in diverse radical-based processes. The method involves ketone activation through treatment with hydrogen peroxide, yielding gem-dihydroperoxides. Subsequent single-electron-transfer reduction mediated by a low-valent metal complex generates alkyl radicals that can be captured selectively with a radicophile of choice, including through catalytic cross-coupling. The logic of our deacylative functionalization is exemplified by the total synthesis of 14 natural products, one analogue, and two drugs starting from readily available natural products, showcasing its transformative power in complex settings. This approach obviates the need for complex reagents and allows the controlled conversion of ketones to reconstructed products, making the process highly applicable across a spectrum of domains.
Collapse
Affiliation(s)
- Michal Šimek
- Department of Chemistry and Biochemistry, University of California–Los Angeles, Los Angeles, California 90095-1569, United States; Present Address: Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
| | - Sujit Mahato
- Department of Chemistry and Biochemistry, University of California–Los Angeles, Los Angeles, California 90095-1569, United States
| | - Brady W. Dehnert
- Department of Chemistry and Biochemistry, University of California–Los Angeles, Los Angeles, California 90095-1569, United States
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California–Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
11
|
Yang WP, Miao HJ, Wang G, Yang X, Wang X, Liu L, Duan XH, Guo LN. Photoinduced Aromatization-Driven Deconstructive Fluorosulfonylation of Spiro Dihydroquinazolinones. J Org Chem 2024; 89:18713-18722. [PMID: 39614825 DOI: 10.1021/acs.joc.4c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A catalyst-free photoinduced deconstructive fluorosulfonylation cascade of spiro dihydroquinazolinones with DABSO and NFSI is reported. This protocol features mild reaction conditions, good yields and excellent functional group tolerance, providing a practical approach to the quinazolin-4(1H)-one-functionalized aliphatic sulfonyl fluorides. In addition, the ease of gram-scale synthesis and the versatility of the SuFEx exchange highlight the application potential of this protocol.
Collapse
Affiliation(s)
- Wen-Peng Yang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hong-Jie Miao
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Gang Wang
- Keshun Waterproof Technology Co., Ltd, Foshan 528303, China
| | - Xiaoyu Yang
- Keshun Waterproof Technology Co., Ltd, Foshan 528303, China
| | - Xianjun Wang
- Keshun Waterproof Technology Co., Ltd, Foshan 528303, China
| | - Le Liu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
12
|
Xu Z, Peng W, Huang J, Shen J, Guo JJ, Hu A. Photoinduced formal [4 + 2] cycloaddition of two electron-deficient olefins and its application to the synthesis of lucidumone. Nat Commun 2024; 15:9748. [PMID: 39528531 PMCID: PMC11555068 DOI: 10.1038/s41467-024-54117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Electronically mismatched Diels-Alder reaction between two electron-deficient components is synthetically useful and yet underdeveloped under thermal conditions. Herein, a photoinduced formal [4 + 2] cycloaddition of enone with a variety of electron-deficient dienes is described. Key to the success of this stepwise methodology relies on a C - C bond cleavage/rearrangement of the cyclobutane based overbred intermediate via diversified mechanistic pathways. Based on this annulation method, total synthesis of lucidumone is achieved in nine steps.
Collapse
Affiliation(s)
- Zhezhe Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Weibo Peng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Jiarui Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Jinhui Shen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Jing-Jing Guo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.
| | - Anhua Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.
| |
Collapse
|
13
|
He KH, Jin N, Chen JC, Zheng YF, Pan F. Ketone Skeletal Modification via a Metallaphotoredox-Catalyzed Deacylation and Acylation Strategy. Org Lett 2024; 26:9503-9507. [PMID: 39465911 DOI: 10.1021/acs.orglett.4c03456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Herein, we describe a dual catalytic strategy that employs dihydroquinazolinones, derived from ketone analogs, as versatile intermediates for acylation via α C-C cleavage with 2-pyridyl esters, facilitating the efficient synthesis of a variety of ketones. The reaction accommodates a wide range of ketones and carboxylic acids, showing tolerance to various functional groups. The versatility of this synthetic technique is further highlighted through its application in the late-stage modification of pharmaceuticals and biologically active natural products.
Collapse
Affiliation(s)
- Ke-Han He
- School of Science, Xichang University, 1 Xuefu Road, Xichang 615000, People's Republic of China
| | - Na Jin
- School of Science, Xichang University, 1 Xuefu Road, Xichang 615000, People's Republic of China
| | - Jia-Cai Chen
- School of Science, Xichang University, 1 Xuefu Road, Xichang 615000, People's Republic of China
| | - You-Fen Zheng
- School of Science, Xichang University, 1 Xuefu Road, Xichang 615000, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, 5 Jingan Road, Chengdu 610068, People's Republic of China
| |
Collapse
|
14
|
Zhao B, Hu Z, Sun Y, Hajiayi R, Wang T, Jiao N. Selective Upcycling of Polyolefins into High-Value Nitrogenated Chemicals. J Am Chem Soc 2024; 146:28605-28611. [PMID: 39241040 DOI: 10.1021/jacs.4c07965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
The selective upcycling of polyolefins to create products of increased value has emerged as an innovative approach to carbon resource stewardship, drawing significant scientific and industrial interest. Although recent advancements in recycling technology have facilitated the direct conversion of polyolefins to hydrocarbons or oxygenated compounds, the synthesis of nitrogenated compounds from such waste polyolefins has not yet been disclosed. Herein, we demonstrate a novel approach for the upcycling of waste polyolefins by efficiently transforming a range of postconsumer plastic products into nitriles and amides. This process leverages the catalytic properties of manganese dioxide in combination with an inexpensive nitrogen source, urea, to make it both practical and economically viable. Our approach not only opens new avenues for the creation of nitrogenated chemicals from polyolefin waste but also underscores the critical importance of recycling and valorizing carbon resources originally derived from fossil fuels. This study provides a new upcycling strategy for the sustainable conversion of waste polyolefins.
Collapse
Affiliation(s)
- Binzhi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhibin Hu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yichen Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Rehemuhali Hajiayi
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Teng Wang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
15
|
Li W, Miao HJ, Zhang JH, Duan XH, Guo LN. Copper-Catalyzed Aromatization-Driven Ring-Opening Amination and Oxygenation of Spiro Dihydroquinazolinones. Chemistry 2024; 30:e202402602. [PMID: 39112402 DOI: 10.1002/chem.202402602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Indexed: 10/04/2024]
Abstract
Mild and inexpensive copper-catalyzed aromatization-driven ring-opening amination and oxygenation of spiro dihydroquinazolinones are presented, respectively. These protocols provide facile and atom-economical access to the aminated and the carbonyl-containing quinazolin-4(3H)-ones in good yields with good functional group compatibility, which are difficult to obtain by conventional methods. Remarkably, a telescoped procedure involving the condensation and the ring-opening/functionalization for simple cycloalkanone was found to be accessible. Mechanistic studies suggest a radical pathway for this transformation.
Collapse
Affiliation(s)
- Wenke Li
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hong-Jie Miao
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jin-Hua Zhang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
16
|
Li J, Zhang D, Tan L, Li CJ. Direct Excitation Strategy for Deacylative Couplings of Ketones. Angew Chem Int Ed Engl 2024; 63:e202410363. [PMID: 39043558 DOI: 10.1002/anie.202410363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024]
Abstract
The homolysis of chemical bonds represents one of the most fundamental reactivities of excited molecules. Historically, it has been exploited to generate radicals under ultraviolet (UV) light irradiation. However, unlike most contemporary radical-generating mechanisms, the direct excitation to homolyze chemical bonds and produce aliphatic carbon-centered radicals under visible light remains rare, especially in metallaphotoredox cross couplings. Herein, we present our design of the dihydropyrimidoquinolinone (DHPQ) reagents derived from ketones, which can undergo formal deacylation and homolytic C-C bond cleavage to release alkyl radicals without external photocatalysts. Spectroscopic and computational analysis reveal unique optical and structural features of DHPQs, rationalizing their faster kinetics in alkyl radical generation than a structurally similar but visible-light transparent radical precursor. Such a capability allows DHPQ to facilitate a wide range of Ni-metallaphotoredox cross couplings with aryl, alkynyl and acyl halides. Other catalytic and non-catalyzed alkylative transformations of DHPQs are also feasible with various radical acceptors. We believe this work would be of broad interest, aiding the synthetic planning with simplified operation and expanding the synthetic reach of photocatalyst-free approaches in cutting-edge research.
Collapse
Affiliation(s)
- Jianbin Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Longgang District, Shenzhen, Guangdong, 518172, China
| | - Ding Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Longgang District, Shenzhen, Guangdong, 518172, China
| | - Lida Tan
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, Québec, H3 A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, Québec, H3 A 0B8, Canada
| |
Collapse
|
17
|
An Q, Chang L, Pan H, Zuo Z. Ligand-to-Metal Charge Transfer (LMCT) Catalysis: Harnessing Simple Cerium Catalysts for Selective Functionalization of Inert C-H and C-C Bonds. Acc Chem Res 2024; 57:2915-2927. [PMID: 39291873 DOI: 10.1021/acs.accounts.4c00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
ConspectusChemists have long pursued harnessing light energy and photoexcitation processes for synthetic transformations. Ligand-to-metal charge transfer (LMCT) in high-valent metal complexes often triggers bond homolysis, generating oxidized ligand-centered radicals and reduced metal centers. While photoinduced oxidative activations can be enabled, this process, typically seen as photochemical decomposition, remains underexplored in catalytic applications. To mitigate decomposition during LMCT excitation, we developed a catalytic cycle integrating in situ coordination, LMCT, and ligand homolysis to activate ligated alcohols transiently into alkoxy radicals. This catalytic approach leverages Ce(IV) LMCT excitation and highly reactive alkoxy radical intermediates for selective functionalizations of C(sp3)-H and C(sp3)-C(sp3) bonds under mild conditions. In this Account, we discuss these advancements, highlighting the practical utility of cost-effective cerium salts as catalysts and their potential to develop innovative transformations, addressing long-standing synthetic challenges.Selective functionalization of chemically inert C(sp3)-H bonds has long posed a significant challenge. We first detail our research using LMCT-enabled alkoxy radical-mediated hydrogen atom transfer (HAT) processes for selective C(sp3)-H functionalizations. Using readily available CeCl3, we established a general protocol for employing free alcohols in the Barton reaction. By integrating LMCT and HAT catalysis, we introduced a selective photocatalytic strategy for functionalizing feedstock alkanes, converting gaseous hydrocarbons into valuable products. Employing simple cerium salts like Ce(OTf)3 and CeCl3, we achieved selective C-H amination of methane and ethane at ambient temperature, achieving turnover numbers of 2900 and 9700, respectively. This catalytic manifold has been further exploited to address the site-selectivity challenge in the C-H functionalization of linear alkanes. The use of methanol as a cocatalyst enabled preferential functionalization of the most electron-rich sites, achieving a high intrinsic selectivity over 12:1 of secondary vs primary sites in pentane and hexane.Next, we discuss the catalytic utilization of alkoxy-radical-mediated β-scission, a frequently encountered side reaction in HAT transformations, for selective cleavage and functionalization of C-C bonds. The versatility of the LMCT catalytic platform facilitates the generation of alkoxy radicals from various free alcohols. In our initial demonstration of LMCT-enabled C(sp3)-C(sp3) bond activation, we developed a cerium-catalyzed ring-opening and amination of cycloalkanols, providing an effective protocol for cleaving unstrained C-C bonds. This strategy has been successfully applied to various radical cross-coupling processes, leading to innovative transformations such as ring expansions of cycloalkanols, dehydroxymethylative alkylation, amination, alkenylation, and ring expansions of cyclic ketones. These results highlight the synthetic potential of employing LMCT-mediated β-scission and ubiquitous C-C bonds as unconventional functional handles for generating molecular complexity.Lastly, we delve into our mechanistic investigations. Beyond the catalytic application of Ce(IV) LMCT in various transformations, we have undertaken comprehensive mechanistic studies. These investigations encompass characterization of Ce(IV) alkoxide complexes to elucidate their structures, evaluation of their photoactivity and selectivity in radical generation, and elucidation of kinetic pathways associated with transient LMCT excited states. Our research has revealed ultrafast bond homolysis, back electron transfer, and the selectivity of heteroleptic complexes in homolysis, providing crucial insights for advancing LMCT catalysis.
Collapse
Affiliation(s)
- Qing An
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liang Chang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui Pan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
18
|
Wang T, Zhang Z, Gao F, Yan X. Homologation of Ketones: Direct Transformation of Alkyl Ketones to Aryl Ketones via Photoredox Catalyzed Deacylation-Aroylation Sequence. Org Lett 2024; 26:6915-6920. [PMID: 39115264 DOI: 10.1021/acs.orglett.4c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Ketones, as essential functional group skeletons, have garnered significant interest due to their diverse transformations. Herein, we describe a versatile photoredox catalyzed deacylation-aroylation strategy that enables the direct transformation of alkyl ketones to aryl ketones. This process involves photoredox deacylation of dihydroquinazolinones derived from alkyl ketones to generate alkyl radicals, followed by subsequent NHC-catalyzed or NHC-mediated radical aroylation.
Collapse
Affiliation(s)
- Tian Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Zengyu Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Fan Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Xiaoyu Yan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
19
|
Li QZ, He MH, Zeng R, Lei YY, Yu ZY, Jiang M, Zhang X, Li JL. Molecular Editing of Ketones through N-Heterocyclic Carbene and Photo Dual Catalysis. J Am Chem Soc 2024; 146:22829-22839. [PMID: 39086019 DOI: 10.1021/jacs.4c08163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The molecular editing of ketones represents an appealing strategy due to its ability to maximize the structural diversity of ketone compounds in a straightforward manner. However, developing efficient methods for the arbitrary modification of ketonic molecules, particularly those integrated within complex skeletons, remains a significant challenge. Herein, we present a unique strategy for ketone recasting that involves radical acylation of pre-functionalized ketones facilitated by N-heterocyclic carbene and photo dual catalysis. This protocol features excellent substrate tolerance and can be applied to the convergent synthesis and late-stage functionalization of structurally complex bioactive ketones. Mechanistic investigations, including experimental studies and density functional theory (DFT) calculations, shed light on the reaction mechanism and elucidate the basis of the regioselectivity.
Collapse
Affiliation(s)
- Qing-Zhu Li
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Mei-Hao He
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Rong Zeng
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yuan-Yuan Lei
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhao-Yuan Yu
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Min Jiang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xiang Zhang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jun-Long Li
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
20
|
Wu H, Fujii T, Wang Q, Zhu J. Quaternary Carbon Editing Enabled by Sequential Palladium Migration. J Am Chem Soc 2024; 146:21239-21244. [PMID: 39052260 DOI: 10.1021/jacs.4c07706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Peripheral functionalization of a quaternary carbon via C(sp3)-H bond activation has made significant progress in recent years. However, direct editing of a quaternary carbon through Csp3-Csp3 bond cleavage and refunctionalization of nonstrained acyclic molecules remain underexploited. Herein we report a reaction in which a methyl group attached to a quaternary carbon is shifted to its neighboring secondary carbon with concurrent oxidation of the quaternary C-C single bond to the C═C double bond. Specifically, morpholinyl amide of 2,2-dimethyl alkanoic acids is converted to 2-methylene-3-methyl alkanoic acid derivatives in the presence of a catalytic amount of palladium acetate, Selectfluor and sodium carbonate. Control experiments suggest that the reaction proceeds via a sequence of selective C(sp3)-H activation of the methyl group, oxidation of the resulting C(sp3)-PdII to PdIV intermediate followed by unprecedented 1,3-PdIV migration, 1,2-methyl/PdIV dyotropic rearrangement and finally, β-Hydride elimination. In this domino process, palladium migrates successively from the primary to the secondary and finally to the quaternary carbon, leading to the concurrent functionalization of a primary, a secondary, and a quaternary carbon.
Collapse
Affiliation(s)
- Hua Wu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Takuji Fujii
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
21
|
Najiar LO, Pati BV, Das Adhikari GK, Nanda T, Ravikumar PC. Hydroxy Group-Enabled Regio- and Stereoselective Hydroalkylation of Alkynyl Cyclobutanol via Palladium-Catalyzed C-C Bond Activation of Cyclopropanol: A One-Step Access to Vinyl Cyclobutanols. Org Lett 2024; 26:6314-6319. [PMID: 39038198 DOI: 10.1021/acs.orglett.4c01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The regio-/stereoselective synthesis of vinyl cyclobutanols from alkynyl cyclobutanols is demonstrated. Here, selective C-C bond activation of the cyclopropyl alcohol ring has been achieved in the presence of the cyclobutanol ring. The KIE experiments indicated the noninvolvement of the O-H oxidative addition step in the rate-determining step. Further, the applicability of these vinyl cyclobutanols for the synthesis of 1,4-diketones and 1,6-diketone is demonstrated.
Collapse
Affiliation(s)
- Lamphiza O Najiar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Bedadyuti Vedvyas Pati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Gopal Krushna Das Adhikari
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Tanmayee Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Ponneri C Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
22
|
Zhang JH, Miao HJ, Li JY, Li W, Ma P, Duan XH, Guo LN. Metal-free, photoredox-catalyzed aromatization-driven deconstructive functionalization of spiro-dihydroquinazolinones with α-CF 3 alkenes. Chem Commun (Camb) 2024; 60:8095-8098. [PMID: 38993023 DOI: 10.1039/d4cc02868f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Metal-free, photoredox-catalyzed aromatization-driven deconstructive functionalization of spiro-dihydroquinazolinones with α-CF3 alkenes is presented. The readily available spiro-dihydroquinazolinones reacted efficiently with α-CF3 alkenes during photocatalysis to give the gem-difluoroallylated and the CF3-containing quinazolin-4(3H)-ones in good yields with excellent chemoselectivity. The selectivity depends on the electron effect of substituents in α-CF3 alkenes. A wide range of four-, five-, six-, seven-, eight- and twelve-membered spiro-dihydroquinazolinones were compatible with this transformation. The protocol is also characterized by the mild and redox-neutral reaction conditions, good functional group compatibility and excellent atom economy. Mechanistic studies revealed that the reaction proceeds via a radical pathway.
Collapse
Affiliation(s)
- Jin-Hua Zhang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Hong-Jie Miao
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jia-Yi Li
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Wenke Li
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Pengchen Ma
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
23
|
Xiong W, Lai G, Liu WH. A Type of Stable Amides Behaves as Acyl Transfer Reagents upon Visible-Light Irradiation through Self-Aromatization. Chemistry 2024; 30:e202401619. [PMID: 38773843 DOI: 10.1002/chem.202401619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/24/2024]
Abstract
Organic molecules with light-modifiable reactivity are important in many fields because they can serve as the "switch" for light to trigger chemical processes. Herein, we disclose a new type of stable non-twisted amides, the reactivity of which can be turned on by light as acyl transfer reagents. Upon photo-activation, these amides react with various nucleophiles including amines, phenols, hydroxide, thiols, boronic acids, and alkynes either under metal-free or metal-catalysis conditions. This reactivity hinges on the design and synthesis of a photo-activatable reagent (7-nitro-5,6-dihydrophenanthridine), which undergoes self-aromatization enabled by an internal oxidant under light. This masked acyl donor group is anticipated to be useful in scenarios where light is preferred to trigger a chemical process.
Collapse
Affiliation(s)
- Wenzhang Xiong
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guoyin Lai
- Guangzhou Flower Flavours & Fragrances Co., Ltd, Guangzhou, 510442, China
| | - Wenbo H Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
24
|
Miao HJ, Zhang JH, Li W, Yang W, Xin H, Gao P, Duan XH, Guo LN. Aromatization-driven deconstructive functionalization of spiro dihydroquinazolinones via dual photoredox/nickel catalysis. Chem Sci 2024; 15:8993-8999. [PMID: 38873081 PMCID: PMC11168144 DOI: 10.1039/d4sc01111b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Aromatization-driven deconstruction and functionalization of spiro dihydroquinazolinones via dual photoredox/nickel catalysis is developed. The aromatization effect was introduced to synergistically drive unstrained cyclic C-C bond cleavage, with the aim of overcoming the ring-size limitation of nitrogen-centered radical induced deconstruction of carbocycles. Herein, we demonstrate the synergistic photoredox/nickel catalyzed deconstructive cross-coupling of spiro dihydroquinazolinones with organic halides. Remarkably, structurally diverse organic halides including aryl, alkenyl, alkynyl, and alkyl bromides were compatible for the coupling. In addition, this protocol is also characterized by its mild and redox-neutral conditions, excellent functional group compatibility, high atom economy, and easy scalability. A telescoped procedure involving condensation and ring-opening/coupling was found to be accessible. This work provides a complementary strategy to the existing radical-mediated C-C bond cleavage of unstrained carbocycles.
Collapse
Affiliation(s)
- Hong-Jie Miao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University Xi'an 710049 China
| | - Jin-Hua Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University Xi'an 710049 China
| | - Wenke Li
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University Xi'an 710049 China
| | - Wenpeng Yang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University Xi'an 710049 China
| | - Hong Xin
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University Xi'an 710049 China
| | - Pin Gao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University Xi'an 710049 China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University Xi'an 710049 China
| | - Li-Na Guo
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University Xi'an 710049 China
| |
Collapse
|
25
|
Dong Q, Yang YH, Lv XJ, Liu JH, Liu YK. Synthesis of 2,3-Dialkyl-5-hydroxybenzofurans via a One-pot, Three-step Reaction Sequence of 2-Monosubstituted 1,3-Diketones and 1,4-Benzoquinones. J Org Chem 2024; 89:7138-7147. [PMID: 38695505 DOI: 10.1021/acs.joc.4c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
An economical one-pot, three-step reaction sequence of readily available 2-monosubstituted 1,3-diketones and 1,4-benzoquinones has been explored for the facile access of 2,3-dialkyl-5-hydroxybenzofurans. By using cheap K2CO3 and conc. HCl as the reaction promoters, the reaction occurs smoothly via sequential Michael addition, aromatization, retro-Claisen, deacylation, hemiketalization, and dehydration processes under mild conditions in a practical manner. Additionally, an interesting phenomenon was observed during the derivatization studies, where the dihydroquinoline was converted into tetrahydroquinoline and quinoline products, respectively, via a disproportionation process.
Collapse
Affiliation(s)
- Qing Dong
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yu-Huan Yang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xue-Jiao Lv
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jia-Hui Liu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yan-Kai Liu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
26
|
Ma J, Wang L, Qiao A, Li Z, Zhao F, Wu J. Synthesis of alkenylphosphine oxides via Tf 2O promoted addition-elimination of ketones and secondary phosphine oxides. Org Biomol Chem 2024; 22:3592-3596. [PMID: 38624160 DOI: 10.1039/d4ob00318g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Herein, we describe an efficient method for the synthesis of alkenylphosphine oxides via a Tf2O promoted addition-elimination process. Various diarylphosphine oxides and alkylarylphosphine oxides react with ketones smoothly and produce alkenylphosphine oxides in moderate to excellent yields with abundant functional group compatibility. In addition, several transformations and applications of the product also demonstrate the potential value of the methodology.
Collapse
Affiliation(s)
- Jiangkai Ma
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Lianjie Wang
- High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou 450002, P. R. China
| | - Anjiang Qiao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Zhongxian Li
- High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou 450002, P. R. China
| | - Fengqian Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Junliang Wu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
27
|
Zhang B, Bai H, Zhan B, Wei K, Nie S, Zhang X. Deacylative arylation and alkynylation of unstrained ketones. SCIENCE ADVANCES 2024; 10:eado0225. [PMID: 38669332 PMCID: PMC11051662 DOI: 10.1126/sciadv.ado0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Ketones are ubiquitous in bioactive natural products, pharmaceuticals, chemical feedstocks, and synthetic intermediates. Hence, deacylative coupling reactions enable the versatile elaboration of a plethora of chemicals to access complex drug candidates and natural products. Here, we present deacylative arylation and alkynylation strategies for the synthesis of a wide range of alkyl-tethered arenes and alkynes from cyclic ketones and methyl ketones under dual nickel/photoredox catalysis. This reaction begins by generating a pre-aromatic intermediate (PAI) through the condensation of the ketone and N'-methylpicolino-hydrazonamide (MPHA), followed by the oxidative cleavage of the PAI α-C─C bond to form an alkyl radical, which is subsequently intercepted by a Ni complex, facilitating the formation of diverse C(sp3)-C(sp2)/C(sp) bonds with remarkable generality. This protocol features a one-pot reaction capability, high regioselectivity and ring-opening efficiency, mild reaction conditions, and a broad substrate scope with excellent functional group compatibility.
Collapse
Affiliation(s)
- Boyi Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Hui Bai
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Beibei Zhan
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Kaihang Wei
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Shenyou Nie
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences and Department of Urology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaheng Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
28
|
Wang ZY, Zhang X, Chen WQ, Sun GD, Wang X, Tan L, Xu H, Dai HX. Palladium-Catalyzed Deuteration of Arylketone Oxime Ethers. Angew Chem Int Ed Engl 2024; 63:e202319773. [PMID: 38279666 DOI: 10.1002/anie.202319773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/28/2024]
Abstract
We report herein the development of palladium-catalyzed deacylative deuteration of arylketone oxime ethers. This protocol features excellent functional group tolerance, heterocyclic compatibility, and high deuterium incorporation levels. Regioselective deuteration of some biologically important drugs and natural products are showcased via Friedel-Crafts acylation and subsequent deacylative deuteration. Vicinal meta-C-H bond functionalization (including fluorination, arylation, and alkylation) and para-C-H bond deuteration of electro-rich arenes are realized by using the ketone as both directing group and leaving group, which is distinct from aryl halide in conventional dehalogenative deuteration.
Collapse
Affiliation(s)
- Zhen-Yu Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xu Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Wen-Qing Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Guo-Dong Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lin Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Xiong Dai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
29
|
Zhao B, Tan H, Yang J, Zhang X, Yu Z, Sun H, Wei J, Zhao X, Zhang Y, Chen L, Yang D, Deng J, Fu Y, Huang Z, Jiao N. Catalytic conversion of mixed polyolefins under mild atmospheric pressure. Innovation (N Y) 2024; 5:100586. [PMID: 38414518 PMCID: PMC10897897 DOI: 10.1016/j.xinn.2024.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
The chemical recycling of polyolefin presents a considerable challenge, especially as upcycling methods struggle with the reality that plastic wastes typically consist of mixtures of polyethylene (PE), polystyrene (PS), and polypropylene (PP). We report a catalytic aerobic oxidative approach for polyolefins upcycling with the corresponding carboxylic acids as the product. This method encompasses three key innovations. First, it operates under atmospheric pressure and mild conditions, using O2 or air as the oxidant. Second, it is compatible with high-density polyethylene, low-density polyethylene, PS, PP, and their blends. Third, it uses an economical and recoverable metal catalyst. It has been demonstrated that this approach can efficiently degrade mixed wastes of plastic bags, bottles, masks, and foam boxes.
Collapse
Affiliation(s)
- Binzhi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hui Tan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jie Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Xiaohui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zidi Yu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hanli Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yufeng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lili Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dali Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jin Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Zheng Huang
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
30
|
Chen YH, Duan M, Lin SL, Liu YW, Cheng JK, Xiang SH, Yu P, Houk KN, Tan B. Organocatalytic aromatization-promoted umpolung reaction of imines. Nat Chem 2024; 16:408-416. [PMID: 38062248 DOI: 10.1038/s41557-023-01384-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/24/2023] [Indexed: 03/07/2024]
Abstract
The umpolung functionalization of imines bears vast synthetic potential, but polarity inversion is less efficient compared with the carbonyl counterparts. Strong nucleophiles are often required to react with the N-electrophiles without catalytic and stereochemical control. Here we show an effective strategy to realize umpolung of imines promoted by organocatalytic aromatization. The attachment of strongly electron-withdrawing groups to imines could enhance the umpolung reactivity by both electronegativity and aromatic character, enabling the direct amination of (hetero)arenes with good efficiencies and stereoselectivities. Additionally, the application of chiral Brønsted acid catalyst furnishes (hetero)aryl C-N atropisomers or enantioenriched aliphatic amines via dearomative amination from N-electrophilic aromatic precursors. Control experiments and density functional theory calculations suggest an ionic mechanism for the umpolung reaction of imines. This disconnection expands the options to forge C-N bonds stereoselectively on (hetero)arenes, which represents an important synthetic pursuit, especially in medicinal chemistry.
Collapse
Affiliation(s)
- Ye-Hui Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Meng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Si-Li Lin
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Yu-Wei Liu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Jun Kee Cheng
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Shao-Hua Xiang
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Peiyuan Yu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.
| | - Bin Tan
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
31
|
Ge JC, Wang Y, Guo FW, Kong X, Hu F, Li SS. Dearomatization of 3-Aminophenols for Synthesis of Spiro[chromane-3,1'-cyclohexane]-2',4'-dien-6'-ones via Hydride Transfer Strategy-Enabled [5+1] Annulations. Molecules 2024; 29:1012. [PMID: 38474524 DOI: 10.3390/molecules29051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The Sc(OTf)3-catalyzed dearomative [5+1] annulations between readily available 3-aminophenols and O-alkyl ortho-oxybenzaldehydes were developed for synthesis of spiro[chromane-3,1'-cyclohexane]-2',4'-dien-6'-ones. The "two-birds-with-one-stone" strategy was disclosed by the dearomatization of phenols and direct α-C(sp3)-H bond functionalization of oxygen through cascade condensation/[1,5]-hydride transfer/dearomative-cyclization process. In addition, the antifungal activity assay and derivatizations of products were conducted to further enrich the utility of the structure.
Collapse
Affiliation(s)
- Jia-Cheng Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Hailir Pesticides and Chemicals Group Co., Ltd., Qingdao 266109, China
| | - Yufeng Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Feng-Wei Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiangyun Kong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fangzhi Hu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Hailir Pesticides and Chemicals Group Co., Ltd., Qingdao 266109, China
| |
Collapse
|
32
|
To TA, Nguyen TV. Olefination of Aromatic Carbonyls via Site-Specific Activation of Cycloalkanone Ketals. Angew Chem Int Ed Engl 2024; 63:e202317003. [PMID: 37997004 DOI: 10.1002/anie.202317003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
Skeletal editing is an important strategy in organic synthesis as it modifies the carbon backbone to tailor molecular structures with precision, enabling access to compounds with specific desired properties. Skeletal editing empowers chemists to transform synthetic approaches of target compounds across diverse applications from drug discovery to materials science. Herein, we introduce a new skeletal editing method to convert readily available aromatic carbonyl compounds into valuable unsaturated carboxylic acids with extended carbon chains. Our reaction setup enables a cascade reaction of enolization-[2+2]cycloaddition-[2+2]cycloreversion between aromatic carbonyl compounds and ketals of cyclic ketones to generate unsaturated carboxylic acids as ring-opening products. Through a simple design, our substrates are specifically activated to react at predetermined positions to enhance selectivity and efficiency. This practical method offers convenient access to versatile organic building blocks as well as provides fresh insights into manipulating traditional reaction pathways for new synthetic applications.
Collapse
Affiliation(s)
- Tuong Anh To
- School of Chemistry, University of New South Wales, Sydney Anzac Parade, Kensington, NSW 2052, Australia
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Sydney Anzac Parade, Kensington, NSW 2052, Australia
| |
Collapse
|
33
|
Tsai ZN, Li LY, Paculba AS, Miñoza S, Tsao YT, Lin PS, Liao HH. Pro-aromatic Dihydroquinazolinones - From Multigram Synthesis to Reagents for Gram-scale Metallaphotoredox Reactions. Chem Asian J 2023:e202301004. [PMID: 38102804 DOI: 10.1002/asia.202301004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Dihydroquinazolinone (DHQZ) has recently been harnessed as a ketone-derived pro-aromatic reagent extensively employed in (metalla)photoredox reactions as versatile group transfer agents. In this work, we outline a column chromatography-free protocol for the multigram-scale synthesis of pro-aromatic DHQZs as well as its use in a gram-scale nickel/photoredox dual-catalyzed cross-coupling in single-batch, photoflow, and simultaneous multiple smaller batches. While the single-batch approach leveraged moderate yields, a simple plug-flow photoreactor also exhibited amenable productivity (up to 45 % yield) despite the use of a heterogeneous base. Meanwhile, performing the metallaphotoredox-catalyzed reaction in multiple smaller batches in an improvised photoreactor facilitated high yields of up to 59 % and good reproducibility, implying a convenient alternative in the absence of photoflow setups.
Collapse
Affiliation(s)
- Zong-Nan Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| | - Li-Yun Li
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| | - Aira Shayne Paculba
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| | - Shinje Miñoza
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| | - Yong-Ting Tsao
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| | - Pei-Shan Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| | - Hsuan-Hung Liao
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
- Department of Applied and Medicinal Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan (ROC
- Green Hydrogen Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| |
Collapse
|
34
|
Wang S, Zhang Y, Liang C, Zhang Y, Zhan R, Huang H. Skeletal Editing of Chromone-Fused Dienes to Cyclopropane by Photochemical Carbon Deletion. Org Lett 2023; 25:8269-8273. [PMID: 37955863 DOI: 10.1021/acs.orglett.3c03317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
A visible-light-driven, photocatalyst-free, air-assisted carbon cleavage of dienes was achieved. Photochemical editing of dienes via an electron donor-acceptor (EDA) complex facilitates direct access to cyclopropane derivatives. This innovative methodology creates an opportunity for the efficient access to valuable cyclopropane derivatives under mild and ambient conditions.
Collapse
Affiliation(s)
- Shuzhong Wang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Yili Zhang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Chuyun Liang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Yue Zhang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Ruoting Zhan
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Huicai Huang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| |
Collapse
|
35
|
Liang YF, Bilal M, Tang LY, Wang TZ, Guan YQ, Cheng Z, Zhu M, Wei J, Jiao N. Carbon-Carbon Bond Cleavage for Late-Stage Functionalization. Chem Rev 2023; 123:12313-12370. [PMID: 37942891 DOI: 10.1021/acs.chemrev.3c00219] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Late-stage functionalization (LSF) introduces functional group or structural modification at the final stage of the synthesis of natural products, drugs, and complex compounds. It is anticipated that late-stage functionalization would improve drug discovery's effectiveness and efficiency and hasten the creation of various chemical libraries. Consequently, late-stage functionalization of natural products is a productive technique to produce natural product derivatives, which significantly impacts chemical biology and drug development. Carbon-carbon bonds make up the fundamental framework of organic molecules. Compared with the carbon-carbon bond construction, the carbon-carbon bond activation can directly enable molecular editing (deletion, insertion, or modification of atoms or groups of atoms) and provide a more efficient and accurate synthetic strategy. However, the efficient and selective activation of unstrained carbon-carbon bonds is still one of the most challenging projects in organic synthesis. This review encompasses the strategies employed in recent years for carbon-carbon bond cleavage by explicitly focusing on their applicability in late-stage functionalization. This review expands the current discourse on carbon-carbon bond cleavage in late-stage functionalization reactions by providing a comprehensive overview of the selective cleavage of various types of carbon-carbon bonds. This includes C-C(sp), C-C(sp2), and C-C(sp3) single bonds; carbon-carbon double bonds; and carbon-carbon triple bonds, with a focus on catalysis by transition metals or organocatalysts. Additionally, specific topics, such as ring-opening processes involving carbon-carbon bond cleavage in three-, four-, five-, and six-membered rings, are discussed, and exemplar applications of these techniques are showcased in the context of complex bioactive molecules or drug discovery. This review aims to shed light on recent advancements in the field and propose potential avenues for future research in the realm of late-stage carbon-carbon bond functionalization.
Collapse
Affiliation(s)
- Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Le-Yu Tang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yu-Qiu Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
36
|
Zhang Z, Zhu Q, Pyle D, Zhou X, Dong G. Methyl Ketones as Alkyl Halide Surrogates: A Deacylative Halogenation Approach for Strategic Functional Group Conversions. J Am Chem Soc 2023; 145:21096-21103. [PMID: 37712624 PMCID: PMC11102776 DOI: 10.1021/jacs.3c08176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Alkyl halides are versatile precursors to access diverse functional groups (FGs). Due to their lability, the development of surrogates for alkyl halides is strategically important for complex molecule synthesis. Given the stability and ease of derivatization inherent in common alkyl ketones, here we report a deacylative halogenation approach to convert various methyl ketones to the corresponding alkyl chlorides, bromides, and iodides. The reaction is driven by forming an aromatic byproduct, i.e., 1,2,4-triazole, in which N'-methylpicolinohydrazonamide (MPHA) is employed to form a prearomatic intermediate and halogen atom-transfer (XAT) reagents are used to quench the alkyl radical intermediate. The reaction is efficient in yielding primary and secondary alkyl halides from a wide range of methyl ketones with broad FG tolerance. It also works for complex natural-product-derived and fluoro-containing substrates. In addition, one-pot conversions of methyl ketones to various other FGs and annulations with alkenes and alkynes through deacylative halogenation are realized. Moreover, an unusual iterative homologation of alkyl iodides is also demonstrated. Finally, mechanistic studies reveal an intriguing double XAT process for the deacylative iodination reaction, which could have implications beyond this work.
Collapse
Affiliation(s)
- Zining Zhang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Qi Zhu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Daniel Pyle
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Xukai Zhou
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
37
|
Gan Q, Liu H, Jiang Z, Xia J, Gao Z, Guo Y, Wen H. Aerobic oxidative C-H phosphorylation of quinoxalines under catalyst-free conditions. Chem Commun (Camb) 2023; 59:11089-11092. [PMID: 37642316 DOI: 10.1039/d3cc02848h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
We herein report a direct and efficient protocol for phosphorylation of quinoxalines, which employs aerobic oxygen as the green oxidant under catalyst-free conditions. This methodology represents one of the most environmentally friendly and easily handled protocols, providing a series of phosphorylated quinoxalines in good to excellent yields. Control experiments clearly indicated that the reaction followed a dearomatization-rearomatization strategy.
Collapse
Affiliation(s)
- Qiaoyu Gan
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology, Beijng 102488, P. R. China.
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China.
| | - Haibo Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China.
| | - Zeqi Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China.
| | - Junmei Xia
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China.
| | - Zhenhua Gao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China.
| | - Yongbiao Guo
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China.
| | - Hongliang Wen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology, Beijng 102488, P. R. China.
| |
Collapse
|
38
|
Xu L, Shi H. Ruthenium-Catalyzed Activation of Nonpolar C-C Bonds via π-Coordination-Enabled Aromatization. Angew Chem Int Ed Engl 2023; 62:e202307285. [PMID: 37379224 DOI: 10.1002/anie.202307285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Activation of C-C bonds allows editing of molecular skeletons, but methods for selective activation of nonpolar C-C bonds in the absence of a chelation effect or a driving force derived from opening of a strained ring are scarce. Herein, we report a method for ruthenium-catalyzed activation of nonpolar C-C bonds of pro-aromatic compounds by means of π-coordination-enabled aromatization. This method was effective for cleavage of C-C(alkyl) and C-C(aryl) bonds and for ring-opening of spirocyclic compounds, providing an array of benzene-ring-containing products. The isolation of a methyl ruthenium complex intermediate supports a mechanism involving ruthenium-mediated C-C bond cleavage.
Collapse
Affiliation(s)
- Lun Xu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
39
|
Bag S, Ojha S, Venugopalan S, Sahoo B. Photocatalytic Alkylation/Arylative Cyclization of N-Acrylamides of N-Heteroarenes and Arylamines with Dihydroquinazolinones from Unactivated Ketones. J Org Chem 2023; 88:12121-12130. [PMID: 37515554 DOI: 10.1021/acs.joc.3c01149] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
We describe a visible-light photoredox-catalyzed alkylation/arylative cyclization of N-acrylamides─from 2-arylindoles, 2-arylbenzimidazoles, or N-substituted anilines─with ketone-derived dihydroquinazolinones, accessing indolo- and benzimidazolo[2,1-a]isoquinolines or 2-oxindoles. The consecutive incorporation of alkyl- and aryl-carbogenic motifs across a C=C bond via formal cleavage of ketone α-C-C and arene C-H bonds leads to the formation of five- and six-membered rings, with an all-carbon quaternary stereocenter. This dicarbofunctionalization elaborates aromatization-driven radical C-C functionalization of unactivated aliphatic ketones to construct diverse cyclic structures with functionality tolerance.
Collapse
Affiliation(s)
- Sandip Bag
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram - 695551, Kerala, India
| | - Shubham Ojha
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram - 695551, Kerala, India
| | - Sreelakshmi Venugopalan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram - 695551, Kerala, India
| | - Basudev Sahoo
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram - 695551, Kerala, India
| |
Collapse
|
40
|
Schiller C, Sieh D, Lindenmaier N, Stephan M, Junker N, Reijerse E, Granovsky AA, Burger P. Cleavage of an Aromatic C-C Bond in Ferrocene by Insertion of an Iridium Nitrido Nitrogen Atom. J Am Chem Soc 2023; 145:11392-11401. [PMID: 37172080 DOI: 10.1021/jacs.3c02781] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The intermolecular cleavage of C-C bonds is a rare event. Herein, we report on a late transition-metal terminal nitrido complex, which upon oxidation undergoes insertion of the nitrido nitrogen atom into the aromatic C-C bond of ferrocene. This reaction path was confirmed through 15N and deuterium isotope labeling experiments of the nitrido complex and ferrocenium, respectively. Cyclic voltammetry and UV/vis spectroscopy monitoring of the reaction revealed that oxidation is the initial step, yielding the tentative radical cationic nitrido complex, which is experimentally supported by extended X and Q-band electron paramagnetic resonance (EPR) and ENDOR, UV/vis, vT 1H NMR, and vibrational spectroscopic data. Density functional theory (DFT) and multireference calculations of this highly reactive intermediate revealed an S = 1/2 ground state. The high reactivity can be traced to the increased electrophilicity in the oxidized complex. Based on high-level PNO-UCCSD(T) calculations and UV/vis kinetic measurements, it is proposed that the reaction proceeds by initial electrophilic exo attack of the nitrido nitrogen atom at the cyclopentadienyl ring and consecutive ring expansion to a pyridine ring.
Collapse
Affiliation(s)
- Carl Schiller
- Institut für Angewandte und Anorganische Chemie, Fachbereich Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Daniel Sieh
- Institut für Angewandte und Anorganische Chemie, Fachbereich Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Nils Lindenmaier
- Institut für Angewandte und Anorganische Chemie, Fachbereich Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Michel Stephan
- Institut für Angewandte und Anorganische Chemie, Fachbereich Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Natascha Junker
- Institut für Angewandte und Anorganische Chemie, Fachbereich Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Edward Reijerse
- Max-Planck-Institut für chemische Energiekonversion, EPR Research Group, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Alexander A Granovsky
- Institut für Angewandte und Anorganische Chemie, Fachbereich Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Peter Burger
- Institut für Angewandte und Anorganische Chemie, Fachbereich Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
41
|
Zhao Q, Yu L, Zhang YD, Guo YQ, Chen M, Ren ZH, Guan ZH. C(alkyl)-C(vinyl) bond cleavage enabled by Retro-Pallada-Diels-Alder reaction. Nat Commun 2023; 14:2572. [PMID: 37142571 PMCID: PMC10160084 DOI: 10.1038/s41467-023-38067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
Activation and cleavage of carbon-carbon (C-C) bonds is a fundamental transformation in organic chemistry while inert C-C bonds cleavage remains a long-standing challenge. Retro-Diels-Alder (retro-DA) reaction is a well-known and important tool for C-C bonds cleavage but less been explored in methodology by contrast to other strategies. Herein, we report a selective C(alkyl)-C(vinyl) bond cleavage strategy realized through the transient directing group mediated retro-Diels-Alder reaction of a six-membered palladacycle, which is obtained from an in situ generated hydrazone and palladium hydride species. This unprecedented strategy exhibits good tolerances and thus offers new opportunities for late-stage modifications of complex molecules. DFT calculations revealed that an intriguing retro-Pd(IV)-Diels-Alder process is possibly involved in the catalytic cycle, thus bridging both Retro-Diels-Alder reaction and C-C bond cleavage. We anticipate that this strategy should prove instrumental for potential applications to achieve the modification of functional organic skeletons in synthetic chemistry and other fields involving in molecular editing.
Collapse
Affiliation(s)
- Qingyang Zhao
- Key Laboratory of Synthetic and Nature Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, P.R. China
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
| | - Le Yu
- Key Laboratory of Synthetic and Nature Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, P.R. China
| | - Yao-Du Zhang
- Key Laboratory of Synthetic and Nature Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, P.R. China
| | - Yong-Qiang Guo
- Key Laboratory of Synthetic and Nature Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, P.R. China
| | - Ming Chen
- Key Laboratory of Synthetic and Nature Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, P.R. China
| | - Zhi-Hui Ren
- Key Laboratory of Synthetic and Nature Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, P.R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Nature Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, P.R. China.
| |
Collapse
|
42
|
Zhou X, Pyle D, Zhang Z, Dong G. Deacylative Thiolation by Redox-Neutral Aromatization-Driven C-C Fragmentation of Ketones. Angew Chem Int Ed Engl 2023; 62:e202213691. [PMID: 36800315 PMCID: PMC10240504 DOI: 10.1002/anie.202213691] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/05/2022] [Accepted: 02/17/2023] [Indexed: 02/18/2023]
Abstract
Herein we report the development of deacylative thiolation of diverse methyl ketones. The reaction is redox-neutral, and heavy-metal-free, which provides a new way to introduce thioether groups site-specifically to unactivated aliphatic positions. It also features excellent functional group tolerance and broad substrate scope, thus allowing late-stage derivatization. The process benefits from efficient condensation between the activation reagent and ketone substrates, which triggers aromatization-driven C-C fragmentation and rapid radical coupling with thiosulfonates. Experimental and computational mechanistic studies suggest the involvement of a radical chain pathway.
Collapse
Affiliation(s)
- Xukai Zhou
- Department of Chemistry, The University of Chicago, 5735 S Ellis Ave, Chicago, IL, 60637, USA
| | - Daniel Pyle
- Department of Chemistry, The University of Chicago, 5735 S Ellis Ave, Chicago, IL, 60637, USA
| | - Zining Zhang
- Department of Chemistry, The University of Chicago, 5735 S Ellis Ave, Chicago, IL, 60637, USA
| | - Guangbin Dong
- Department of Chemistry, The University of Chicago, 5735 S Ellis Ave, Chicago, IL, 60637, USA
| |
Collapse
|
43
|
Pati BV, Puthalath NN, Banjare SK, Nanda T, Ravikumar PC. Transition metal-catalyzed C-H/C-C activation and coupling with 1,3-diyne. Org Biomol Chem 2023; 21:2842-2869. [PMID: 36917476 DOI: 10.1039/d3ob00238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
This review provides a broad overview of the recent developments in the field of transition metal-catalyzed C-H/C-C bond activation and coupling with 1,3-diyne for assembling alkynylated heterocycles, bis-heterocycles, and 1,3-enynes. Transition metal-catalyzed inert bond (C-H/C-C) activation has been the focus of attention among synthetic chemists in recent times. Enormous developments have taken place in C-H/C-C bond activation chemistry in the last two decades. In recent years the use of 2π-unsaturated units as coupling partners for the synthesis of heterocycles through C-H/C-C bond activation and annulation sequence has received immense attention. Among the unsaturated units employed for assembling heterocycles, the use of 1,3-diynes has garnered significant attention due to its ability to render bis-heterocycles in a straightforward manner. The C-H bond activation and coupling with 1,3-diyne has been very much explored in recent years. However, the development of strategies for the use of 1,3-diynes in the analogous C-C bond activation chemistry is less explored. Earlier methods employed to assemble bis-heterocycle used heterocycles that were preformed and pre-functionalized via transition metal-catalyzed coupling reactions. The expensive pre-functionalized halo-heterocycles and sensitive and expensive heterocyclic metal reagents limit its broad application. However, the transition metal-catalyzed C-H activation obviates the need for expensive heterocyclic metal reagents and pre-functionalized halo-heterocycles. The C-H bond activation strategy makes use of C-H bonds as functional groups for effecting the transformation. This renders the overall synthetic sequence both step and cost economic. Hence, this strategy of C-H activation and subsequent reaction with 1,3-diyne could be used for the larger-scale synthesis of chemicals in the pharmaceutical industry. Despite these advances, there is still the possibility of exploration of earth-abundant and cost-effective first-row transition metals (Ni, Cu, Mn. Fe, etc.) for the synthesis of bis-heterocycles. Moreover, the Cp*-ligand-free, simple metal-salt-mediated synthesis of bis-heterocycles is also less explored. Thus, more exploration of reaction conditions for the Cp*-free synthesis of bis-heterocycles is called for. We hope this review will inspire scientists to investigate these unexplored domains.
Collapse
Affiliation(s)
- Bedadyuti Vedvyas Pati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Nitha Nahan Puthalath
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Tanmayee Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Ponneri C Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
44
|
Harnedy J, Maashi HA, El Gehani AAMA, Burns M, Morrill LC. Deconstructive Functionalization of Unstrained Cycloalkanols via Electrochemically Generated Aromatic Radical Cations. Org Lett 2023; 25:1486-1490. [PMID: 36847269 PMCID: PMC10012273 DOI: 10.1021/acs.orglett.3c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Herein we report an electrochemical approach for the deconstructive functionalization of cycloalkanols, where various alcohols, carboxylic acids, and N-heterocycles are employed as nucleophiles. The method has been demonstrated across a broad range of cycloalkanol substrates, including various ring sizes and substituents, to access useful remotely functionalized ketone products (36 examples). The method was demonstrated on a gram scale via single-pass continuous flow, which exhibited increased productivity in relation to the batch process.
Collapse
Affiliation(s)
- James Harnedy
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Hussain A Maashi
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Albara A M A El Gehani
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Matthew Burns
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Louis C Morrill
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| |
Collapse
|
45
|
Mondal PP, Das S, Venugopalan S, Krishnan M, Sahoo B. Visible-Light-Photocatalyzed Dicarbofunctionalization of Conjugated Alkenes with Ketone-Based Dihydroquinazolinones. Org Lett 2023; 25:1441-1446. [PMID: 36820645 DOI: 10.1021/acs.orglett.3c00175] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
A visible-light-photocatalyzed 1,2-arylalkylation of N-(arylsulfonyl)acrylamides with ketone-based dihydroquinazolinones is described. The formal C-C bond cleavage of aliphatic ketones is unified with tandem radical alkylation/1,4-aryl migration/desulfonylation to forge two different types of vicinal C-C bonds and construct an all-carbon quaternary α-stereocenter, thus enhancing the carbogenic complexity and tolerating diverse functionalities. Additional to telescopic synthesis and product diversification, this method features a radical dicarbofunctionalization of conjugated N-(arylsulfonyl)acrylamides with a nucleophilic alkyl radical precursor (dihydroquinazolinone) utilizing oxygen as a green oxidant at ambient temperature.
Collapse
Affiliation(s)
- Pinku Prasad Mondal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551 Kerala, India
| | - Subham Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551 Kerala, India
| | - Sreelakshmi Venugopalan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551 Kerala, India
| | - Malavika Krishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551 Kerala, India
| | - Basudev Sahoo
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551 Kerala, India
| |
Collapse
|
46
|
Lv XY, Abrams R, Martin R. Copper-Catalyzed C(sp 3 )-Amination of Ketone-Derived Dihydroquinazolinones by Aromatization-Driven C-C Bond Scission. Angew Chem Int Ed Engl 2023; 62:e202217386. [PMID: 36576703 DOI: 10.1002/anie.202217386] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022]
Abstract
Herein, we describe the development of a copper-catalyzed C(sp3 )-amination of proaromatic dihydroquinazolinones derived from ketones. The reaction is enabled by the intermediacy of open-shell species arising from homolytic C-C bond-cleavage driven by aromatization. The protocol is characterized by its operational simplicity and generality, including chemical diversification of advanced intermediates.
Collapse
Affiliation(s)
- Xin-Yang Lv
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Roman Abrams
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
47
|
Dherange BD, Yuan M, Kelly CB, Reiher CA, Grosanu C, Berger KJ, Gutierrez O, Levin MD. Direct Deaminative Functionalization. J Am Chem Soc 2023; 145:17-24. [PMID: 36548788 PMCID: PMC10245626 DOI: 10.1021/jacs.2c11453] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Selective functional group interconversions in complex molecular settings underpin many of the challenges facing modern organic synthesis. Currently, a privileged subset of functional groups dominates this landscape, while others, despite their abundance, are sorely underdeveloped. Amines epitomize this dichotomy; they are abundant but otherwise intransigent toward direct interconversion. Here, we report an approach that enables the direct conversion of amines to bromides, chlorides, iodides, phosphates, thioethers, and alcohols, the heart of which is a deaminative carbon-centered radical formation process using an anomeric amide reagent. Experimental and computational mechanistic studies demonstrate that successful deaminative functionalization relies not only on outcompeting the H-atom transfer to the incipient radical but also on the generation of polarity-matched, productive chain-carrying radicals that continue to react efficiently. The overall implications of this technology for interconverting amine libraries were evaluated via high-throughput parallel synthesis and applied in the development of one-pot diversification protocols.
Collapse
Affiliation(s)
- Balu D Dherange
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Mingbin Yuan
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Christopher B Kelly
- Discovery Process Research, Janssen Research & Development LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Christopher A Reiher
- Parallel Medicinal Chemistry, Janssen Research & Development LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Cristina Grosanu
- High Throughput Purification, Janssen Research & Development LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Kathleen J Berger
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mark D Levin
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
48
|
Wang S, Wang Y, Hu K, Wang K, Zhou X. Controllable carbonyl-assisted C(sp 3)–C(sp 3) bond reduction and reorganization. Org Chem Front 2023. [DOI: 10.1039/d2qo01981g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Unprecedentedly preferential reduction of unstrained C(sp3)–C(sp3) bond over ketone, hydrogenative [2+2+2]-cycloreversion of 2,4-diacylcyclohexanols, and cyclizative degradation of poly(vinylketone) have been achieved by organolanthanide catalysis.
Collapse
Affiliation(s)
- Shengke Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Yitu Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Kun Hu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Kai Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Xigeng Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai 200032, China
| |
Collapse
|
49
|
Cao L, Hu F, Dong J, Zhang XM, Li SS. Aromatization-driven cascade [1,5]-hydride transfer/cyclization for synthesis of spirochromanes. Org Chem Front 2023. [DOI: 10.1039/d3qo00035d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
An aromatization-driven hydride transfer-involved α-C(sp3)–H bond functionalization of the oxygen atom was developed. Easily prepared p-quinone methides were applied to initiate [1,5]-hydride transfer/cyclization for generating spirochromanes.
Collapse
|
50
|
Gao W, Zhang D, Zhang X, Cai X, Xie P, Loh TP. One-Pot and Unsymmetrical Bis-Allylation of Malononitrile with Conjugated Dienes and Allylic Alcohols. Org Lett 2022; 24:9355-9360. [PMID: 36519800 DOI: 10.1021/acs.orglett.2c03405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A Pd/Ca catalytic system to promote the unsymmetrical bis-allylation of malononitrile was developed by selecting conjugated dienes and allylic alcohols as allylic reagents. This catalytic system suppressed the competitive symmetrical bis-allylation process and guaranteed the desired unsymmetrical bis-allylation with high chemoselectivity. A wide range of conjugated dienes and allylic alcohols were tolerated well in this transformation, and diverse 1,6-dienes were obtained with high efficiency.
Collapse
Affiliation(s)
- Wenxiu Gao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Dong Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xiaoyu Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xinying Cai
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Teck-Peng Loh
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.,College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|