1
|
Berghold M, Orsucci D, Guatieri F, Alfaro S, Auzins M, Bergmann B, Burian P, Brusa RS, Camper A, Caravita R, Castelli F, Cerchiari G, Ciuryło RJ, Chehaimi A, Consolati G, Doser M, Eliaszuk K, Ferguson RC, Germann M, Giszczak A, Glöggler L, Graczykowski Ł, Grosbart M, Gusakova N, Gustafsson F, Haider S, Huck S, Hugenschmidt C, Janik MA, Januszek TH, Kasprowicz G, Kempny K, Khatri G, Kłosowski Ł, Kornakov G, Krumins V, Lappo L, Linek A, Mariazzi S, Moskal P, Nowicka D, Pandey P, PĘcak D, Penasa L, Petracek V, Piwiński M, Pospisil S, Povolo L, Prelz F, Rangwala S, Rauschendorfer T, Rawat B, Rienäcker B, Rodin V, Røhne O, Sandaker H, Sharma S, Smolyanskiy P, Sowiński T, Tefelski D, Vafeiadis T, Volponi M, Welsch CP, Zawada M, Zielinski J, Zurlo N. Real-time antiproton annihilation vertexing with submicrometer resolution. SCIENCE ADVANCES 2025; 11:eads1176. [PMID: 40173232 PMCID: PMC11963966 DOI: 10.1126/sciadv.ads1176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
Primary goal of the AEḡIS experiment is to precisely measure the free fall of antihydrogen within Earth's gravitational field. To this end, cold (≈50 K) antihydrogen will traverse a two-grid moiré deflectometer before annihilating onto a position-sensitive detector, which shall determine the vertical position of the annihilation vertex relative to the grids with micrometric accuracy. Here, we introduce a vertexing detector based on a modified mobile camera sensor and experimentally demonstrate that it can measure the position of antiproton annihilations within [Formula: see text] μm, a 35-fold improvement over the previous state of the art for real-time antiproton vertexing. These methods are directly applicable to antihydrogen. Moreover, the sensitivity to light of the sensor enables in situ calibration of the moiré deflectometer, substantially reducing systematic errors. This sensor emerges as a breakthrough technology toward the AEḡIS scientific goals and will constitute the basis for the development of a large-area detector for conducting antihydrogen gravity measurements.
Collapse
Affiliation(s)
- Michael Berghold
- Research Neutron Source Heinz Maier-Leibnitz (FRM II), Technical University of Munich, Lichtenbergstr. 1 Garching bei München, 85748 Bayern Germany
| | - Davide Orsucci
- Institute of Communications and Navigation, German Aerospace Centre (DLR), Münchener Str. 20, 82234 Weß ling, Germany
| | - Francesco Guatieri
- Research Neutron Source Heinz Maier-Leibnitz (FRM II), Technical University of Munich, Lichtenbergstr. 1 Garching bei München, 85748 Bayern Germany
- Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Trento, Italy
- TIFPA/INFN Trento, via Sommarive 14, 38123 Povo, Trento, Italy
| | - Sara Alfaro
- Department of Physics, University of Siegen, Walter-Flex-Straße 3, 57072 Siegen, Germany
| | - Marcis Auzins
- Department of Physics, University of Latvia, Raina boulevard 19, LV-1586 Riga, Latvia
| | - Benedikt Bergmann
- Institute of Experimental and Applied Physics, Czech Technical University in Prague, Husova 240/5, 110 00, Prague 1, Czech Republic
- Faculty of Electrical Engineering, University of West Bohemia, Pilsen, Univezitni 8, 301 00 Pilsen, Czech Republic
| | - Petr Burian
- Institute of Experimental and Applied Physics, Czech Technical University in Prague, Husova 240/5, 110 00, Prague 1, Czech Republic
| | - Roberto Sennen Brusa
- Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Trento, Italy
- TIFPA/INFN Trento, via Sommarive 14, 38123 Povo, Trento, Italy
| | - Antoine Camper
- Department of Physics, University of Oslo, Sem Sælandsvei 24, 0371 Oslo, Norway
| | - Ruggero Caravita
- Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Trento, Italy
- TIFPA/INFN Trento, via Sommarive 14, 38123 Povo, Trento, Italy
| | - Fabrizio Castelli
- INFN Milano, via Celoria 16, 20133 Milano, Italy
- Department of Physics “Aldo Pontremoli,” University of Milano, via Celoria 16, 20133 Milano, Italy
| | - Giovanni Cerchiari
- Institut für Experimentalphysik, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Roman Jerzy Ciuryło
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Ahmad Chehaimi
- Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Trento, Italy
- TIFPA/INFN Trento, via Sommarive 14, 38123 Povo, Trento, Italy
| | - Giovanni Consolati
- INFN Milano, via Celoria 16, 20133 Milano, Italy
- Department of Aerospace Science and Technology, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy
| | - Michael Doser
- Physics Department, CERN, 1211 Geneva 23, Switzerland
| | - Kamil Eliaszuk
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
| | - Riley Craig Ferguson
- Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Trento, Italy
- TIFPA/INFN Trento, via Sommarive 14, 38123 Povo, Trento, Italy
| | | | - Anna Giszczak
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
| | - Lisa Glöggler
- Physics Department, CERN, 1211 Geneva 23, Switzerland
| | - Łukasz Graczykowski
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
| | | | - Natali Gusakova
- Physics Department, CERN, 1211 Geneva 23, Switzerland
- Department of Physics, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Stefan Haider
- Physics Department, CERN, 1211 Geneva 23, Switzerland
| | - Saiva Huck
- Physics Department, CERN, 1211 Geneva 23, Switzerland
- Institute for Experimental Physics, Universität Hamburg, 22607 Hamburg, Germany
| | - Christoph Hugenschmidt
- Research Neutron Source Heinz Maier-Leibnitz (FRM II), Technical University of Munich, Lichtenbergstr. 1 Garching bei München, 85748 Bayern Germany
| | - Malgorzata Anna Janik
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
| | | | - Grzegorz Kasprowicz
- Faculty of Electronics and Information Technology, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
| | - Kamila Kempny
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
| | | | - Łukasz Kłosowski
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Georgy Kornakov
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
| | - Valts Krumins
- Department of Physics, University of Latvia, Raina boulevard 19, LV-1586 Riga, Latvia
- Physics Department, CERN, 1211 Geneva 23, Switzerland
| | - Lidia Lappo
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
| | - Adam Linek
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Sebastiano Mariazzi
- Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Trento, Italy
- TIFPA/INFN Trento, via Sommarive 14, 38123 Povo, Trento, Italy
| | - Pawel Moskal
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Dorota Nowicka
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
| | - Piyush Pandey
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Daniel PĘcak
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Luca Penasa
- Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Trento, Italy
- TIFPA/INFN Trento, via Sommarive 14, 38123 Povo, Trento, Italy
| | - Vojtech Petracek
- Czech Technical University, Prague, Brehová 7, 11519 Prague 1, Czech Republic
| | - Mariusz Piwiński
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Stanislav Pospisil
- Institute of Experimental and Applied Physics, Czech Technical University in Prague, Husova 240/5, 110 00, Prague 1, Czech Republic
| | - Luca Povolo
- Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Trento, Italy
- TIFPA/INFN Trento, via Sommarive 14, 38123 Povo, Trento, Italy
| | | | - Sadiqali Rangwala
- Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560080, India
| | - Tassilo Rauschendorfer
- Department of Aerospace Science and Technology, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy
- Physics Department, CERN, 1211 Geneva 23, Switzerland
- Felix Bloch Institute for Solid State Physics, Universität Leipzig, 04103 Leipzig, Germany
| | - Bharat Rawat
- Department of Physics, University of Liverpool, Liverpool L69 3BX, UK
- The Cockcroft Institute, Daresbury, Warrington WA4 4AD, UK
| | | | - Volodymyr Rodin
- Department of Physics, University of Liverpool, Liverpool L69 3BX, UK
| | - Ole Røhne
- Department of Physics, University of Oslo, Sem Sælandsvei 24, 0371 Oslo, Norway
| | - Heidi Sandaker
- Department of Physics, University of Oslo, Sem Sælandsvei 24, 0371 Oslo, Norway
| | - Sushil Sharma
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Petr Smolyanskiy
- Institute of Experimental and Applied Physics, Czech Technical University in Prague, Husova 240/5, 110 00, Prague 1, Czech Republic
| | - Tomasz Sowiński
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Dariusz Tefelski
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
| | | | - Marco Volponi
- Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Trento, Italy
- TIFPA/INFN Trento, via Sommarive 14, 38123 Povo, Trento, Italy
- Department of Aerospace Science and Technology, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy
- Physics Department, CERN, 1211 Geneva 23, Switzerland
| | - Carsten Peter Welsch
- Department of Physics, University of Liverpool, Liverpool L69 3BX, UK
- The Cockcroft Institute, Daresbury, Warrington WA4 4AD, UK
| | - Michal Zawada
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Jakub Zielinski
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
| | - Nicola Zurlo
- INFN Pavia, via Bassi 6, 27100 Pavia, Italy
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, via Branze 43, 25123 Brescia, Italy
| | | |
Collapse
|
2
|
von Boehn M, Schaper J, Coenders JA, Brombacher J, Meiners T, Niemann M, Cornejo JM, Ulmer S, Ospelkaus C. Speeding up adiabatic ion transport in macroscopic multi-Penning-trap stacks for high-precision experiments. COMMUNICATIONS PHYSICS 2025; 8:107. [PMID: 40125539 PMCID: PMC11922740 DOI: 10.1038/s42005-025-02031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
Multi-Penning traps are an excellent tool for high-precision tests of fundamental physics in a variety of applications, ranging from atomic mass measurements to symmetry tests. In such experiments, single ions are transferred between distinct trap regions as part of the experimental sequence, resulting in measurement dead time and heating of the ion motions. Here, we report a procedure to reduce the duration of adiabatic single-ion transport in macroscopic multi-Penning-trap stacks by using ion-transport waveforms and electronic filter predistortion. For this purpose, transport adiabaticity of a single laser-cooled 9Be+is analyzed via Doppler-broadened sideband spectra obtained by stimulated Raman spectroscopy, yielding an average heating per transport of 2.6 ± 4.0 quanta for transport times between 7 and 15 ms. Applying these techniques to current multi-Penning trap experiments could reduce ion transport times by up to three orders of magnitude. Furthermore, these results are a key requisite for implementing quantum logic spectroscopy in Penning trap experiments.
Collapse
Affiliation(s)
- Moritz von Boehn
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany
| | - Jan Schaper
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany
| | - Julia A. Coenders
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany
| | | | - Teresa Meiners
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany
| | - Malte Niemann
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany
| | - Juan M. Cornejo
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany
| | - Stefan Ulmer
- RIKEN, Ulmer Fundamental Symmetries Laboratory, Wako, Japan
- Institut für Experimentalphysik, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Christian Ospelkaus
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| |
Collapse
|
3
|
Blumer P, Ohayon B, Crivelli P. Production and study of antideuterium with the GBAR beamline. THE EUROPEAN PHYSICAL JOURNAL. D, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 2025; 79:17. [PMID: 40046814 PMCID: PMC11876288 DOI: 10.1140/epjd/s10053-025-00963-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/21/2025] [Indexed: 04/26/2025]
Abstract
Abstract The potential of circulating antideuterons ( d ¯ ) in the AD/ELENA facility at CERN is under active investigation. Approximately 100 d ¯ per bunch could be delivered as a 100 keV beam based on measured cross-sections. These d ¯ could be further decelerated to 12 keV using the GBAR scheme, enabling the synthesis of antideuterium ( D ¯ ) via charge exchange with positronium, a technique successfully demonstrated with 6 keV antiprotons for antihydrogen production. The AD/ELENA facility is currently studying the possibility of increasing the d ¯ rate using an optimized new target geometry. Assuming this is feasible, we propose further enhancing the anti-atom production by using laser-excited positronium in the 2P state within a cavity, which is expected to increase theD ¯ ( 2 S ) production cross-section by almost an order of magnitude for d ¯ with 2 keV energy. We present the projected precision for measuring the antideuterium Lamb shift and extracting the antideuteron charge radius, as a function of the beam flux. Graphical abstract D ¯ production rate assuming 1e9 ortho- Ps from a flat target interact with d ¯ with 12 k (blue) or inside a cavity (orange). Within the cavity, Ps can be excited to the 2P state, further increasing the charge exchange cross-section for d ¯ at 2 k (green). Cross-sections are calculated using the Convergent Close Coupling (CCC, solid) method [36] and the Coulomb-Born approximation (CBA, dashed) [37].
Collapse
Affiliation(s)
- Philipp Blumer
- Institute for Particle Physics and Astrophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Ben Ohayon
- Physics Department, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Paolo Crivelli
- Institute for Particle Physics and Astrophysics, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
4
|
Latacz BM, Fleck M, Jäger JI, Umbrazunas G, Arndt BP, Erlewein SR, Wursten EJ, Devlin JA, Micke P, Abbass F, Schweitzer D, Wiesinger M, Will C, Yildiz H, Blaum K, Matsuda Y, Mooser A, Ospelkaus C, Smorra C, Soter A, Quint W, Walz J, Yamazaki Y, Ulmer S. Orders of Magnitude Improved Cyclotron-Mode Cooling for Nondestructive Spin Quantum Transition Spectroscopy with Single Trapped Antiprotons. PHYSICAL REVIEW LETTERS 2024; 133:053201. [PMID: 39159098 DOI: 10.1103/physrevlett.133.053201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 08/21/2024]
Abstract
We demonstrate efficient subthermal cooling of the modified cyclotron mode of a single trapped antiproton and reach particle temperatures T_{+}=E_{+}/k_{B} below 200 mK in preparation times shorter than 500 s. This corresponds to the fastest resistive single-particle cyclotron cooling to subthermal temperatures ever demonstrated. By cooling trapped particles to such low energies, we demonstrate the detection of antiproton spin transitions with an error rate <0.000 023, more than 3 orders of magnitude better than in previous best experiments. This method has enormous impact on multi-Penning-trap experiments that measure magnetic moments with single nuclear spins for tests of matter and antimatter symmetry, high-precision mass spectrometry, and measurements of electron g factors bound to highly charged ions that test quantum electrodynamics and establish standards for magnetometry.
Collapse
Affiliation(s)
- B M Latacz
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
| | - M Fleck
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-0041, Japan
| | - J I Jäger
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117, Heidelberg, Germany
| | | | - B P Arndt
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117, Heidelberg, Germany
- GSI-Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt, Germany
| | - S R Erlewein
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117, Heidelberg, Germany
| | - E J Wursten
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - J A Devlin
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
| | - P Micke
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | - C Smorra
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
| | | | | | | | - Y Yamazaki
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - S Ulmer
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Heinrich Heine University, Düsseldorf, Univeristätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Karthein J, Udrescu SM, Moroch SB, Belosevic I, Blaum K, Borschevsky A, Chamorro Y, DeMille D, Dilling J, Garcia Ruiz RF, Hutzler NR, Pašteka LF, Ringle R. Electroweak Nuclear Properties from Single Molecular Ions in a Penning Trap. PHYSICAL REVIEW LETTERS 2024; 133:033003. [PMID: 39094143 DOI: 10.1103/physrevlett.133.033003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/31/2024] [Accepted: 04/18/2024] [Indexed: 08/04/2024]
Abstract
We present a novel technique to probe electroweak nuclear properties by measuring parity violation (PV) in single molecular ions in a Penning trap. The trap's strong magnetic field Zeeman shifts opposite-parity rotational and hyperfine molecular states into near degeneracy. The weak interaction-induced mixing between these degenerate states can be larger than in atoms by more than 12 orders of magnitude, thereby vastly amplifying PV effects. The single molecule sensitivity would be suitable for applications to nuclei across the nuclear chart, including rare and unstable nuclei.
Collapse
|
6
|
Will C, Wiesinger M, Micke P, Yildiz H, Driscoll T, Kommu S, Abbass F, Arndt BP, Bauer BB, Erlewein S, Fleck M, Jäger JI, Latacz BM, Mooser A, Schweitzer D, Umbrazunas G, Wursten E, Blaum K, Devlin JA, Ospelkaus C, Quint W, Soter A, Walz J, Smorra C, Ulmer S. Image-Current Mediated Sympathetic Laser Cooling of a Single Proton in a Penning Trap Down to 170 mK Axial Temperature. PHYSICAL REVIEW LETTERS 2024; 133:023002. [PMID: 39073978 DOI: 10.1103/physrevlett.133.023002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/28/2024] [Indexed: 07/31/2024]
Abstract
We demonstrate a new temperature record for image-current mediated sympathetic cooling of a single proton in a cryogenic Penning trap by laser-cooled ^{9}Be^{+}. An axial mode temperature of 170 mK is reached, which is a 15-fold improvement compared to the previous best value. Our cooling technique is applicable to any charged particle, so that the measurements presented here constitute a milestone toward the next generation of high-precision Penning-trap measurements with exotic particles.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - B P Arndt
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
| | | | - S Erlewein
- CERN, 1211 Geneva, Switzerland
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - M Fleck
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - J I Jäger
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
- CERN, 1211 Geneva, Switzerland
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - B M Latacz
- CERN, 1211 Geneva, Switzerland
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | - E Wursten
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Moskal P, Czerwiński E, Raj J, Bass SD, Beyene EY, Chug N, Coussat A, Curceanu C, Dadgar M, Das M, Dulski K, Gajos A, Gorgol M, Hiesmayr BC, Jasińska B, Kacprzak K, Kaplanoglu T, Kapłon Ł, Klimaszewski K, Konieczka P, Korcyl G, Kozik T, Krzemień W, Kumar D, Moyo S, Mryka W, Niedźwiecki S, Parzych S, Del Río EP, Raczyński L, Sharma S, Choudhary S, Shopa RY, Silarski M, Skurzok M, Stępień EŁ, Tanty P, Ardebili FT, Ardebili KT, Eliyan KV, Wiślicki W. Discrete symmetries tested at 10 -4 precision using linear polarization of photons from positronium annihilations. Nat Commun 2024; 15:78. [PMID: 38167270 PMCID: PMC10761870 DOI: 10.1038/s41467-023-44340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Discrete symmetries play an important role in particle physics with violation of CP connected to the matter-antimatter imbalance in the Universe. We report the most precise test of P, T and CP invariance in decays of ortho-positronium, performed with methodology involving polarization of photons from these decays. Positronium, the simplest bound state of an electron and positron, is of recent interest with discrepancies reported between measured hyperfine energy structure and theory at the level of 10-4 signaling a need for better understanding of the positronium system at this level. We test discrete symmetries using photon polarizations determined via Compton scattering in the dedicated J-PET tomograph on an event-by-event basis and without the need to control the spin of the positronium with an external magnetic field, in contrast to previous experiments. Our result is consistent with QED expectations at the level of 0.0007 and one standard deviation.
Collapse
Affiliation(s)
- Paweł Moskal
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Eryk Czerwiński
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland.
- Centre for Theranostics, Jagiellonian University, Kraków, Poland.
| | - Juhi Raj
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Steven D Bass
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
- Kitzbühel Centre for Physics, Kitzbühel, Austria
| | - Ermias Y Beyene
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Neha Chug
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Aurélien Coussat
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | | | - Meysam Dadgar
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Manish Das
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Kamil Dulski
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Aleksander Gajos
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Marek Gorgol
- Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | | | - Bożena Jasińska
- Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Krzysztof Kacprzak
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Tevfik Kaplanoglu
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Łukasz Kapłon
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Konrad Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Paweł Konieczka
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Grzegorz Korcyl
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
- Institute of Applied Computer Science, Jagiellonian University, Kraków, Poland
| | - Tomasz Kozik
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Wojciech Krzemień
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Deepak Kumar
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Simbarashe Moyo
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Wiktor Mryka
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Szymon Niedźwiecki
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Szymon Parzych
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Elena Pérez Del Río
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Lech Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Sushil Sharma
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Shivani Choudhary
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Roman Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Michał Silarski
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Magdalena Skurzok
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Ewa Ł Stępień
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Pooja Tanty
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Faranak Tayefi Ardebili
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Keyvan Tayefi Ardebili
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Kavya Valsan Eliyan
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Wojciech Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| |
Collapse
|
8
|
Wiesinger M, Stuhlmann F, Bohman M, Micke P, Will C, Yildiz H, Abbass F, Arndt BP, Devlin JA, Erlewein S, Fleck M, Jäger JI, Latacz BM, Schweitzer D, Umbrazunas G, Wursten E, Blaum K, Matsuda Y, Mooser A, Quint W, Soter A, Walz J, Smorra C, Ulmer S. Trap-integrated fluorescence detection with silicon photomultipliers for sympathetic laser cooling in a cryogenic Penning trap. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:123202. [PMID: 38109470 DOI: 10.1063/5.0170629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/23/2023] [Indexed: 12/20/2023]
Abstract
We present a fluorescence-detection system for laser-cooled 9Be+ ions based on silicon photomultipliers (SiPMs) operated at 4 K and integrated into our cryogenic 1.9 T multi-Penning-trap system. Our approach enables fluorescence detection in a hermetically sealed cryogenic Penning-trap chamber with limited optical access, where state-of-the-art detection using a telescope and photomultipliers at room temperature would be extremely difficult. We characterize the properties of the SiPM in a cryocooler at 4 K, where we measure a dark count rate below 1 s-1 and a detection efficiency of 2.5(3)%. We further discuss the design of our cryogenic fluorescence-detection trap and analyze the performance of our detection system by fluorescence spectroscopy of 9Be+ ion clouds during several runs of our sympathetic laser-cooling experiment.
Collapse
Affiliation(s)
- M Wiesinger
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - F Stuhlmann
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - M Bohman
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - P Micke
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
| | - C Will
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - H Yildiz
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - F Abbass
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - B P Arndt
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - J A Devlin
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - S Erlewein
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - M Fleck
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - J I Jäger
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - B M Latacz
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - D Schweitzer
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - G Umbrazunas
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Eidgenössische Technische Hochschule Zürich, John-von-Neumann-Weg 9, 8093 Zürich, Switzerland
| | - E Wursten
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - K Blaum
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Y Matsuda
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - A Mooser
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - W Quint
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - A Soter
- Eidgenössische Technische Hochschule Zürich, John-von-Neumann-Weg 9, 8093 Zürich, Switzerland
| | - J Walz
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, Staudingerweg 18, 55128 Mainz, Germany
| | - C Smorra
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - S Ulmer
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Smorra C, Abbass F, Schweitzer D, Bohman M, Devine JD, Dutheil Y, Hobl A, Arndt B, Bauer BB, Devlin JA, Erlewein S, Fleck M, Jäger JI, Latacz BM, Micke P, Schiffelholz M, Umbrazunas G, Wiesinger M, Will C, Wursten E, Yildiz H, Blaum K, Matsuda Y, Mooser A, Ospelkaus C, Quint W, Soter A, Walz J, Yamazaki Y, Ulmer S. BASE-STEP: A transportable antiproton reservoir for fundamental interaction studies. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:113201. [PMID: 37972020 DOI: 10.1063/5.0155492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023]
Abstract
Currently, the world's only source of low-energy antiprotons is the AD/ELENA facility located at CERN. To date, all precision measurements on single antiprotons have been conducted at this facility and provide stringent tests of fundamental interactions and their symmetries. However, magnetic field fluctuations from the facility operation limit the precision of upcoming measurements. To overcome this limitation, we have designed the transportable antiproton trap system BASE-STEP to relocate antiprotons to laboratories with a calm magnetic environment. We anticipate that the transportable antiproton trap will facilitate enhanced tests of charge, parity, and time-reversal invariance with antiprotons and provide new experimental possibilities of using transported antiprotons and other accelerator-produced exotic ions. We present here the technical design of the transportable trap system. This includes the transportable superconducting magnet, the cryogenic inlay consisting of the trap stack and detection systems, and the differential pumping section to suppress the residual gas flow into the cryogenic trap chamber.
Collapse
Affiliation(s)
- C Smorra
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
- RIKEN, Fundamental Symmetries Laboratory, Wako, Japan
| | - F Abbass
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
| | - D Schweitzer
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
| | - M Bohman
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | | | | | - A Hobl
- Bilfinger Noell GmbH, Würzburg, Germany
| | - B Arndt
- RIKEN, Fundamental Symmetries Laboratory, Wako, Japan
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - B B Bauer
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
- RIKEN, Fundamental Symmetries Laboratory, Wako, Japan
| | - J A Devlin
- RIKEN, Fundamental Symmetries Laboratory, Wako, Japan
- CERN, Geneva, Switzerland
| | - S Erlewein
- RIKEN, Fundamental Symmetries Laboratory, Wako, Japan
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
- CERN, Geneva, Switzerland
| | - M Fleck
- RIKEN, Fundamental Symmetries Laboratory, Wako, Japan
| | - J I Jäger
- RIKEN, Fundamental Symmetries Laboratory, Wako, Japan
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
- CERN, Geneva, Switzerland
| | - B M Latacz
- RIKEN, Fundamental Symmetries Laboratory, Wako, Japan
- CERN, Geneva, Switzerland
| | - P Micke
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
- CERN, Geneva, Switzerland
| | - M Schiffelholz
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany
| | - G Umbrazunas
- RIKEN, Fundamental Symmetries Laboratory, Wako, Japan
- Eidgenössisch Technische Hochschule Zürich, Zürich, Switzerland
| | - M Wiesinger
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - C Will
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - E Wursten
- RIKEN, Fundamental Symmetries Laboratory, Wako, Japan
- CERN, Geneva, Switzerland
| | - H Yildiz
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
| | - K Blaum
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - Y Matsuda
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - A Mooser
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - C Ospelkaus
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - W Quint
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - A Soter
- Eidgenössisch Technische Hochschule Zürich, Zürich, Switzerland
| | - J Walz
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
| | - Y Yamazaki
- RIKEN, Fundamental Symmetries Laboratory, Wako, Japan
| | - S Ulmer
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
- RIKEN, Fundamental Symmetries Laboratory, Wako, Japan
| |
Collapse
|
10
|
Latacz BM, Arndt BP, Devlin JA, Erlewein SR, Fleck M, Jäger JI, Micke P, Umbrazunas G, Wursten E, Abbass F, Schweitzer D, Wiesinger M, Will C, Yildiz H, Blaum K, Matsuda Y, Mooser A, Ospelkaus C, Smorra C, Sótér A, Quint W, Walz J, Yamazaki Y, Ulmer S. Ultra-thin polymer foil cryogenic window for antiproton deceleration and storage. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:103310. [PMID: 37874231 DOI: 10.1063/5.0167262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/17/2023] [Indexed: 10/25/2023]
Abstract
We present the design and characterization of a cryogenic window based on an ultra-thin aluminized biaxially oriented polyethylene terephthalate foil at T < 10 K, which can withstand a pressure difference larger than 1 bar at a leak rate <1×10-9 mbar l/s. Its thickness of ∼1.7 μm makes it transparent to various types of particles over a broad energy range. To optimize the transfer of 100 keV antiprotons through the window, we tested the degrading properties of different aluminum coated polymer foils of thicknesses between 900 and 2160 nm, concluding that 1760 nm foil decelerates antiprotons to an average energy of 5 keV. We have also explicitly studied the permeation as a function of coating thickness and temperature and have performed extensive thermal and mechanical endurance and stress tests. Our final design integrated into the experiment has an effective open surface consisting of seven holes with a diameter of 1 mm and will transmit up to 2.5% of the injected 100 keV antiproton beam delivered by the Antiproton Decelerator and Extra Low ENergy Antiproton ring facility of CERN.
Collapse
Affiliation(s)
- B M Latacz
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - B P Arndt
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
- GSI-Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt, Germany
| | - J A Devlin
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - S R Erlewein
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - M Fleck
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-0041, Japan
| | - J I Jäger
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - P Micke
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - G Umbrazunas
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Eidgenössische Technische Hochschule Zürich, John-von-Neumann-Weg 9, 8093 Zürich, Switzerland
| | - E Wursten
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - F Abbass
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
| | - D Schweitzer
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
| | - M Wiesinger
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - C Will
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - H Yildiz
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
| | - K Blaum
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - Y Matsuda
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-0041, Japan
| | - A Mooser
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - C Ospelkaus
- Institut für Quantenoptik, Leibniz Universität, Welfengarten 1, D-30167 Hannover, Germany
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany
| | - C Smorra
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
| | - A Sótér
- Eidgenössische Technische Hochschule Zürich, John-von-Neumann-Weg 9, 8093 Zürich, Switzerland
| | - W Quint
- GSI-Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt, Germany
| | - J Walz
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
- Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, Staudingerweg 18, D-55128 Mainz, Germany
| | - Y Yamazaki
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - S Ulmer
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
11
|
Anderson EK, Baker CJ, Bertsche W, Bhatt NM, Bonomi G, Capra A, Carli I, Cesar CL, Charlton M, Christensen A, Collister R, Cridland Mathad A, Duque Quiceno D, Eriksson S, Evans A, Evetts N, Fabbri S, Fajans J, Ferwerda A, Friesen T, Fujiwara MC, Gill DR, Golino LM, Gomes Gonçalves MB, Grandemange P, Granum P, Hangst JS, Hayden ME, Hodgkinson D, Hunter ED, Isaac CA, Jimenez AJU, Johnson MA, Jones JM, Jones SA, Jonsell S, Khramov A, Madsen N, Martin L, Massacret N, Maxwell D, McKenna JTK, Menary S, Momose T, Mostamand M, Mullan PS, Nauta J, Olchanski K, Oliveira AN, Peszka J, Powell A, Rasmussen CØ, Robicheaux F, Sacramento RL, Sameed M, Sarid E, Schoonwater J, Silveira DM, Singh J, Smith G, So C, Stracka S, Stutter G, Tharp TD, Thompson KA, Thompson RI, Thorpe-Woods E, Torkzaban C, Urioni M, Woosaree P, Wurtele JS. Observation of the effect of gravity on the motion of antimatter. Nature 2023; 621:716-722. [PMID: 37758891 PMCID: PMC10533407 DOI: 10.1038/s41586-023-06527-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023]
Abstract
Einstein's general theory of relativity from 19151 remains the most successful description of gravitation. From the 1919 solar eclipse2 to the observation of gravitational waves3, the theory has passed many crucial experimental tests. However, the evolving concepts of dark matter and dark energy illustrate that there is much to be learned about the gravitating content of the universe. Singularities in the general theory of relativity and the lack of a quantum theory of gravity suggest that our picture is incomplete. It is thus prudent to explore gravity in exotic physical systems. Antimatter was unknown to Einstein in 1915. Dirac's theory4 appeared in 1928; the positron was observed5 in 1932. There has since been much speculation about gravity and antimatter. The theoretical consensus is that any laboratory mass must be attracted6 by the Earth, although some authors have considered the cosmological consequences if antimatter should be repelled by matter7-10. In the general theory of relativity, the weak equivalence principle (WEP) requires that all masses react identically to gravity, independent of their internal structure. Here we show that antihydrogen atoms, released from magnetic confinement in the ALPHA-g apparatus, behave in a way consistent with gravitational attraction to the Earth. Repulsive 'antigravity' is ruled out in this case. This experiment paves the way for precision studies of the magnitude of the gravitational acceleration between anti-atoms and the Earth to test the WEP.
Collapse
Affiliation(s)
- E K Anderson
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - C J Baker
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - W Bertsche
- School of Physics and Astronomy, University of Manchester, Manchester, UK.
- Cockcroft Institute, Sci-Tech Daresbury, Warrington, UK.
| | - N M Bhatt
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - G Bonomi
- University of Brescia, Brescia and INFN Pavia, Pavia, Italy
| | - A Capra
- TRIUMF, Vancouver, British Columbia, Canada
| | - I Carli
- TRIUMF, Vancouver, British Columbia, Canada
| | - C L Cesar
- Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Charlton
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - A Christensen
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - R Collister
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - A Cridland Mathad
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - D Duque Quiceno
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - S Eriksson
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - A Evans
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - N Evetts
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - S Fabbri
- School of Physics and Astronomy, University of Manchester, Manchester, UK
- Accelerator and Technology Sector, CERN, Geneva, Switzerland
| | - J Fajans
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA.
| | - A Ferwerda
- Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
| | - T Friesen
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | | | - D R Gill
- TRIUMF, Vancouver, British Columbia, Canada
| | - L M Golino
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - M B Gomes Gonçalves
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | | | - P Granum
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - J S Hangst
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.
| | - M E Hayden
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
| | - D Hodgkinson
- School of Physics and Astronomy, University of Manchester, Manchester, UK
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - E D Hunter
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - C A Isaac
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | | | - M A Johnson
- School of Physics and Astronomy, University of Manchester, Manchester, UK
- Cockcroft Institute, Sci-Tech Daresbury, Warrington, UK
| | - J M Jones
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - S A Jones
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Groningen, The Netherlands
| | - S Jonsell
- Department of Physics, Stockholm University, Stockholm, Sweden
| | - A Khramov
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physics, British Columbia Institute of Technology, Burnaby, British Columbia, Canada
| | - N Madsen
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - L Martin
- TRIUMF, Vancouver, British Columbia, Canada
| | | | - D Maxwell
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - J T K McKenna
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
- School of Physics and Astronomy, University of Manchester, Manchester, UK
| | - S Menary
- Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
| | - T Momose
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Mostamand
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - P S Mullan
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
- Institute for Particle Physics and Astrophysics, ETH, Zurich, Switzerland
| | - J Nauta
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | | | - A N Oliveira
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - J Peszka
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
- Institute for Particle Physics and Astrophysics, ETH, Zurich, Switzerland
| | - A Powell
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - C Ø Rasmussen
- Experimental Physics Department, CERN, Geneva, Switzerland
| | - F Robicheaux
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - R L Sacramento
- Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Sameed
- School of Physics and Astronomy, University of Manchester, Manchester, UK
- Accelerator Systems Department, CERN, Geneva, Switzerland
| | - E Sarid
- Soreq NRC, Yavne, Israel
- Department of Physics, Ben Gurion University, Beer Sheva, Israel
| | - J Schoonwater
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - D M Silveira
- Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - J Singh
- School of Physics and Astronomy, University of Manchester, Manchester, UK
| | - G Smith
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - C So
- TRIUMF, Vancouver, British Columbia, Canada
| | | | - G Stutter
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
- School of Mathematical and Physical Sciences, University of Sussex, Brighton, UK
| | - T D Tharp
- Physics Department, Marquette University, Milwaukee, WI, USA
| | - K A Thompson
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - R I Thompson
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - E Thorpe-Woods
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - C Torkzaban
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - M Urioni
- University of Brescia, Brescia and INFN Pavia, Pavia, Italy
| | - P Woosaree
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - J S Wurtele
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| |
Collapse
|
12
|
Latacz BM, Arndt BP, Bauer BB, Devlin JA, Erlewein SR, Fleck M, Jäger JI, Schiffelholz M, Umbrazunas G, Wursten EJ, Abbass F, Micke P, Popper D, Wiesinger M, Will C, Yildiz H, Blaum K, Matsuda Y, Mooser A, Ospelkaus C, Quint W, Soter A, Walz J, Yamazaki Y, Smorra C, Ulmer S. BASE-high-precision comparisons of the fundamental properties of protons and antiprotons. THE EUROPEAN PHYSICAL JOURNAL. D, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 2023; 77:94. [PMID: 37288385 PMCID: PMC10241734 DOI: 10.1140/epjd/s10053-023-00672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/01/2023] [Indexed: 06/09/2023]
Abstract
Abstract The BASE collaboration at the antiproton decelerator/ELENA facility of CERN compares the fundamental properties of protons and antiprotons with ultra-high precision. Using advanced Penning trap systems, we have measured the proton and antiproton magnetic moments with fractional uncertainties of 300 parts in a trillion (p.p.t.) and 1.5 parts in a billion (p.p.b.), respectively. The combined measurements improve the resolution of the previous best test in that sector by more than a factor of 3000. Very recently, we have compared the antiproton/proton charge-to-mass ratios with a fractional precision of 16 p.p.t., which improved the previous best measurement by a factor of 4.3. These results allowed us also to perform a differential matter/antimatter clock comparison test to limits better than 3 %. Our measurements enable us to set limits on 22 coefficients of CPT- and Lorentz-violating standard model extensions (SME) and to search for potentially asymmetric interactions between antimatter and dark matter. In this article, we review some of the recent achievements and outline recent progress towards a planned improved measurement of the antiproton magnetic moment with an at least tenfold improved fractional accuracy. Graphic Abstract
Collapse
Affiliation(s)
- B. M. Latacz
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
| | - B. P. Arndt
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- GSI-Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - B. B. Bauer
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55099 Mainz, Germany
| | - J. A. Devlin
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
| | - S. R. Erlewein
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - M. Fleck
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-0041 Japan
| | - J. I. Jäger
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - M. Schiffelholz
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Institut für Quantenoptik, Leibniz Universität, Welfengarten 1, 30167 Hannover, Germany
| | - G. Umbrazunas
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Eidgenössisch Technische Hochschule Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
| | - E. J. Wursten
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - F. Abbass
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55099 Mainz, Germany
| | - P. Micke
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - D. Popper
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55099 Mainz, Germany
| | - M. Wiesinger
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - C. Will
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - H. Yildiz
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55099 Mainz, Germany
| | - K. Blaum
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Y. Matsuda
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-0041 Japan
| | - A. Mooser
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - C. Ospelkaus
- Institut für Quantenoptik, Leibniz Universität, Welfengarten 1, 30167 Hannover, Germany
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - W. Quint
- GSI-Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - A. Soter
- Eidgenössisch Technische Hochschule Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
| | - J. Walz
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55099 Mainz, Germany
- Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, Staudingerweg 18, 55128 Mainz, Germany
| | - Y. Yamazaki
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - C. Smorra
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55099 Mainz, Germany
| | - S. Ulmer
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Heinrich-Heine Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
13
|
Völksen F, Devlin JA, Borchert MJ, Erlewein SR, Fleck M, Jäger JI, Latacz BM, Micke P, Nuschke P, Umbrazunas G, Wursten EJ, Abbass F, Bohman MA, Popper D, Wiesinger M, Will C, Blaum K, Matsuda Y, Mooser A, Ospelkaus C, Smorra C, Soter A, Quint W, Walz J, Yamazaki Y, Ulmer S. A high-Q superconducting toroidal medium frequency detection system with a capacitively adjustable frequency range >180 kHz. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:093303. [PMID: 36182508 DOI: 10.1063/5.0089182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We describe a newly developed polytetrafluoroethylene/copper capacitor driven by a cryogenic piezoelectric slip-stick stage and demonstrate with the chosen layout cryogenic capacitance tuning of ≈60 pF at ≈10 pF background capacitance. Connected to a highly sensitive superconducting toroidal LC circuit, we demonstrate tuning of the resonant frequency between 345 and 685 kHz, at quality factors Q > 100 000. Connected to a cryogenic ultra low noise amplifier, a frequency tuning range between 520 and 710 kHz is reached, while quality factors Q > 86 000 are achieved. This new device can be used as a versatile image current detector in high-precision Penning-trap experiments or as an LC-circuit-based haloscope detector to search for the conversion of axion-like dark matter to radio-frequency photons. This new development increases the sensitive detection bandwidth of our axion haloscope by a factor of ≈1000.
Collapse
Affiliation(s)
- F Völksen
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - J A Devlin
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - M J Borchert
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - S R Erlewein
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - M Fleck
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - J I Jäger
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - B M Latacz
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - P Micke
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - P Nuschke
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - G Umbrazunas
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - E J Wursten
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - F Abbass
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
| | - M A Bohman
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - D Popper
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
| | - M Wiesinger
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - C Will
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - K Blaum
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - Y Matsuda
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-0041, Japan
| | - A Mooser
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - C Ospelkaus
- Institut für Quantenoptik, Leibniz Universität, Welfengarten 1, D-30167 Hannover, Germany
| | - C Smorra
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - A Soter
- Eidgenössisch Technische Hochschule Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
| | - W Quint
- GSI-Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt, Germany
| | - J Walz
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
| | - Y Yamazaki
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - S Ulmer
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
14
|
Abstract
With the idea to find geometric formulations of particle physics we investigate the predictions of a three-dimensional generalization of the Sine-Gordon model, very close to the Skyrme model and to the Wu-Yang description of Dirac monopoles. With three rotational degrees of freedom of spatial Dreibeins, we formulate a Lagrangian and confront the predictions to electromagnetic phenomena. Stable solitonic excitations we compare with the lightest fundamental electric charges, electrons, and positrons. Two Goldstone bosons we relate to the properties of photons. These particles are characterized by three topological quantum numbers, which we compare to charge, spin, and photon numbers. Finally, we conjecture some ideas for further comparisons with experiments.
Collapse
|
15
|
Faber M. Calorons, monopoles and stable, charged solitons. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202227402015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We discuss the similarity of the constituent monopoles of calorons and stable topological solitons with long range Coulombic interaction, classical solutions of the model of topological particles. In the interpretation as electric charges they can be compared to electrons and positrons with spin up and down, with quantised charge and finite mass.
Collapse
|
16
|
Lehnert R. Mirror symmetry validated for proton and its antimatter twin. Nature 2022; 601:32-33. [PMID: 34987211 DOI: 10.1038/d41586-021-03798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|