1
|
Korkmaz F, Sims S, Sen F, Sultana F, Laurencin V, Cullen L, Pallapati A, Liu A, Chen R, Rojekar S, Pevnev G, Cheliadinova U, Vasilyeva D, Burganova G, Macdonald A, Saxena M, Goosens K, Rosen CJ, Barak O, Lizneva D, Gumerova A, Ye K, Ryu V, Yuen T, Frolinger T, Zaidi M. Gene-dose-dependent reduction of Fshr expression improves spatial memory deficits in Alzheimer's mice. Mol Psychiatry 2025; 30:2119-2126. [PMID: 39548323 DOI: 10.1038/s41380-024-02824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
High post-menopausal levels of the pituitary gonadotropin follicle-stimulating hormone (FSH) are strongly associated with the onset of Alzheimer's disease (AD). We have shown recently that FSH directly activates the hippocampal FSH receptors (FSHRs) to drive AD-like pathology and memory loss in mice. To unequivocally establish a role for FSH in memory loss, we depleted the Fshr on a 3xTg background and utilized Morris Water Maze to study deficits in spatial memory. 3xTg;Fshr+/+ mice displayed impaired spatial memory at 5 months of age. The loss of memory acquisition and retrieval were both rescued in 3xTg;Fshr-/- mice and, to a lesser extent, in 3xTg;Fshr+/- mice-documenting clear gene-dose-dependent prevention of spatial memory loss. Furthermore, at 5 and 8 months, sham-operated 3xTg;Fshr-/- mice showed better memory performance during the learning and/or retrieval phases, further suggesting that Fshr deletion prevents age-related progression of memory deficits. This prevention was not seen when mice were ovariectomized, except in the 8-month-old 3xTg;Fshr-/- mice. There was also a gene-dose-dependent reduction mainly in the amyloid β40 isoform in whole brain extracts. Finally, serum FSH levels <8 ng/mL in 16-month-old APP/PS1 mice were associated with better retrieval of spatial memory. Collectively, the data provide compelling genetic evidence for a protective effect of inhibiting FSH signaling on the progression of spatial memory deficits in mice and lay a firm foundation for the use of an FSH-blocking agent for the early prevention of memory loss in post-menopausal women.
Collapse
Affiliation(s)
- Funda Korkmaz
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven Sims
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fazilet Sen
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Farhath Sultana
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Victoria Laurencin
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Liam Cullen
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anusha Pallapati
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Avi Liu
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald Chen
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Satish Rojekar
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Georgii Pevnev
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Uliana Cheliadinova
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darya Vasilyeva
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guzel Burganova
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anne Macdonald
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mansi Saxena
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ki Goosens
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Orly Barak
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daria Lizneva
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anisa Gumerova
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, University of Chinese Academy of Science, Shenzhen, Guangdong, China
| | - Vitaly Ryu
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tony Yuen
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Tal Frolinger
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Mone Zaidi
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Li X, Ren Y, Gao X, Wang H, Zhang J, Xie J, Liang J, Zhao B, Zhou H, Yin J. Gut microbiota-mediated choline metabolism exacerbates cognitive impairment induced by chronic cerebral hypoperfusion. J Cereb Blood Flow Metab 2025; 45:989-1004. [PMID: 39719076 DOI: 10.1177/0271678x241309777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Chronic cerebral hypoperfusion (CCH) is a crucial mechanism causing vascular cognitive impairment (VCI). Choline is metabolized by gut microbiota into trimethylamine N-oxide (TMAO), a risk factor of cardiovascular diseases and cognitive impairment. However, the impact of choline-TMAO pathway on CCH-induced VCI is elusive. We performed a cross-sectional clinical study to investigate the relationship between the choline-TMAO pathway and cognitive outcome and used a bilateral common carotid artery occlusion rat model to explore the effect of a choline-rich diet on cognition and underlying mechanisms. Plasma choline and TMAO levels were negatively correlated with cognitive scores in CCH patients. A choline-rich diet exacerbated CCH-induced cognitive impairment by encouraging the proliferation of choline-metabolizing bacteria in the gut and subsequent generation of TMAO. The choline-TMAO pathway, mediated by gut microbiota, exacerbates cognitive impairment induced by CCH. Targeted dietary choline regulation based on gut microbiota modulation may ameliorate long-term cognitive impairment.
Collapse
Affiliation(s)
- Xiao Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yueran Ren
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuxuan Gao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huidi Wang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiafeng Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiahui Xie
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingru Liang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Boxin Zhao
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jia Yin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Gao X, Zhang F, Zhang J, Ma Y, Deng Y, Chen J, Ren Y, Wang H, Zhao B, He Y, Yin J. Host-Microbial Cometabolite Ursodeoxycholic Acid Protects Against Poststroke Cognitive Impairment. J Am Heart Assoc 2025:e038862. [PMID: 40265603 DOI: 10.1161/jaha.124.038862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Poststroke cognitive impairment (PSCI) is a common residual disability after stroke, often underestimated and underdiagnosed. We previously found that ursodeoxycholic acid (UDCA), a host-microbiota cometabolite, ameliorates brain damage in stroke mice. Based on these findings, we aimed to evaluate the predictive value of UDCA for PSCI risk in a prospective cohort study. METHODS AND RESULTS We recruited 202 patients with mild acute ischemic stroke and 63 patients with symptomatic large-artery atherosclerotic stenosis as the modeling and external validation cohorts, respectively. Mice were subjected to transient middle cerebral artery occlusion, and cognitive function was assessed using the Morris water maze test. Patients with mild acute ischemic stroke who developed PSCI exhibited significant alterations in gut microbiota and plasma bile acid profiles during the acute stroke phase, including a notable reduction in UDCA level. Through feature selection and machine learning, we constructed a predictive model for PSCI incorporating plasma UDCA level, the relative abundance of Clostridia, Bacilli, and Bacteroides, as well as age, educational level, and the presence of moderate to severe white matter lesions. This model exhibited robust predictive performance in both internal (area under the curve, 0.904 [95% CI, 0.808-1.000]) and external (area under the curve, 0.838 [95% CI, 0.742-0.934]) validations. Animal studies in mice also showed reduced UDCA levels in plasma and brain tissue following stroke. UDCA administration improved cognitive function in stroke mice by reducing hippocampal microglial activation and neuronal apoptosis. CONCLUSIONS Our findings indicate that UDCA has potential as a biomarker for predicting PSCI risk and plays a neuroprotective role in the progression of PSCI. This suggests that early identification and intervention targeting UDCA could represent a promising strategy for the prevention and treatment of PSCI.
Collapse
Affiliation(s)
- Xuxuan Gao
- Department of Neurology, Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Feng Zhang
- Department of Neurosurgery, Huzhou Central Hospital Zhejiang University School of Medicine Huzhou Zhejiang People's Republic of China
| | - Jiafeng Zhang
- Department of Neurology, Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Yu Ma
- Department of Neurology, Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Yiting Deng
- Department of Neurology, Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Jiaying Chen
- Department of Neurology, Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- Comprehensive Medical Treatment Ward, Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Yueran Ren
- Department of Neurology, Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Huidi Wang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Boxin Zhao
- Department of Pharmacy, Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- Clinical Pharmacy Center Nanfang Hospital, Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Yan He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- Guangdong Provincial Clinical Research Center for Laboratory Medicine Guangzhou Guangdong People's Republic of China
- State Key Laboratory of Multi-organ Injury Prevention and Treatment Guangzhou Guangdong People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education Guangzhou Guangdong People's Republic of China
| | - Jia Yin
- Department of Neurology, Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| |
Collapse
|
4
|
Shi J, Zhang M, Hu Y, Liu J, Li K, Sun X, Chen S, Liu J, Ye L, Fan J, Jia J. Differences in transcriptome characteristics and drug repositioning of Alzheimer's disease according to sex. Neurobiol Dis 2025; 210:106909. [PMID: 40220916 DOI: 10.1016/j.nbd.2025.106909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Previous studies have shown significant sex differences in AD with regarding its epidemiology, pathophysiology, clinical presentation, and treatment response. However, the transcriptome variances associated with sex in AD remain unclear. METHODS RNA sequencing (RNA-seq) and transcriptomic analyses were performed on peripheral blood samples from total of 54 patients, including male AD patients (n = 15), female AD patients (n = 10), male MCI patients (n = 7), female MCI patients (n = 11), male healthy controls (n = 6), female healthy controls (n = 5). The snRNA-seq dataset (GSE167494, GSE157827) of prefrontal cortex tissues was obtained from the Gene Expression Omnibus (GEO). We conducted an investigation into differentially expressed genes and pathways in the peripheral blood cells as well as prefrontal cortex tissues of both male and female AD patients with consideration to sex-related factors. Additionally, we analyzed the distribution and characteristics of cells in the cerebral cortex as well as the interaction and communication between cells of male and female AD patients. Connectivity Map (CMap) was utilized for predicting and screening potential sex-specific drugs for AD. RESULTS The transcriptome profile and associated biological processes in the peripheral blood of male and female AD and MCI patients exhibit discernible differences, including upregulation of BASP1 in AD male patients and arousing TNS1 in AD female patients. The distribution of various cell types in the prefrontal cortex tissues differs between male and female AD patients, like neuron and oligodendrocyte decreased and endothelial cell and astrocyte increased in female compared with male, while a multitude of genes exhibit significant differential expression. The results of cell communication analysis, such as collagen signaling pathway, suggest that sex disparities impact intercellular interactions within prefrontal cortex tissues among individuals with AD. By drug repositioning, several drugs, including torin-2 and YM-298198, might have the potential to therapeutic value of MCI or AD, while drugs like homoharringtonine and teniposide have potential opposite effects in different sexes. CONCLUSION The characteristics of the transcriptome in peripheral blood and single-cell transcriptome in the prefrontal cortex exhibit significant differences between male and female patients with AD, which providing a basis for future sex stratified treatment of AD.
Collapse
Affiliation(s)
- Jingqi Shi
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China
| | - Minghua Zhang
- Medical Supplies Center of PLA General Hospital, Beijing 100853, China
| | - Yazhuo Hu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China
| | - Jing Liu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China
| | - Ke Li
- Geriatric Neurological Department of the Second Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Xuan Sun
- Geriatric Neurological Department of the Second Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Siyu Chen
- Geriatric Neurological Department of the Second Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Jianwei Liu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China
| | - Ling Ye
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China
| | - Jiao Fan
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China.
| | - Jianjun Jia
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
5
|
Yang X, Wei L, Zhong S, Wang Q, Zhang Y, Zhang Y, Yu A. Liquid-liquid phase separation of RBM33 facilitates hippocampus aging by inducing microglial senescence by activating CDKN1A. Int J Biol Macromol 2025; 310:142986. [PMID: 40216137 DOI: 10.1016/j.ijbiomac.2025.142986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/24/2025]
Abstract
Microglia play an important role in hippocampus-dependent memory and cognitive function. Microglial aging contributes to hippocampal aging and influences neurodegenerative diseases, although the underlying mechanisms remain unclear. RBM33 was highly expressed in the hippocampus of naturally aged mice and senescent microglia. Hippocampus-specific genetic deletion of RBM33 alleviated age-related declines in learning and memory in aged RBM33 knockout (RBM33-/-) mice. In contrast, hippocampus-specific overexpression of RBM33 exacerbated these declines in aged RBM33 overexpression (RBM33Tg) mice, indicating that RBM33 acts as an age-promoting factor in the hippocampus. Mechanistically, RBM33 forms liquid-liquid phase separation (LLPS) both in vitro and in cells. RBM33 LLPS is required for its binding to the CDKN1A (p21cip1) promoter in a non-canonical transcriptional regulatory manner, leading to hippocampus-dependent declines in learning and memory by inducing microglial senescence. This study reveals that the RBM33 LLPS/ p21cip1 axis facilitates brain aging by inducing microglial senescence. Targeting the RBM33 LLPS/ p21cip1 axis may represent a therapeutic strategy to mitigate microglia senescence-mediated brain aging and hippocampus-dependent cognitive decline.
Collapse
Affiliation(s)
- Xiaowen Yang
- Department of Clinical Laboratory, Taihe Hospital, The Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, China; Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University/Department of Laboratory Medicine of School of Medicine, Hunan Normal University, Changsha 410000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Lin Wei
- Department of Clinical Laboratory, Taihe Hospital, The Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, China
| | - Saifeng Zhong
- Department of Clinical Laboratory, Shaoyang central hospital, The Affiliated Hospital of Nanhua University, Shaoyang 422000, China
| | - Qiguang Wang
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University/Department of Laboratory Medicine of School of Medicine, Hunan Normal University, Changsha 410000, China
| | - Yujun Zhang
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University/Department of Laboratory Medicine of School of Medicine, Hunan Normal University, Changsha 410000, China
| | - Yonggang Zhang
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen 518000, China
| | - Aiqing Yu
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University/Department of Laboratory Medicine of School of Medicine, Hunan Normal University, Changsha 410000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
6
|
Ma Y, Fan X, Han J, Cheng Y, Zhao J, Fang W, Gao L. Critical illness and sex hormones: response and impact of the hypothalamic-pituitary-gonadal axis. Ther Adv Endocrinol Metab 2025; 16:20420188251328192. [PMID: 40183031 PMCID: PMC11967225 DOI: 10.1177/20420188251328192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Understanding the hypothalamic-pituitary-gonadal (HPG) axis is essential for grasping human responses under extreme physiological and pathological conditions. The HPG axis regulates reproductive and gonadal hormone activities and significantly impacts the body's response to acute and chronic illnesses. This review explores the fundamental functions of the HPG axis, modifications under critical conditions, and impacts on disease progression and treatment outcomes. In addition, it examines interactions between sex hormones and biomolecules like cytokines and gastrointestinal microorganisms, highlighting their roles in immune response regulation. Clinically, this knowledge can enhance patient prognoses. The review aims to provide a comprehensive framework, based on existing research, for understanding and applying the functions of the HPG axis in managing critical diseases, thereby broadening clinical applications and guiding future research.
Collapse
Affiliation(s)
- Yicheng Ma
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Xiude Fan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Junming Han
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Yiping Cheng
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Wei Fang
- Department of Critical-Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, No. 9677, Jingshi Road, Lixia District, Jinan, Shandong 250000, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, No. 544, Jingsi Road, Xishichang Subdistrict, Huaiyin District, Jinan, Shandong 250000, China
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, No. 544, Jingsi Road, Xishichang Subdistrict, Huaiyin District, Jinan, Shandong 250000, China
| |
Collapse
|
7
|
Ge L, Yang Y, Xiao T, Gao Y, Chang W, Du F, Yu M, Zhang JV. Ovarian Endometriosis Accelerates Premature Ovarian Failure and Contributes to Osteoporosis and Cognitive Decline in Aging Mice. Int J Mol Sci 2025; 26:3313. [PMID: 40244208 PMCID: PMC11989598 DOI: 10.3390/ijms26073313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/23/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Ovarian endometriosis (OEM) is a chronic inflammatory condition that impairs ovarian function. While its effects on ovarian reserve are well established, the long-term consequences of OEM on ovarian dysfunction, premature ovarian failure (POF), and systemic health, particularly in the context of accelerated aging, remain insufficiently studied. In this study, we employed an OEM mouse model and bulk RNA sequencing to investigate the underlying mechanisms. Our results show that OEM accelerates primordial follicle depletion and upregulates mTOR signaling pathway gene expression, along with mechanical stress and paracrine signaling via the Hippo and Myc pathways. OEM also induces irregular estrus and ovarian fibrosis in aging mice, decreases serum AMH levels, and increases FSH levels. Systemically, elevated serum IgG levels contribute to osteoporosis and cognitive decline, both linked to ovarian dysfunction and POF in OEM. These findings elucidate the mechanisms driving premature ovarian reserve depletion in OEM and highlight its broader systemic effects. This study emphasizes the importance of monitoring ovarian health and ectopic tissue to safeguard ovarian reserves and mitigate long-term risks such as osteoporosis and cognitive decline.
Collapse
Affiliation(s)
- Lei Ge
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (L.G.); (M.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518000, China
| | - Yali Yang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (L.G.); (M.Y.)
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518000, China
| | - Tianxia Xiao
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (L.G.); (M.Y.)
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518000, China
| | - Yuqing Gao
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (L.G.); (M.Y.)
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518000, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Wakam Chang
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Feifei Du
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (L.G.); (M.Y.)
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518000, China
| | - Ming Yu
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (L.G.); (M.Y.)
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518000, China
| | - Jian V. Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (L.G.); (M.Y.)
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518000, China
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518028, China
- Sino-European Center of Biomedicine and Health, Shenzhen 518000, China
| |
Collapse
|
8
|
Chen J, Liao Y, Sheng Y, Yao H, Li T, He Z, Ye WWY, Yin M, Tang H, Zhao Y, Zhang P, Wang Y, Fu X, Ji Y. FSH exacerbates bone loss by promoting osteoclast energy metabolism through the CREB-MDH2-NAD + axis. Metabolism 2025; 165:156147. [PMID: 39880362 DOI: 10.1016/j.metabol.2025.156147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/07/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
AIMS Osteoclast energy metabolism is a promising target for treating diseases characterized by high osteoclast activity, such as osteoporosis. However, the regulatory factors involved in osteoclast bioenergetic processes are still in the early stages of being fully understood. This study reveals the effects of follicle-stimulating hormone (FSH) on osteoclast energy metabolism. METHODS The Lyz2-Cre-Flox model selectively deletes FSH receptor (FSHR) from osteoclast precursor cells to generate Fshrf/f; Lyz2-Cre (Fshrf/f; Cre) mice. Bone quality was assessed using micro-computed tomography, histomorphometric analysis, and dual-fluorescence labeling. The in vitro assays measured oxygen consumption rate, extracellular acidification rate, pyruvate content, and mitochondrial membrane potential to determine metabolic flux. RNA-seq, LC-MS, dual-luciferase reporter assays, and chromatin immunoprecipitation (ChIP) assays were used to elucidate the underlying mechanisms. RESULTS FSHR deficiency in osteoclasts protected bone from resorption under normal and ovariectomized conditions. FSHR-deficient osteoclasts have reduced nicotinamide adenine dinucleotide (NAD+) levels, impairing osteoclast activity and energy metabolism. Mechanistically, FSH influenced NAD+ levels via the CREB/MDH2 axis. Treatment with FSH monoclonal antibodies rescued bone loss in OVX mice and reduced bone marrow NAD+ levels. CONCLUSIONS Targeting FSH may be a promising metabolic modulation strategy for treating osteoporosis and other diseases associated with high osteoclast activity.
Collapse
Affiliation(s)
- Jingqiu Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Yilin Liao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Yue Sheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Hantao Yao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Ting Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Zhenru He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Weng Wan Yue Ye
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Mengjie Yin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Huilin Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Yaoyu Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Peiqi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Yuting Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Xiazhou Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China.
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
9
|
Yuan M, Jin L, Fang Y. Disease Burden, Temporal Trends, and Cross-Country Inequality Associated with Sociodemographic Indicators in Alzheimer's Disease and Other Dementias. Am J Prev Med 2025; 68:682-694. [PMID: 40072379 DOI: 10.1016/j.amepre.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 03/22/2025]
Abstract
INTRODUCTION The purpose of this article is to describe the global burden and temporal trends of Alzheimer's disease and other dementias from 1990 to 2021 and explore cross-country inequality associated with sociodemographic development-related factors. METHODS The disability-adjusted life years of Alzheimer's disease and other dementias and sociodemographic index were extracted from the Global Burden of Disease 2021 study, and other sociodemographic development-related factors, including government expenditure on education (% of GDP), net national income per capita, health expenditure per capita, and fertility rate, were sourced from World Bank Data. Disability-adjusted life years of Alzheimer's disease and other dementias across 204 countries/territories and global age-sex distribution in 2021 were illustrated. The Joinpoint regression model was used to analyze the temporal trends of disease burden, and the slope index of inequality and concentration index were calculated to quantify cross-country inequalities. Analyses were conducted in 2024. RESULTS Significant disparities were observed in the numbers, rates, and age-standardized rates of disability-adjusted life years across 204 countries/territories. Females demonstrated higher disability-adjusted life year numbers (rates) for all age groups. Age-standardized disability-adjusted life year rate increased worldwide and was high in high-middle and middle sociodemographic index regions but increased faster in low (average annual percentage change=0.227%) and low-middle (average annual percentage change=0.244%) sociodemographic index regions. Cross-country inequality analyses indicated that disability-adjusted life years of Alzheimer's disease and other dementias were skewed and higher in countries with higher sociodemographic development, and the inequality increased with time except for education expenditure-related inequality. CONCLUSIONS The burden of Alzheimer's disease and other dementias has risen globally over the past 3 decades, accompanied by increasing cross-country inequalities, which disproportionately affects countries with high sociodemographic development. Boosting expenditure on education may narrow this inequality.
Collapse
Affiliation(s)
- Manqiong Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China; Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China
| | - Lifen Jin
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China; Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China
| | - Ya Fang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China; Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China.
| |
Collapse
|
10
|
Meng X, Li B, Wang M, Zheng W, Ye K. Development of asparagine endopeptidase inhibitors for treating neurodegenerative diseases. Trends Mol Med 2025; 31:359-372. [PMID: 40000317 DOI: 10.1016/j.molmed.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025]
Abstract
Asparagine endopeptidase (AEP), or legumain, is a cysteine protease implicated in various disorders, including atherosclerosis, cancers, neurodegenerative diseases, and inflammation. The development of AEP inhibitors has emerged as a promising therapeutic strategy to modulate AEP activity and slow disease progression. Various AEP inhibitors have been explored, encompassing small molecules, peptide-based, antibody-based, and natural inhibitors. Substrate-mimetic and covalent inhibitors show significant potential for selectively targeting AEP's active site, whereas noncovalent inhibitors offer reversible modulation. Additionally, FDA-approved drugs have also garnered attention for their diverse structures and multitarget capabilities. In this review, we summarize advancements in AEP inhibitors, their mechanisms of action, therapeutic applications in neurodegenerative diseases, and the challenges in translating these findings into clinical practice.
Collapse
Affiliation(s)
- Xin Meng
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China; Brain Cognition and Brain Disease Institute (BCBDI), Institute of Advanced Technology (SIAT), Guangdong 518055, China
| | - Bowei Li
- Shenzhen Institute of Advanced Technology (SIAT), University of Chinese Academy of Science, Shenzhen, Guangdong 518055, China
| | - Mengmeng Wang
- Brain Cognition and Brain Disease Institute (BCBDI), Institute of Advanced Technology (SIAT), Guangdong 518055, China
| | - Wenhua Zheng
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
11
|
Oh DJ, Baek KH, Kang DW, Hong YJ, Jeong C. Association Between Serum Follicle-Stimulating Hormone Levels and Cognitive Function in Middle-Aged and Older Women. J Korean Med Sci 2025; 40:e15. [PMID: 40098489 PMCID: PMC11913625 DOI: 10.3346/jkms.2025.40.e15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/27/2024] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Researchers have proposed that there is a potential link between follicle-stimulating hormone (FSH) and cognitive function, yet the evidence remains inconclusive. The current study aims to identify the association between serum FSH levels and cognitive performance, and to examine whether this association varies by cognitive diagnosis, serum estradiol (E2) levels, or cognitive domain. METHODS This multicenter cross-sectional study used a clinical database comprising female visitors to memory clinics at three referral hospitals in Korea. Venous blood samples were collected to determine serum FSH and E2 concentrations via immunoradiometric assay. Cognitive performance was evaluated using either the Korean version of the Consortium to Establish a Registry for Alzheimer's Disease or the Seoul Neuropsychological Screening Battery, while cognitive diagnoses were made via clinical diagnostic interviews. RESULTS Among the 159 participants (normal cognition [NC], n = 70; mild cognitive impairment [MCI], n = 52; Alzheimer's disease [AD] dementia, n = 37), there were no significant differences in serum FSH levels associated with cognitive diagnosis. In women with NC, serum FSH levels were found to be positively correlated with cognitive performance in global cognition, nonverbal memory, and executive function, even after adjusting for serum E2 level and its interaction with serum FSH level. However, no significant correlations were observed in women with MCI and AD dementia. CONCLUSION The association between circulating FSH and cognition may be independent from circulating E2, but it may depend on disease progression or cognitive domains. This suggests a potential role of gonadotropin in cognitive decline in elderly women.
Collapse
Affiliation(s)
- Dae Jong Oh
- Workplace Mental Health Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki-Hyun Baek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong Woo Kang
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yun Jeong Hong
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chaiho Jeong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
12
|
Zhong S, Xiao C, Li R, Lan Y, Gong C, Feng C, Qi H, Lin Y, Qin C. The global, regional, and national burdens of dementia in 204 countries and territories from 1990 to 2021: A trend analysis based on the Global Burden of Disease Study 2021. Medicine (Baltimore) 2025; 104:e41836. [PMID: 40101022 PMCID: PMC11922445 DOI: 10.1097/md.0000000000041836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
The global population is aging, and as a consequence, the prevalence of dementia is increasing rapidly. This study aims to analyze trends in the Global Burden of Disease (GBD) and health inequalities for dementia over the period 1990 to 2021. The incidence, prevalence, and disability-adjusted life year rates of dementia in the GBD 2021 database were analyzed at the global, national, and regional levels for the period 1990 to 2021 using Joinpoint 4.9.1.0 software. The trends over the period were assessed using a combination of age-standardized rates, average annual percentage changes (AAPCs), and a sociodemographic index. The analysis revealed that, from 1990 to 2021, the global AAPC in dementia incidence, prevalence, and disability-adjusted life years amounted to 0.06 (95% confidence interval [CI]: 0.05-0.09), 0.09 (95% CI: 0.08-0.10), and 0.03 (95% CI: 0.01-0.05), respectively. Conversely, the mean AAPC in age-standardized mortality rate remained stable at 0 (95% CI: -0.02 to 0.03). The age-standardized incidence rate and age-standardized prevalence rate of dementia exhibited a positive association with sociodemographic index during the study period. The 3 regions with the highest mean AAPC in age-standardized mortality rate among the 21 GBD regions were South Africa, Central Sub-Saharan Africa, and Eastern Sub-Saharan Africa. The findings of the study indicate that the burden of dementia increases with age and is projected to remain on an upward trend until 2040. The GBD has increased significantly from 1990 to 2021, and the prevention and control of dementia represents a long-term and formidable challenge.
Collapse
Affiliation(s)
- Songxin Zhong
- Department of Neurology, The First People's Hospital of Yulin Affiliated to Guangxi Medical University, Yulin, People's Republic of China
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Chao Xiao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Rida Li
- Department of Neurology, The First People's Hospital of Yulin Affiliated to Guangxi Medical University, Yulin, People's Republic of China
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yining Lan
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Chi Gong
- Department of Neurology, The First People's Hospital of Yulin Affiliated to Guangxi Medical University, Yulin, People's Republic of China
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Changqiang Feng
- Department of Neurology, The First People's Hospital of Yulin Affiliated to Guangxi Medical University, Yulin, People's Republic of China
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Hengchang Qi
- Department of Neurology, The First People's Hospital of Yulin Affiliated to Guangxi Medical University, Yulin, People's Republic of China
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yanni Lin
- Department of Neurology, The First People's Hospital of Yulin Affiliated to Guangxi Medical University, Yulin, People's Republic of China
| | - Chao Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
13
|
Casali BT, Lin L, Benedict O, Zuppe H, Marsico E, Reed EG. Sex chromosomes and gonads modify microglial-mediated pathology in a mouse model of Alzheimer's disease. J Neuroinflammation 2025; 22:81. [PMID: 40083008 PMCID: PMC11907917 DOI: 10.1186/s12974-025-03404-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder disproportionally affecting women with sex-specific disease manifestations and therapeutic responses. Microglial-mediated inflammation occurs in response to and perpetuates disease processes, and fundamental sex differences in microglia may contribute to these sex biases. Both sex chromosomes and gonad-derived hormones shape immune responses, but their contribution to immune-mediated mechanisms underlying the sex bias in AD is unclear. Crossing the Four Core Genotype (FCG) model to separate sex chromosome and gonad-derived hormone effects to the 5xFAD model, we found the sex chromosome complement impacted microgliosis, neuroinflammation, plaque burden and neuritic dystrophy. Modification of pathology largely correlated with microgliosis, and sex chromosomes and gonad-derived hormones influenced plaque remodeling and microglial CD11c expression. Our results provide potential trajectories for studying and targeting microglial-mediated sex differences and emphasize the complex interplay between sex chromosomes and hormones during AD.
Collapse
Affiliation(s)
- Brad T Casali
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH, 44272, USA
| | - Li Lin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH, 44272, USA
| | - Olesia Benedict
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH, 44272, USA
| | - Hannah Zuppe
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH, 44272, USA
| | - Emily Marsico
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH, 44272, USA
| | - Erin G Reed
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH, 44272, USA.
| |
Collapse
|
14
|
Coughlan GT, Rubinstein Z, Klinger H, Lopez KA, Hsieh S, Boyle R, Seto M, Townsend D, Mayblyum D, Thibault E, Jacobs HIL, Farrell M, Rabin JS, Papp K, Amariglio R, Baker S, Lois C, Rentz D, Price J, Schultz A, Properzi M, Johnson K, Sperling R, Buckley RF. Associations between hormone therapy use and tau accumulation in brain regions vulnerable to Alzheimer's disease. SCIENCE ADVANCES 2025; 11:eadt1288. [PMID: 40043125 PMCID: PMC11881894 DOI: 10.1126/sciadv.adt1288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/29/2025] [Indexed: 03/09/2025]
Abstract
Elucidating the downstream impact of exogenous hormones on the aging brain will have far-reaching consequences for understanding why Alzheimer's disease (AD) predominates in women almost twofold over men. We tested the extent to which menopausal hormone therapy (HT) use is associated with later-life amyloid-β (Aβ) and tau accumulation using PET on N = 146 baseline clinically normal women, aged 51 to 89 years. Women were scanned over a 4.5-year (SD, 2.1; range, 1.3 to 10.4) and 3.5-year (SD, 1.5; range, 1.2 to 8.1) period for Aβ and tau, respectively, ~14 years after the initiation of HT. In older women (aged >70 years), HT users exhibited faster regional tau accumulation relative to non-users, localized to the entorhinal cortex and the inferior temporal and fusiform gyri, with an indirect effect of HT on cognitive decline through regional tau accumulation. In younger women (aged <70 years), HT associations with tau accumulation were negligible. Findings are relevant for optimizing menopausal treatment guidelines.
Collapse
Affiliation(s)
- Gillian T. Coughlan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zoe Rubinstein
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hannah Klinger
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kelly A. Lopez
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Stephaine Hsieh
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Rory Boyle
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mabel Seto
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Diana Townsend
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Danielle Mayblyum
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Emma Thibault
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Heidi I. L. Jacobs
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Michelle Farrell
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jennifer S. Rabin
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Kate Papp
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Rebecca Amariglio
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Suzanne Baker
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Cristina Lois
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dorene Rentz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Julie Price
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Aaron Schultz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael Properzi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Keith Johnson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Reisa Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel F. Buckley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
15
|
Bonkhoff AK, Coughlan G, Perosa V, Alhadid K, Schirmer MD, Regenhardt RW, van Veluw S, Buckley R, Fox MD, Rost NS. Sex differences in age-associated neurological diseases-A roadmap for reliable and high-yield research. SCIENCE ADVANCES 2025; 11:eadt9243. [PMID: 40043111 PMCID: PMC11881909 DOI: 10.1126/sciadv.adt9243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/06/2025] [Indexed: 03/09/2025]
Abstract
Once taken into consideration, sex differences in neurological diseases emerge in abundance: (i) Stroke severity is significantly higher in females than in males, (ii) Alzheimer's disease (AD) pathology is more pronounced in females, and (iii) conspicuous links with hormonal cycles led to female-specific diagnoses, such as catamenial migraines and epilepsy. While these differences receive increasing attention in isolation, they likely link to similar processes in the brain. Hence, this review aims to present an overview of the influences of sex chromosomes, hormones, and aging on male and female brains across health and disease, with a particular focus on AD and stroke. The focus here on advancements across several fields holds promise to fuel future research and to lead to an enriched understanding of the brain and more effective personalized neurologic care for all.
Collapse
Affiliation(s)
- Anna K. Bonkhoff
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Gillian Coughlan
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Valentina Perosa
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Kenda Alhadid
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Markus D. Schirmer
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Robert W. Regenhardt
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Susanne van Veluw
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Rachel Buckley
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Michael D. Fox
- Department of Neurology, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA, USA
| | - Natalia S. Rost
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Chen G, Wang M, Zhang Z, Hong DK, Ahn EH, Liu X, Kang SS, Ye K. ApoE3 R136S binds to Tau and blocks its propagation, suppressing neurodegeneration in mice with Alzheimer's disease. Neuron 2025; 113:719-736.e5. [PMID: 39814008 DOI: 10.1016/j.neuron.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
PSEN1 E280A carrier for the APOE3 Christchurch variant (R136S) is protected against Alzheimer's disease (AD) symptoms with a distinct anatomical pattern of Tau pathology. However, the molecular mechanism accounting for this protective effect remains incompletely understood. Here, we show that the ApoE3 R136S mutant strongly binds to Tau and reduces its uptake into neurons and microglia compared with ApoE3 wild type (WT), diminishing Tau fragmentation by asparagine endopeptidase (AEP), proinflammatory cytokines by Tau pre-formed fibrils (PFFs) or β-amyloid (Aβ), and neurotoxicity. Further, ApoE3 R136S demonstrates more robust effects in attenuating AEP activation and Tau PFF spreading in the brains of both 5xFAD and Tau P301S mice than in ApoE3 WT, leading to improved cognitive functions. Thus, our findings support the idea that ApoE3 R136S strongly binds Tau and decreases its cellular uptake, abrogating Tau pathology propagation in AD brains.
Collapse
Affiliation(s)
- Guiqin Chen
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Mengmeng Wang
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dae Ki Hong
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eun Hee Ahn
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Physiology, College of Medicine, Hallym University, Chuncheon-si 24252, Gangwon-Do, South Korea
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China; Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), Shenzhen 518055, Guangdong, China.
| |
Collapse
|
17
|
Coughlan GT, Klinger HM, Boyle R, Betthauser TJ, Binette AP, Christenson L, Chadwick T, Hansson O, Harrison TM, Healy B, Jacobs HIL, Hanseeuw B, Jonaitis E, Jack CR, Johnson KA, Langhough RE, Properzi MJ, Rentz DM, Schultz AP, Smith R, Seto M, Johnson SC, Mielke MM, Shirzadi Z, Yau WYW, Manson JE, Sperling RA, Vemuri P, Buckley RF. Sex Differences in Longitudinal Tau-PET in Preclinical Alzheimer Disease: A Meta-Analysis. JAMA Neurol 2025:2830857. [PMID: 40029638 DOI: 10.1001/jamaneurol.2025.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Importance Alzheimer disease (AD) predominates in females at almost twice the rate relative to males. Mounting evidence in adults without AD indicates that females exhibit higher tau deposition than age-matched males, particularly in the setting of elevated β-amyloid (Aβ), but the evidence for sex differences in tau accumulation rates is inconclusive. Objective To examine whether female sex is associated with faster tau accumulation in the setting of high Aβ (as measured with positron emission tomography [PET]) and the moderating influence of sex on the association between APOEε4 carrier status and tau accumulation. Data Sources This meta-analysis used data from 6 longitudinal aging and AD studies, including the Alzheimer's Disease Neuroimaging Initiative, Berkeley Aging Cohort Study, BioFINDER 1, Harvard Aging Brain Study, Mayo Clinic Study of Aging, and Wisconsin Registry for Alzheimer Prevention. Longitudinal data were collected between November 2004 and May 2022. Study Selection Included studies required available longitudinal [18F]flortaucipir or [18F]-MK-6240 tau-PET scans, as well as baseline [11C] Pittsburgh Compound B, [18F]flutemetamol or [18F]florbetapir Aβ-PET scans. Recruitment criteria varied across studies. Analyses began on August 7, 2023, and were completed on February 5, 2024. Data Extraction and Synthesis In each study, primary analyses extracted estimates for the sex (female or male) and the sex by baseline Aβ-PET status (high or low) association with longitudinal tau-PET using a series of mixed-effects models. Secondary mixed-effects models extracted the interaction estimate for the association of sex by APOEε4 carrier status with longitudinal tau-PET. Study-specific estimates for each mixed-effects model were then pooled in a meta-analysis, and the global fixed effect (β) and total heterogeneity (I2) across studies were estimated. This study is reported following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. Main Outcomes and Measures Seven tau-PET outcomes that showed cross-sectional sex differences were examined across temporal, parietal, and occipital lobes. Results Among 6 studies assessed, there were 1376 participants (761 [55%] female; mean [range] age at first tau scan, 71.9 [46-93] years; 401 participants [29%] with high baseline Aβ; 412 APOEε4 carriers [30%]). Among individuals with high baseline Aβ, female sex was associated with faster tau accumulation localized to inferior temporal (β = -0.14; 95% CI, -0.22 to -0.06; P = .009) temporal fusiform (β = -0.13; 95% CI, -0.23 to -0.04; P = .02), and lateral occipital regions (β = -0.15; 95% CI, -0.24 to -0.06; P = .009) compared with male sex. Among APOEε4 carriers, female sex was associated with faster inferior-temporal tau accumulation (β = -0.10; 95% CI, -0.16 to -0.03; P = .01). Conclusions and Relevance These findings suggest that sex differences in the pathological progression of AD call for sex-specific timing considerations when administrating anti-Aβ and anti-tau treatments.
Collapse
Affiliation(s)
- Gillian T Coughlan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Hannah M Klinger
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Rory Boyle
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Tobey J Betthauser
- Department of Medicine, Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden and Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Luke Christenson
- Department of Radiology, Mayo Clinic Rochester, Rochester, Minnesota
| | - Trevor Chadwick
- Department of Neuroscience, University of California, Berkeley
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden and Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | | | - Brian Healy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Heidi I L Jacobs
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Bernard Hanseeuw
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Neurology, Cliniques Universitaires Saint-Luc, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Erin Jonaitis
- Department of Medicine, Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic Rochester, Rochester, Minnesota
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Rebecca E Langhough
- Department of Medicine, Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison
| | - Michael J Properzi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Dorene M Rentz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Aaron P Schultz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden and Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Mabel Seto
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Sterling C Johnson
- Department of Medicine, Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison
| | - Michelle M Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Zahra Shirzadi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Wai-Ying Wendy Yau
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, and the Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic Rochester, Rochester, Minnesota
| | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
18
|
Krysiak R, Kowalcze K, Okopień B. Subclinical Hyperthyroidism Enhances Gonadotropin-Lowering Effects of Metformin in Postmenopausal Women. J Clin Pharmacol 2025; 65:318-327. [PMID: 39363530 DOI: 10.1002/jcph.6144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Metformin treatment decreases elevated concentrations of anterior pituitary hormones. The aim of this prospective, cohort study was to investigate whether hyperthyroidism modulates the impact of metformin on gonadotroph secretory function. The study population included 48 postmenopausal women with untreated type 2 diabetes or prediabetes, 24 of whom had coexisting grade 1 subclinical hyperthyroidism. Both groups were matched for age, insulin sensitivity, and gonadotropin levels. Over the entire study period, all participants were treated with metformin (2.55-3 g daily). Plasma glucose, insulin, thyroid-stimulating hormone (TSH), total and free thyroid hormones, follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol, prolactin, adrenocorticotropic hormone (ACTH), and insulin-like growth factor-1 (IGF-1) were assayed at entry and 6 months later. At baseline, the study groups differed in levels of TSH and thyroid hormones but not in body mass index, blood pressure, glucose homeostasis markers (fasting glucose, homeostatic model assessment 1 of insulin resistance ratio [HOMA1-IR], and glycated hemoglobin [HbA1c]), and the remaining hormones. There were no differences between both groups in the degree of reduction in plasma glucose and HbA1c in response to metformin treatment. Although metformin decreased HOMA1-IR in both groups, this effect was stronger in women with hyperthyroidism than with normal thyroid function (-50 ± 20% vs -30 ± 15%). Similar relationships were observed for FSH (-43 ± 21% vs -21 ± 12%). Only in hyperthyroid women did the drug reduce LH concentration (by 35 ± 17%). Metformin did not affect circulating levels of TSH, total and free thyroxine, total and free triiodothyronine, estradiol, prolactin, ACTH, and IGF-1. The obtained results indicate that hyperthyroidism enhances the gonadotropin-lowering effects of metformin, as well as the fact that this agent has a neutral effect on the hypothalamic-pituitary-thyroid axis in case of its overactivity.
Collapse
Affiliation(s)
- Robert Krysiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| | - Karolina Kowalcze
- Department of Pediatrics in Bytom, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Department of Pathophysiology, Faculty of Medicine, Academy of Silesia, Katowice, Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
19
|
Spicer J, Malaspina D, Blank SV, Goosens KA. Follicle-stimulating hormone: More than a marker for menopause: FSH as a frontier for women's mental health. Psychiatry Res 2025; 345:116239. [PMID: 39892305 DOI: 10.1016/j.psychres.2024.116239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 02/03/2025]
Abstract
The average current life expectancy entails that women will spend over one-third of their lives in menopause. Follicle-stimulating hormone (FSH) levels in women begin to increase roughly six years before the final menstrual period, reaching a menopausal plateau that is nearly 14 times the level of FSH observed in men, a profound sex-specific difference. A promising new body of work examines whether these age-associated increases in FSH contribute to multiple menopause-related conditions, including psychiatric morbidities. This paper highlights research advances showing the potential role of FSH and its underlying mechanisms in mental health conditions for women in menopause and makes the call for more research.
Collapse
Affiliation(s)
- Julie Spicer
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Dolores Malaspina
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stephanie V Blank
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ki A Goosens
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
20
|
Yuan S, Gong Y, Zhang Y, Cao W, Wei L, Sun T, Sun J, Wang L, Zhang Q, Wang Q, Wei Y, Qian Z, Zhang P, Lai D. Brain structural alterations in young women with premature ovarian insufficiency: Implications for dementia risk. Alzheimers Dement 2025; 21:e70111. [PMID: 40145307 PMCID: PMC11947759 DOI: 10.1002/alz.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/08/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025]
Abstract
INTRODUCTION Premature ovarian insufficiency (POI), marked by ovarian function loss before age 40, is linked to a higher risk of dementia, including Alzheimer's disease (AD). However, the associated brain structural changes remain poorly understood. METHODS We analyzed T1-weighted and diffusion tensor imaging in 33 idiopathic POI women and 51 healthy controls, using voxel-based, surface-based morphometry, and network analyses to assess gray matter volume (GMV), cortical thickness, and brain connectivity. RESULTS Women with POI showed significant GMV and cortical thickness reductions in the frontal, parietal, and temporal regions (p < 0.05), alongside impaired connectivity with key regions such as the hippocampus, thalamus, and amygdala (p < 0.05). Younger POI subgroups exhibited changes in more widespread brain regions. In additionally, notable atrophy was observed in specific hippocampal and thalamic subregions in POI (p < 0.05). DISCUSSION This preliminary study suggests early neurodegenerative patterns in POI, potentially contributing to dementia risk. Further research is needed to explore the underlying mechanisms and potential interventions. HIGHLIGHTS We evaluated brain structural changes in participants with idiopathic premature ovarian insufficiency (POI). The observed brain alterations in POI participants closely resemble those seen in early dementia, including regions specifically associated with Alzheimer's disease (AD). These findings highlight the critical need for early interventions to reduce the long-term risks of cognitive impairment and dementia in women with POI.
Collapse
Affiliation(s)
- Shuang Yuan
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Yuchen Gong
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yu Zhang
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Wenjiao Cao
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Liutong Wei
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Taotao Sun
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Junyan Sun
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Lulu Wang
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Qiuwan Zhang
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Qian Wang
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Yu Wei
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Zhaoxia Qian
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Puming Zhang
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| |
Collapse
|
21
|
Xie G, Jiang G, Huang L, Sun S, Li X, Wu B, Wang H, Zhang Z, Ye K, Yu Y, Xiong J. Asparagine Endopeptidase Inhibition Attenuates Tissue Plasminogen Activator-Induced Brain Hemorrhagic Transformation After Ischemic Stroke. CNS Neurosci Ther 2025; 31:e70345. [PMID: 40116141 PMCID: PMC11926568 DOI: 10.1111/cns.70345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Thrombolytic treatment with tissue plasminogen activator (tPA) is one of the approved pharmacological therapies for acute ischemic stroke. However, the use of tPA is limited due to hemorrhagic transformation (HT) and the narrow therapeutic time window. Previous studies demonstrated that asparagine endopeptidase (AEP), a widely expressed pH-dependent endo-lysosomal cysteine protease, can induce neuronal death during ischemia-reperfusion injury. But whether AEP is engaged in HT during ischemia-reperfusion injury is unclear. In the current study, we expanded the role of AEP on HT after delayed tPA administration. METHODS In order to investigate the effects of AEP on HT after delayed tPA administration following ischemic stroke, the middle cerebral artery occlusion/reperfusion (MCAO/R) was performed in wild-type (WT) and AEP knockout (KO) transgenic mice, followed by delayed administration of tPA (10 mg/kg, 3 h after occlusion). Additionally, we explored the potential of R13, a specific TrkB agonist with a strong inhibitory impact on AEP, to mitigate injury induced by tPA. 24 h after tPA administration, the following parameters were assessed: infarct volume, behavioral tests, hemorrhagic levels, Evans blue leakage, tight and adherens junction protein expression, blood-brain barrier (BBB) function, cerebral vascular structure, matrix metalloproteinases (MMPs), and BBB-regulated protein low-density lipoprotein receptor-related protein 1 (LRP-1) expression. To construct an in vitro model to examine the effects of AEP on ischemia-reperfusion injury after tPA treatment, human umbilical vein endothelial cells (HUVECs) were exposed to 4 h of oxygen-glucose deprivation (OGD), followed by treatment with tPA (500 ng/mL). 7,8-dihydroxyflavone (7,8-DHF), a natural TrkB agonist with an inhibitory effect on AEP, was applied before OGD. RESULTS Compared with tPA-treated WT mice, AEP KO mice treated with tPA showed improved infarct volume, neurological function, brain edema, brain hemoglobin levels, Evans blue leakage, vascular tight junctions, and basement membrane structure combined with reduced AEP expression and activity within the peri-infarct area. In addition, the mice treated with R13 exhibited protective effects on the BBB. Furthermore, we found that the expression of MMP2, MMP9, and LRP-1 in the brain was inhibited by both AEP knockout and R13 treatment. Moreover, HUVECs treated with 7,8-DHF showed improvements in tight and adherens junction proteins and suppressed levels of MMP2, MMP9, and LRP-1. CONCLUSION Our findings demonstrate that AEP exacerbates HT induced by delayed tPA treatment in acute ischemic stroke by activating LRP-1, MMP2, and MMP9, which disrupts BBB integrity. We further confirmed R13 as a preventive therapy to attenuate HT induced by delayed tPA treatment in acute ischemic stroke. The present study suggests AEP inhibition may serve as a promising strategy to enhance the safety of delayed tPA thrombolysis for ischemic stroke.
Collapse
Affiliation(s)
- Guanfeng Xie
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Gege Jiang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Liqin Huang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Shangqi Sun
- Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceChina
| | - Xiaoyi Li
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Bingjie Wu
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Hualong Wang
- Department of NeurologyThe First Hospital of Hebei Medical University, Brain Aging and Cognitive Neuroscience Laboratory of Hebei ProvinceShijiazhuangHebeiChina
| | - Zhentao Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong ProvinceChina
| | - Ying Yu
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Jing Xiong
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
- Taikang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| |
Collapse
|
22
|
Wang R, Azad AK, Sheikh AM, Tabassum S, Zhang Y, Zhou X, Bhuiya J, Binte Abdullah F, Yano S, Ikeue T, Nagai A. Carboxylated Zn-phthalocyanine attenuates brain Aβ in AD model mouse. Brain Res 2025; 1850:149422. [PMID: 39722311 DOI: 10.1016/j.brainres.2024.149422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
The deposition of aggregated amyloid β (Aβ) is considered as a key factor for Alzheimer's Disease (AD). Previously, we demonstrated that a carboxylated Zn-phthalocyanine (ZnPc) inhibits Aβ fibril formation, consequently protects neurons in culture. This study evaluated the effects of ZnPc on pathological changes in an AD mouse model (J20). Nine-month-old J20 mice received weekly intraperitoneal injection of ZnPc (2 and 4 mg/kg) for 12 weeks. Cognitive performance was assessed using Y-maze and open field tests. ZnPc levels in the tissues were evaluated using near-infrared microscopy and spectroscopy. ZnPc accumulated primarily in the liver and kidney. A considerable amount was also detected in brain tissue, where it co-localized with neurons, microglia, and extracellularly deposited Aβ. ZnPc treatment (2 mg/kg) significantly improved cognitive functions of J20 mice. Immunostaining results showed that Aβ was positive intracellularly in neurons, and extracellularly around the vessels and parenchyma in the cortex and hippocampus of PBS-treated J20 mice, which was significantly decreased in ZnPc-treated J20 mice in a dose-dependent manner. Nissl staining demonstrated that neuronal numbers were increased both in the cortex and hippocampus. GFAP-positive astrocytes and Iba-1 positive microglia were decreased by ZnPc treatment. Also, vessel numbers were increased in ZnPc-treated groups. In PBS-treated group, aquaporin 4 immunopositive area extended beyond STL-positive vessels into the parenchyma, which was confined primarily around the vessels in the ZnPc-treated group. Claudin 5 levels were increased in ZnPc-treated group. Therefore, ZnPc can decrease brain Aβ deposition in J20 mice, suggesting it as a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Ruochen Wang
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan; Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Abul Kalam Azad
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan
| | - Abdullah Md Sheikh
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Shatera Tabassum
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Yuchi Zhang
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiaojing Zhou
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan; Department of Neurology, Zhoushan Hospital, Zhoushan 316004, China
| | - Jubo Bhuiya
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan
| | - Fatema Binte Abdullah
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan
| | - Shozo Yano
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Takahisa Ikeue
- Department of Chemistry, Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Atsushi Nagai
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan; Department of Laboratory Medicine, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan.
| |
Collapse
|
23
|
Kacimi L, Prevot V. GnRH and Cognition. Endocrinology 2025; 166:bqaf033. [PMID: 39996304 DOI: 10.1210/endocr/bqaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/06/2025] [Accepted: 02/23/2025] [Indexed: 02/26/2025]
Abstract
GnRH is traditionally recognized as the central regulator of reproduction through its pulsatile secretion, which governs the hypothalamic-pituitary-gonadal axis. However, recent evidence has highlighted its broader role in brain development and function, including in cognitive and higher intellectual processes. GnRH production follows distinct phases, from its early activation during minipuberty-the first postnatal activation of GnRH neurons during the infantile period-, its reactivation and stabilization starting at puberty, and its eventual decline with age and the loss of gonadal steroid feedback. This evolution depends on the establishment, maturation and activation of GnRH neurons, a complex process regulated by the cellular and molecular environment of these neurons, including multiple neuronal and glial types as well as a minipubertal "switch" in gene expression, the perturbation of which may have long-term or delayed consequences for both reproductive and cognitive function. The cognitive role of GnRH may be related to its recently revealed involvement in maintaining myelination and synaptic plasticity, whereas disruptions in its finely tuned rhythmic secretion, either age-related or pathological, are associated with cognitive decline and neurodegenerative disorders. Restoring physiological GnRH levels and pulsatility can reverse age-related cognitive decline and improve sensory functions even in adulthood, suggesting a mobilization of the "cognitive reserve" in both animal models and human patients. This review highlights recent advances in our understanding of the GnRH system and the therapeutic potential of pulsatile GnRH therapy to mitigate age-related cognitive decline and neurodegenerative processes.
Collapse
Affiliation(s)
- Loïc Kacimi
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, FHU 1000 days for health, EGID, DistALZ, UMR_S112, Lille 59000, France
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, FHU 1000 days for health, EGID, DistALZ, UMR_S112, Lille 59000, France
| |
Collapse
|
24
|
Kim M, Wang J, Pilley SE, Lu RJ, Xu A, Kim Y, Liu M, Fu X, Booth SL, Mullen PJ, Benayoun BA. Estropausal gut microbiota transplant improves measures of ovarian function in adult mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.03.592475. [PMID: 40060387 PMCID: PMC11888174 DOI: 10.1101/2024.05.03.592475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Decline in ovarian function with age not only affects fertility but is also linked to a higher risk of age-related diseases in women (e.g. osteoporosis, dementia). Intriguingly, earlier menopause is linked to shorter lifespan; however, the underlying molecular mechanisms of ovarian aging are not well understood. Recent evidence suggests the gut microbiota may influence ovarian health. In this study, we characterized ovarian aging associated microbial profiles in mice and investigated the effect of the gut microbiome from young and estropausal female mice on ovarian health through fecal microbiota transplantation. We demonstrate that the ovarian transcriptome can be broadly remodeled after heterochronic microbiota transplantation, with a reduction in inflammation-related gene expression and trends consistent with transcriptional rejuvenation. Consistently, these mice exhibited enhanced ovarian health and increased fertility. Using metagenomics-based causal mediation analyses and serum untargeted metabolomics, we identified candidate microbial species and metabolites that may contribute to the observed effects of fecal microbiota transplantation. Our findings reveal a direct link between the gut microbiota and ovarian health.
Collapse
Affiliation(s)
- Minhoo Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Justin Wang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Steven E Pilley
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ryan J Lu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | - Alan Xu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Thomas Lord Department of Computer Science, USC Viterbi School of Engineering, Los Angeles, CA 90089, USA
| | - Younggyun Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Minying Liu
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Xueyan Fu
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Sarah L Booth
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Peter J Mullen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089, USA
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, CA 90089, USA
- USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
25
|
He Q, Wang W, Zhang Y, Xiong Y, Tao C, Ma L, You C, Ma J, Jiang Y. Global burden of young-onset dementia, from 1990 to 2021: an age-period-cohort analysis from the global burden of disease study 2021. Transl Psychiatry 2025; 15:56. [PMID: 39966345 PMCID: PMC11836277 DOI: 10.1038/s41398-025-03275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/14/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
This study aims to assess the burden of young-onset dementia worldwide, regionally, and nationally during 1990-2021. Prevalence, incidence, mortality, and disability adjusted life years (DALYs) rates were used to estimate burden of the young-onset dementia. The average annual percentage was utilized to evaluate the trends during 1990-2021. Decomposition analysis was performed to explore driving factors behind changes. Age-period-cohort modeling was used to estimate local drift, age, period and cohort effects. Global age standardized prevalence and incidence of dementia among people under 65 years increased from 93.39 and 16.24 per 100,000 persons in 1990 to 96.09 and 17.16 per 100,000 persons in 2021; mortality increased from 0.89 per 100,000 population to 0.91 per 100,000 population; and age standardized DALYs increased from 45.60 per 100,000 persons to 46.78 per 100,000 persons. Countries with a high, high-middle, and middle SDI experienced an upward trend of prevalence and incidence, and the mortality and DALYs of young-onset dementia in countries with a low-middle and low sociodemographic index was a higher level. Smoking, high body-mass index and high fasting plasma glucose levels were main risk factors. Population growth was the largest factor for the increasing young-onset dementia in all regions. Globally, prevalence, incidence, and DALYs rate of young-onset dementia increased with age, period effects showing a decreasing risk and then an increasing risk. Cohort effects of prevalence and DALYs began to decline after the 1950s. Young-onset dementia presents a growing global health challenge in the age, period and cohort across SDI regions, countries.
Collapse
Affiliation(s)
- Qiang He
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenjing Wang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yangchang Zhang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Xiong
- Department of Nursing, West China Hospital/West China School of Nursing, Sichuan University, Chengdu, China
| | - Chuanyuan Tao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junpeng Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yan Jiang
- Department of Nursing, West China Hospital/West China School of Nursing, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
Liu X, Zhao Y, Feng Y, Wang S, Luo A, Zhang J. Ovarian Aging: The Silent Catalyst of Age-Related Disorders in Female Body. Aging Dis 2025:AD.2024.1468. [PMID: 39965250 DOI: 10.14336/ad.2024.1468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025] Open
Abstract
Age-related diseases have emerged as a global concern as the population ages. Consequently, understanding the underlying causes of aging and exploring potential anti-aging interventions is imperative. In females, the ovaries serve as the principal organs responsible for ovulation and the production of female hormones. The aging ovaries are related to infertility, menopause, and associated menopausal syndromes, with menopause representing the culmination of ovarian aging. Current evidence indicates that ovarian aging may contribute to dysfunction across multiple organ systems, including, but not limited to, cognitive impairment, osteoporosis, and cardiovascular disease. Nevertheless, due to the widespread distribution of sex hormone receptors throughout the body, ovarian aging affects not only these specific organs but also influences a broader spectrum of age-related diseases in women. Despite this, the impact of ovarian aging on overall age-related diseases has been largely neglected. This review provides a thorough summary of the impact of ovarian aging on age-related diseases, encompassing the nervous, circulatory, locomotor, urinary, digestive, respiratory, and endocrine systems. Additionally, we have outlined prospective therapeutic approaches for addressing both ovarian aging and age-related diseases, with the aim of mitigating their impacts and preserving women's fertility, physical health, and psychological well-being.
Collapse
Affiliation(s)
- Xingyu Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanqu Zhao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanzhi Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
27
|
Zhang Y, Sun ZD, Yang YS, Fu WD. Causal association of sex hormone-related traits with Alzheimer's disease: a multivariable and network Mendelian randomization analysis. Front Neurol 2025; 16:1391182. [PMID: 39974360 PMCID: PMC11835684 DOI: 10.3389/fneur.2025.1391182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Background Although studies have demonstrated a correlation between sex hormone-related traits [such as sex hormone binding globulin (SHBG) and testosterone] and Alzheimer's Disease (AD), the link remains uncertain due to the intricacies of AD pathology. The study aimed to investigate the possible causal link between sex hormone-related traits and AD. Methods The authors collected data from extensive genome-wide association studies (GWASs) of European ancestry on sex hormone-related traits and AD. Univariate and multivariate Mendelian randomization (MR) analyses were conducted to explore the possible causal relationship between these traits and AD. We used inverse variance weighted (IVW) MR as the main analysis. Results The use of univariate MR-IVW revealed a possible causal relationship between SHBG [ORs (95% CI), 1.005 (1.001-1.009), p = 0.006], testosterone [ORs (95% CI), 0.994 (0.989-0.999), p = 0.013] and AD in female. There is no evidence of a causal association of SHBG [ORs (95% CI), 1.002 (0.999-1.005)), p = 0.237] and testosterone [ORs (95% CI), 1.000 (0.997-1.004), p = 0.810] with AD in males. Multivariate MR analysis revealed a possible direct causal connection between SHBG and testosterone in relation to females AD (SHBG-OR (95%CI), 1.005 (1.001-1.009, p = 0.023); testosterone-OR (95%CI), 0.995 (0.989-1.000, p = 0.049). Bidirectional MR analysis indicated that SHBG has a possible causal effect on testosterone (SHBG on testosterone-OR (95%CI), 1.064 (1.032-1.096), p = 0.0001). The results of the network MR analysis suggested that testosterone may act as a mediator in the causal pathway from SHBG to AD. Conclusion Our study using the MR methodology indicates that increase of SHBG level and decrease of testosterone level in females are positively linked to an increased risk of developing AD. Importantly, testosterone plays a mediating role in the causal pathway from SHBG to females AD.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Zhen-dong Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yu-shen Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Wei-dong Fu
- Department of Anesthesiology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
28
|
Ongaro L, Zhou X, Wang Y, Schultz H, Zhou Z, Buddle ERS, Brûlé E, Lin YF, Schang G, Hagg A, Castonguay R, Liu Y, Su GH, Seidah NG, Ray KC, Karp SJ, Boehm U, Ruf-Zamojski F, Sealfon SC, Walton KL, Lee SJ, Bernard DJ. Muscle-derived myostatin is a major endocrine driver of follicle-stimulating hormone synthesis. Science 2025; 387:329-336. [PMID: 39818879 DOI: 10.1126/science.adi4736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/18/2024] [Accepted: 10/31/2024] [Indexed: 01/19/2025]
Abstract
Myostatin is a paracrine myokine that regulates muscle mass in a variety of species, including humans. In this work, we report a functional role for myostatin as an endocrine hormone that directly promotes pituitary follicle-stimulating hormone (FSH) synthesis and thereby ovarian function in mice. Previously, this FSH-stimulating role was attributed to other members of the transforming growth factor-β family, the activins. Our results both challenge activin's eponymous role in FSH synthesis and establish an unexpected endocrine axis between skeletal muscle and the pituitary gland. Our data also suggest that efforts to antagonize myostatin to increase muscle mass may have unintended consequences on fertility.
Collapse
Affiliation(s)
- Luisina Ongaro
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Ying Wang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Hailey Schultz
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Ziyue Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Evan R S Buddle
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Emilie Brûlé
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Yeu-Farn Lin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Gauthier Schang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Adam Hagg
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Yewei Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Gloria H Su
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM)-University of Montreal, Montreal, Quebec, Canada
| | - Kevin C Ray
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth J Karp
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, University of Saarland School of Medicine, Homburg, Germany
| | - Frederique Ruf-Zamojski
- Cedars-Sinai Medical Center, Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Los Angeles, CA, USA
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kelly L Walton
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Chen H, Fang HQ, Liu JT, Chang SY, Cheng LB, Sun MX, Feng JR, Liu ZM, Zhang YH, Rosen CJ, Liu P. Atlas of Fshr expression from novel reporter mice. eLife 2025; 13:RP93413. [PMID: 39773308 PMCID: PMC11709436 DOI: 10.7554/elife.93413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
The FSH-FSHR pathway has been considered an essential regulator in reproductive development and fertility. But there has been emerging evidence of FSHR expression in extragonadal organs. This poses new questions and long-term debates regarding the physiological role of the FSH-FSHR, and underscores the need for reliable, in vivo analysis of FSHR expression in animal models. However, conventional methods have proven insufficient for examining FSHR expression due to several limitations. To address this challenge, we developed Fshr-ZsGreen reporter mice under the control of Fshr endogenous promoter using CRISPR-Cas9. With this novel genetic tool, we provide a reliable readout of Fshr expression at single-cell resolution level in vivo and in real time. Reporter animals were also subjected to additional analyses,to define the accurate expression profile of FSHR in gonadal and extragonadal organs/tissues. Our compelling results not only demonstrated Fshr expression in intragonadal tissues but also, strikingly, unveiled notably increased expression in Leydig cells, osteoblast lineage cells, endothelial cells in vascular structures, and epithelial cells in bronchi of the lung and renal tubes. The genetic decoding of the widespread pattern of Fshr expression highlights its physiological relevance beyond reproduction and fertility, and opens new avenues for therapeutic options for age-related disorders of the bones, lungs, kidneys, and hearts, among other tissues. Exploiting the power of the Fshr knockin reporter animals, this report provides the first comprehensive genetic record of the spatial distribution of FSHR expression, correcting a long-term misconception about Fshr expression and offering prospects for extensive exploration of FSH-FSHR biology.
Collapse
Affiliation(s)
- Hongqian Chen
- Laboratory of Bone and Adipose Biology, Shanxi Medical UniversityTaiyuanChina
| | - Hui-Qing Fang
- Laboratory of Bone and Adipose Biology, Shanxi Medical UniversityTaiyuanChina
- Department of Dentistry, The 980th Hospital of the PLA Joint Logistic Support ForceShijiazhuangChina
| | - Jin-Tao Liu
- Laboratory of Bone and Adipose Biology, Shanxi Medical UniversityTaiyuanChina
| | - Shi-Yu Chang
- Laboratory of Bone and Adipose Biology, Shanxi Medical UniversityTaiyuanChina
| | - Li-Ben Cheng
- Laboratory of Bone and Adipose Biology, Shanxi Medical UniversityTaiyuanChina
| | - Ming-Xin Sun
- Laboratory of Bone and Adipose Biology, Shanxi Medical UniversityTaiyuanChina
| | - Jian-Rui Feng
- Laboratory of Bone and Adipose Biology, Shanxi Medical UniversityTaiyuanChina
| | - Ze-Min Liu
- Laboratory of Bone and Adipose Biology, Shanxi Medical UniversityTaiyuanChina
- Shanxi Medical Universityersity, The Second Hospital, University Shanxi Medical UniversityTaiyuanChina
| | - Yong-Hong Zhang
- Laboratory of Bone and Adipose Biology, Shanxi Medical UniversityTaiyuanChina
- Shanxi Medical Universityersity, The Second Hospital, University Shanxi Medical UniversityTaiyuanChina
| | | | - Peng Liu
- Laboratory of Bone and Adipose Biology, Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
30
|
Liu H, Zhang X, Wang Q, Li B, Bian B, Liu Y. A Comprehensive Analysis of Sex-Biased Gene Expression in the Aging Human Retina Through a Combination of Single-Cell and Bulk RNA Sequencing. Invest Ophthalmol Vis Sci 2025; 66:28. [PMID: 39804630 PMCID: PMC11734759 DOI: 10.1167/iovs.66.1.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/11/2024] [Indexed: 01/18/2025] Open
Abstract
Purpose Previous studies have reported divergent sexual responses to aging; however, specific variations in gene expression between aging males and females and their potential association with age-related retinal diseases remain unclear. This study collected data from public databases and developed a comprehensive comparison of retina between aging females and males. Methods Single-cell RNA (scRNA) and bulk RNA sequencing data of the aging retina from females and males in public databases were utilized for integrated analysis to investigate sex-biased expression in retina. Additionally, in vitro experiments were conducted on individuals with retinitis pigmentosa (RP) to validate the sex difference in degenerative retina. Results Bulk RNA analysis revealed sex-biased expression of specific genes in retina of aging individuals, with immune pathway-related genes exhibiting higher expression in females compared to males. The scRNA analysis demonstrated that sex-biased gene expression was cell-type specific in aging retina. Furthermore, susceptibility genes for age-related macular degeneration and RP exhibited variation across different cell types and sexes. Cell-to-cell communication unveiled an increased interaction associated with TGFB1, CCL7, and VEGFA in Müller glia, microglia, and astrocytes of female retina. Notably, we observed female-biased chemokine expression in microglia contributing to heightened susceptibility to immune inflammation in female retina. Finally, we confirmed a more pronounced inflammatory response during degeneration in female rd10 mouse retina compared to males. Conclusions This study provides a comprehensive comparison of retina between females and males in healthy aging human retina and highlights the significance of sex as an influential factor in retinal diseases.
Collapse
Affiliation(s)
- Hongling Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Xue Zhang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Qing Wang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Bowen Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Baishijiao Bian
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse, China
- State Key Laboratory of Trauma, Burns, and Combined Injury, Department of Trauma Medical Center, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yong Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
31
|
Tarrá Marrugo AD. Histopathological changes of nervous tissue in women over 60 years of age with Alzheimer's disease and their relationship with menopause. REVISTA ESPANOLA DE PATOLOGIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ANATOMIA PATOLOGICA Y DE LA SOCIEDAD ESPANOLA DE CITOLOGIA 2025; 58:100800. [PMID: 39889508 DOI: 10.1016/j.patol.2024.100800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/14/2024] [Indexed: 02/03/2025]
Abstract
INTRODUCTION Ageing is a natural and irreversible process that primarily manifests in older age, becoming more common after the age of 60. Currently, a significant increase has been observed in the elderly population, with forecasts indicating that this group will triple in size over the next 50 years. This phenomenon is evident in several countries, including Japan, Mexico, Brazil, and Colombia, where the growing population of older adults is accompanied by an increased risk of neurodegenerative diseases, such as Alzheimer's disease. Studies have shown differences in the onset and progression of the disease between men and women, highlighting menopause and hormonal factors as key determinants in women. An association has been identified between a lower exposure to endogenous oestrogens and a higher risk of dementia in women, linked to the action of the enzyme β-secretase (BACE1), which is involved in the formation of amyloid aggregates associated with Alzheimer's disease. These findings highlight the importance of thoroughly investigating and understanding the impact of ageing and related diseases on the current and future population. OBJECTIVE This study aims to describe the histopathological changes in nervous tissue in women over 60 years of age with Alzheimer's disease and their relationship to menopause. METHODOLOGY A comprehensive search was conducted in databases such as PubMed, ScienceDirect, Frontiers, Scopus, and Springer. RESULTS Two hundred thirteen articles were selected for review and 45 full articles were chosen. CONCLUSIONS Alzheimer's disease is characterised by a progressive loss of cognitive function due to brain lesions, including the accumulation of amyloid-beta plaques and neuronal apoptosis. Hormonal changes during menopause may contribute to the onset of the disease.
Collapse
Affiliation(s)
- Angel David Tarrá Marrugo
- GINUMED, Corporación Universitaria Rafael Núñez, Colombia; Facultad Ciencias de la Salud, Corporación Universitaria Rafael Núñez, Campus Cartagena de Indias, Colombia.
| |
Collapse
|
32
|
Palak E, Ponikwicka-Tyszko D, Pulawska-Moon K, Sztachelska M, Milewska G, Modzelewska B, Kleszczewski T, Koivukoski ML, Bernaczyk P, Hady HR, Gołaszewski P, Lupinska AN, Kulikowski M, Lemancewicz A, Huhtaniemi IT, Wolczynski S, Rahman NA. Revisiting the follicle-stimulation hormone receptor expression and function in human myometrium and adipose tissue. Mol Med 2024; 30:241. [PMID: 39633277 PMCID: PMC11619181 DOI: 10.1186/s10020-024-01015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Extragonadal follicle-stimulating hormone receptor (FSHR) expression at low levels has been shown in several normal and tumor tissues, including myometrium and adipose tissue. FSH-FSHR signaling in the myometrium has been suggested to regulate uterine contractile activity and the timing of labor. In contrast, FSH-FSHR has been linked to the activation of brown/beige fat thermogenesis in adipose tissue. The issue of extragonadal FSHR expression and its functionality remains contentious within the scientific community, as contradictory findings necessitate further independent and critical analyses. Hereby, we re-investigated the FSHR expression and its functionality in normal non-pregnant (M-NP) and pregnant (N-P) human myometrium, as well as in human visceral (VAT) and subcutaneous (SCAT) adipose tissue (AT). METHODS FSHR expression at mRNA (real-time qPCR, RNAscope in situ hybridization) and protein (immunohistochemical staining) levels in adipose tissue, myometrium, and adipocytes were evaluated. Myometrium and adipocytes were treated with recombinant (rh)FSH to study its effects on functional pathways. Myometrium contractile activity was measured using a force transducer with digital output and the DASYLab software unit. Cyclic adenosine monophosphate (cAMP) production by myometrium explants and adipocytes was measured using a cAMP ELISA Kit. The activation of the AKT pathway in myometrium and adipocytes was analyzed by Western blot analysis. RESULTS Contrary to previous observations, we found no expression of FSHR at either mRNA or protein levels in M-NP, N-P, VAT, and SCAT. Treatment with recombinant human FSH (rhFSH) showed no effect on cAMP production or phosphorylation of AKT in M-NP, N-P, as well as in VAT and SCAT. rhFSH treatment did not influence contractile activity in M-NP, N-P. CONCLUSIONS These findings suggest that the FSHR signaling pathway does not regulate myometrial contractility during pregnancy. Additionally, the absence of FSHR expression in both VAT and SCAT implied that FSHR does not play a role in the functional signaling pathways in adipose tissues. In conclusion, our findings contradict earlier data on the involvement of FSH-FSHR signaling in regulating myometrial contractility near term, as well as in adipose tissue function.
Collapse
Affiliation(s)
- Ewelina Palak
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-748, Poland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, 20520, Finland
| | - Donata Ponikwicka-Tyszko
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-748, Poland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, 20520, Finland
| | - Kamila Pulawska-Moon
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, 20520, Finland
| | - Maria Sztachelska
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-748, Poland
| | - Gabriela Milewska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Beata Modzelewska
- Department of Biophysics, Medical University of Bialystok, Bialystok, 15-269, Poland
| | - Tomasz Kleszczewski
- Department of Biophysics, Medical University of Bialystok, Bialystok, 15-269, Poland
| | - Maria L Koivukoski
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, 20520, Finland
| | - Piotr Bernaczyk
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, 15-269, Poland
| | - Hady Razak Hady
- 1st Clinical Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, 15- 269, Poland
| | - Piotr Gołaszewski
- 1st Clinical Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, 15- 269, Poland
| | - Aleksandra N Lupinska
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-748, Poland
| | - Marek Kulikowski
- Department of Perinatology, Medical University of Bialystok, Bialystok, 15-269, Poland
| | - Adam Lemancewicz
- Department of Perinatology, Medical University of Bialystok, Bialystok, 15-269, Poland
| | - Ilpo T Huhtaniemi
- Institute of Reproductive and Developmental Biology, Imperial College London, London, W12 0NN, UK
| | - Slawomir Wolczynski
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-748, Poland
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Nafis A Rahman
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, 20520, Finland.
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, 15-276, Poland.
| |
Collapse
|
33
|
Feng Y, Wang J, Zhang R, Wang Y, Wang J, Meng H, Cheng H, Zhang J. Mediterranean diet related to 3-year incidence of cognitive decline: results from a cohort study in Chinese rural elders. Nutr Neurosci 2024; 27:1351-1362. [PMID: 38598413 DOI: 10.1080/1028415x.2024.2336715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
OBJECTIVE This study aims to examine the effect of the Mediterranean diet (MeDi) on cognitive decline among the Chinese elderly with a 3-year follow-up. METHODS This study is divided into two waves: wave-1 January 2019 to June 2019 (n = 2313); wave-2 January 2022 to March 2022 (n = 1648). MeDi scores were calculated from the Mediterranean Diet Adherence Screener (MEDAS), with the scoring of low compliance (0-6 points) and high compliance (7-14 points). The Mini-Mental State Examination (MMSE) was used to assess cognitive function. An MMSE score dropping ≥ 2 points from baseline was defined as cognitive decline. The relationships between MeDi score and cognitive decline were analyzed by linear regression models or Binary logistic regression. RESULTS During the 3-year follow-up, 23.8% of patients exhibited cognitive decline. The study revealed a significant difference in MMSE score changes between low and high MeDi adherence groups (p < 0.001). MeDi score was negatively correlated with cognitive deterioration (β = -0.020, p = 0.026). MeDi score was only negatively associated with cognitive decline in the female subgroup aged ≥65 years (β = -0.034, p = 0.033). The food beans (OR = 0.65, 95%CI:0.51, 0.84), fish (OR = 0.72, 95%CI:0.54, 0.97), and cooked vegetables (OR = 0.68, 95%CI:0.53, 0.84) were protective factors for cognitive decline. CONCLUSIONS This study suggests that greater adherence to the MeDi is linked to a reduced risk of cognitive decline in elderly people. However, this is found only in women who are 65 years old or older. It also found long-term adherence to beans, fish, and vegetables are more effective in improving cognitive function.
Collapse
Affiliation(s)
- Yuping Feng
- School of Nursing, Gansu University of Chinese Medicine, Lanzhou, People's Republic of China
| | - Jiancheng Wang
- Department of General Practice Medicine, Hospital of Gansu Health Vocational College, Lanzhou, People's Republic of China
| | - Rong Zhang
- School of Nursing, Gansu University of Chinese Medicine, Lanzhou, People's Republic of China
| | - Yunhua Wang
- School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Jing Wang
- School of Nursing, Gansu University of Chinese Medicine, Lanzhou, People's Republic of China
| | - Hongyan Meng
- School of Nursing, Gansu University of Chinese Medicine, Lanzhou, People's Republic of China
| | - Hu Cheng
- School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Juxia Zhang
- Clinical Educational Department, Gansu Provincial Hospital, Lanzhou, People's Republic of China
| |
Collapse
|
34
|
Wang Q, Yu R, Fu C, Li M, Wang X, Zhu D. The relationship between male and female endogenous reproductive hormones levels and subjective cognitive decline score: A cross-sectional analysis of the Pingyin cohort study. Clin Endocrinol (Oxf) 2024; 101:659-668. [PMID: 38952182 DOI: 10.1111/cen.15104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVE Reproductive hormones might impact disease course in cognitive decline. We examined the association between male and female endogenous reproductive hormones and subjective cognitive decline (SCD) score. DESIGN, PATIENTS AND MEASUREMENTS A cross-sectional study design was used with baseline data from the Pingyin cohort study, involving 1943 participants aged 45-70 years. Oestrogen (E2), testosterone, follicle stimulating hormone (FSH) and luteinizing hormone (LH) were measured in females and E2 and testosterone were measured in males. We categorised hormones into three levels of low, intermediate and high level. The 9-item subjective cognitive decline questionnaire (SCD-Q9) scores were collected to assess the symptoms of SCD. Multivariable logistic regression models were used to estimate odds ratios (ORs) and 95% confidence interval (CI) between categorised hormone levels and SCD status. Multivariable linear regression models were also used. RESULTS Overall, 1943 participants were involved and 1285 (66.1%) were female. The mean age at baseline was 59.1 (standard deviation 7.1) years. Women with high testosterone levels had a higher probability of having SCD compared with those with low testosterone levels (OR 1.43, 95% CI 1.01-2.05). Men with a high level of testosterone (0.59, 0.35-0.98) and high testosterone/E2 ratio (0.55, 0.33-0.90) were related to decreased chances of having SCD. Each one-unit increase of testosterone was linked to reduced SCD score in males [(β: -.029, 95% CI (-0.052, -0.007)]. CONCLUSION There was sex-specific relationship between hormone levels and SCD abnormal. Those with higher testosterone levels in females may increase likelihood of experiencing SCD. Males with higher testosterone levels and higher testosterone/E2 ratio may be associated with reduced likelihood of SCD. The roles of endogenous reproductive hormone levels and their dynamic changes in cognitive function need further investigation.
Collapse
Affiliation(s)
- Qi Wang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruihong Yu
- Pingyin Center for Disease Control and Prevention, Jinan, Pingyin, China
| | - Chunying Fu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meiling Li
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoyi Wang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dongshan Zhu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Center for Clinical Epidemiology and Evidence-Based Medicine, Shandong University, Jinan, China
| |
Collapse
|
35
|
Kim SM, Sultana F, Korkmaz F, Rojekar S, Pallapati A, Ryu V, Lizneva D, Yuen T, Rosen CJ, Zaidi M. Neuroendocrinology of bone. Pituitary 2024; 27:761-777. [PMID: 39096452 DOI: 10.1007/s11102-024-01437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
The past decade has witnessed significant advances in our understanding of skeletal homeostasis and the mechanisms that mediate the loss of bone in primary and secondary osteoporosis. Recent breakthroughs have primarily emerged from identifying disease-causing mutations and phenocopying human bone disease in rodents. Notably, using genetically-modified rodent models, disrupting the reciprocal relationship with tropic pituitary hormone and effector hormones, we have learned that pituitary hormones have independent roles in skeletal physiology, beyond their effects exerted through target endocrine glands. The rise of follicle-stimulating hormone (FSH) in the late perimenopause may account, at least in part, for the rapid bone loss when estrogen is normal, while low thyroid-stimulating hormone (TSH) levels may contribute to the bone loss in thyrotoxicosis. Admittedly speculative, suppressed levels of adrenocorticotropic hormone (ACTH) may directly exacerbate bone loss in the setting of glucocorticoid-induced osteoporosis. Furthermore, beyond their established roles in reproduction and lactation, oxytocin and prolactin may affect intergenerational calcium transfer and therefore fetal skeletal mineralization, whereas elevated vasopressin levels in chronic hyponatremic states may increase the risk of bone loss.. Here, we discuss the interaction of each pituitary hormone in relation to its role in bone physiology and pathophysiology.
Collapse
Affiliation(s)
- Se-Min Kim
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Farhath Sultana
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Funda Korkmaz
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Satish Rojekar
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anusha Pallapati
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vitaly Ryu
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Daria Lizneva
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tony Yuen
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Mone Zaidi
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
36
|
Breeze B, Connell E, Wileman T, Muller M, Vauzour D, Pontifex MG. Menopause and Alzheimer's disease susceptibility: Exploring the potential mechanisms. Brain Res 2024; 1844:149170. [PMID: 39163895 DOI: 10.1016/j.brainres.2024.149170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Alzheimer's Disease (AD), responsible for 62% of all dementia cases, is a progressive neurodegenerative condition that leads to cognitive dysfunction. The prevalence of AD is consistently higher in women suggesting they are disproportionately affected by this disease. Despite this, our understanding of this female AD vulnerability remains limited. Menopause has been identified as a potential contributing factor to AD in women, with earlier menopause onset associated with greater AD risk. However, the underlying mechanisms responsible for this increased risk are not fully understood. This review examines the potential role of menopause in the development of Alzheimer's Disease providing a mechanistic overview of the available literature from hormones to pathology. While literature is now emerging that indicates a role of hormonal shifts, gut dysbiosis, lipid dysregulation and inflammation, more research is needed to fully elucidate the mechanisms involved.
Collapse
Affiliation(s)
- Bernadette Breeze
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Emily Connell
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Tom Wileman
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom; Quadram Institute Biosciences, Norwich NR4 7UQ, United Kingdom
| | - Michael Muller
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Matthew G Pontifex
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom.
| |
Collapse
|
37
|
Lopez-Lee C, Kodama L, Fan L, Zhu D, Zhu J, Wong MY, Ye P, Norman K, Foxe NR, Ijaz L, Yu F, Chen H, Carling GK, Torres ER, Kim RD, Dubal DB, Liddelow SA, Sinha SC, Luo W, Gan L. Tlr7 drives sex differences in age- and Alzheimer's disease-related demyelination. Science 2024; 386:eadk7844. [PMID: 39607927 DOI: 10.1126/science.adk7844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/30/2024] [Accepted: 10/10/2024] [Indexed: 11/30/2024]
Abstract
Alzheimer's disease (AD) and other age-related disorders associated with demyelination exhibit sex differences. In this work, we used single-nuclei transcriptomics to dissect the contributions of sex chromosomes and gonads in demyelination and AD. In a mouse model of demyelination, we identified the roles of sex chromosomes and gonads in modifying microglia and oligodendrocyte responses before and after myelin loss. In an AD-related mouse model expressing APOE4, XY sex chromosomes heightened interferon (IFN) response and tau-induced demyelination. The X-linked gene, Toll-like receptor 7 (Tlr7), regulated sex-specific IFN response to myelin. Deletion of Tlr7 dampened sex differences while protecting against demyelination. Administering TLR7 inhibitor mitigated tau-induced motor impairment and demyelination in male mice, indicating that Tlr7 plays a role in the male-biased type I Interferon IFN response in aging- and AD-related demyelination.
Collapse
Affiliation(s)
- Chloe Lopez-Lee
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Lay Kodama
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Li Fan
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Daphne Zhu
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jingjie Zhu
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Man Ying Wong
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Pearly Ye
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Kendra Norman
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nessa R Foxe
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Laraib Ijaz
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Fangmin Yu
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Hao Chen
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Gillian K Carling
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Eileen R Torres
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Rachel D Kim
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Dena B Dubal
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
- Department of Neuroscience & Physiology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Subhash C Sinha
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Wenjie Luo
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
38
|
Li C, Ling Y, Kuang H. Research progress on FSH-FSHR signaling in the pathogenesis of non-reproductive diseases. Front Cell Dev Biol 2024; 12:1506450. [PMID: 39633710 PMCID: PMC11615068 DOI: 10.3389/fcell.2024.1506450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Follicle-stimulating hormone (FSH), a glycoprotein hormone synthesized and secreted by the anterior pituitary gland, plays a critical role in reproductive development and regulation by binding to FSH receptor (FSHR). Beyond reproductive tissue, FSHRs have been identified in various non-reproductive tissues, indicating broader functions. FSH levels chronically rise during menopause and remain elevated in postmenopausal life. This increase in FSH level has been indicated to be associated with heightened risk of several non-reproductive diseases, including osteoporosis, hypercholesterolemia, type 2 diabetes mellitus, obesity, cardiovascular disease, Alzheimer's disease, and certain cancers. In this review, we will examine the role of FSH-FSHR signaling in the pathogenesis of these non-reproductive diseases and explore therapeutic strategies targeting FSH-FSHR signaling pathways.
Collapse
Affiliation(s)
- Chenhe Li
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, Jiangxi, China
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yan Ling
- Department of Obstetrics and Gynecology, Jiangxi provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Haibin Kuang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
39
|
Jiang J, Zhang P, Yuan Y, Xu X, Wu T, Zhang Z, Wang J, Bi Y. Prolactin deficiency drives diabetes-associated cognitive dysfunction by inducing microglia-mediated synaptic loss. J Neuroinflammation 2024; 21:295. [PMID: 39543619 PMCID: PMC11566644 DOI: 10.1186/s12974-024-03289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Diabetes-associated cognitive dysfunction, characterized by hippocampal synaptic loss as an early pathological feature, seriously threatens patients' quality of life. Synapses are dynamic structures, and hormones play important roles in modulating the formation and elimination of synapses. The pituitary, the master gland of the body, releases several hormones with multiple roles in hippocampal synaptic regulation. In this study, we aimed to explore the relationship between pituitary hormones and cognitive decline in diabetes. METHODS A total of 744 patients with type 2 diabetes (T2DM) (445 men and 299 postmenopausal women) who underwent serum pituitary hormone level assessments, comprehensive cognitive evaluations and MRI scans were enrolled. Dynamic diet interventions were applied in both chow diet-fed mice and high-fat diet (HFD)-fed diabetic mice. The cognitive performance and hippocampal pathology of prolactin (PRL)-knockout mice, neuronal prolactin receptor (PRLR)-specific knockout mice and microglial PRLR-specific knockout mice were assessed. Microglial PRLR-specific knockout mice were fed an HFD to model diabetes. Diabetic mice received an intracerebroventricular infusion of recombinant PRL protein or vehicle. RESULTS This clinical study revealed that decreased PRL levels were associated with cognitive impairment and hippocampal damage in T2DM patients. In diabetic mice, PRL levels diminished before hippocampal synaptic loss and cognitive decline occurred. PRL loss could directly cause cognitive dysfunction and decreased hippocampal synaptic density. Knockout of PRLR in microglia, rather than neurons, induced hippocampal synaptic loss and cognitive impairment. Furthermore, blockade of PRL/PRLR signaling in microglia exacerbated abnormal microglial phagocytosis of synapses, further aggravating hippocampal synaptic loss and cognitive impairment in diabetic mice. Moreover, PRL infusion reduced microglia-mediated synaptic loss, thereby alleviating cognitive impairment in diabetic mice. CONCLUSION PRL is associated with cognitive dysfunction and hippocampal damage in T2DM patients. In diabetes, a decrease in PRL level drives hippocampal synaptic loss and cognitive impairment by increasing microglia-mediated synapse engulfment. Restoration of PRL levels ameliorates cognitive dysfunction and hippocampal synaptic loss in diabetic mice.
Collapse
Affiliation(s)
- Jiaxuan Jiang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Pengzi Zhang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yue Yuan
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Xiang Xu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Tianyu Wu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Zhou Zhang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China.
| | - Jin Wang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China.
| | - Yan Bi
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China.
| |
Collapse
|
40
|
Yan L, Tu W, Zhao X, Wan H, Wu J, Zhao Y, Wu J, Sun Y, Zhu L, Qin Y, Hu L, Yang H, Ke Q, Zhang W, Luo W, Xiao Z, Chen X, Wu Q, He B, Teng M, Dai S, Zhai J, Wu H, Yang X, Guo F, Wang H. Stem cell transplantation extends the reproductive life span of naturally aging cynomolgus monkeys. Cell Discov 2024; 10:111. [PMID: 39496598 PMCID: PMC11535534 DOI: 10.1038/s41421-024-00726-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/03/2024] [Indexed: 11/06/2024] Open
Abstract
The ovary is crucial for female reproduction and health, as it generates oocytes and secretes sex hormones. Transplantation of mesenchymal stem cells (MSCs) has been shown to alleviate pathological ovarian aging. However, it is unclear whether MSCs could benefit the naturally aging ovary. In this study, we first examined the dynamics of ovarian reserve of Chinese women during perimenopause. Using a naturally aging cynomolgus monkey (Macaca fascicularis) model, we found that transplanting human embryonic stem cells-derived MSC-like cells, which we called M cells, into the aging ovaries significantly decreased ovarian fibrosis and DNA damage, enhanced secretion of sex hormones and improved fertility. Encouragingly, a healthy baby monkey was born after M-cell transplantation. Moreover, single-cell RNA sequencing analysis and in vitro functional validation suggested that apoptosis, oxidative damage, inflammation, and fibrosis were mitigated in granulosa cells and stromal cells following M-cell transplantation. Altogether, these findings demonstrate the beneficial effects of M-cell transplantation on aging ovaries and expand our understanding of the molecular mechanisms underlying ovarian aging and stem cell-based alleviation of this process.
Collapse
Affiliation(s)
- Long Yan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Wan Tu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xuehan Zhao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Haifeng Wan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jiaqi Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yan Zhao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jun Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
| | - Yingpu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lan Zhu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingying Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Linli Hu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hua Yang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qiong Ke
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenzhe Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Luo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhenyu Xiao
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xueyu Chen
- Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Qiqian Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Beijia He
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Man Teng
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Shanjun Dai
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinglei Zhai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hao Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xiaokui Yang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Fan Guo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongmei Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
41
|
Buckley M, Jacob WP, Bortey L, McClain ME, Ritter AL, Godfrey A, Munneke AS, Ramachandran S, Kenis S, Kolnik JC, Olofsson S, Nenadovich M, Kutoloski T, Rademacher L, Alva A, Heinecke O, Adkins R, Parkar S, Bhagat R, Lunato J, Beets I, Francis MM, Kowalski JR. Cell non-autonomous signaling through the conserved C. elegans glycoprotein hormone receptor FSHR-1 regulates cholinergic neurotransmission. PLoS Genet 2024; 20:e1011461. [PMID: 39561202 PMCID: PMC11614273 DOI: 10.1371/journal.pgen.1011461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 12/03/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024] Open
Abstract
Modulation of neurotransmission is key for organismal responses to varying physiological contexts such as during infection, injury, or other stresses, as well as in learning and memory and for sensory adaptation. Roles for cell autonomous neuromodulatory mechanisms in these processes have been well described. The importance of cell non-autonomous pathways for inter-tissue signaling, such as gut-to-brain or glia-to-neuron, has emerged more recently, but the cellular mechanisms mediating such regulation remain comparatively unexplored. Glycoproteins and their G protein-coupled receptors (GPCRs) are well-established orchestrators of multi-tissue signaling events that govern diverse physiological processes through both cell-autonomous and cell non-autonomous regulation. Here, we show that follicle stimulating hormone receptor, FSHR-1, the sole Caenorhabditis elegans ortholog of mammalian glycoprotein hormone GPCRs, is important for cell non-autonomous modulation of synaptic transmission. Inhibition of fshr-1 expression reduces muscle contraction and leads to synaptic vesicle accumulation in cholinergic motor neurons. The neuromuscular and locomotor defects in fshr-1 loss-of-function mutants are associated with an underlying accumulation of synaptic vesicles, build-up of the synaptic vesicle priming factor UNC-10/RIM, and decreased synaptic vesicle release from cholinergic motor neurons. Restoration of FSHR-1 to the intestine is sufficient to restore neuromuscular activity and synaptic vesicle localization to fshr-1-deficient animals. Intestine-specific knockdown of FSHR-1 reduces neuromuscular function, indicating FSHR-1 is both necessary and sufficient in the intestine for its neuromuscular effects. Re-expression of FSHR-1 in other sites of endogenous expression, including glial cells and neurons, also restored some neuromuscular deficits, indicating potential cross-tissue regulation from these tissues as well. Genetic interaction studies provide evidence that downstream effectors gsa-1/GαS, acy-1/adenylyl cyclase and sphk-1/sphingosine kinase and glycoprotein hormone subunit orthologs, GPLA-1/GPA2 and GPLB-1/GPB5, are important for intestinal FSHR-1 modulation of the NMJ. Together, our results demonstrate that FSHR-1 modulation directs inter-tissue signaling systems, which promote synaptic vesicle release at neuromuscular synapses.
Collapse
Affiliation(s)
- Morgan Buckley
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - William P. Jacob
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Letitia Bortey
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Makenzi E. McClain
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Alyssa L. Ritter
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Amy Godfrey
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Allyson S. Munneke
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Shankar Ramachandran
- Department of Neurobiology, University of Massachusetts Chan School of Medicine, Worcester, Massachusetts, United States of America
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Julie C. Kolnik
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Sarah Olofsson
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Milica Nenadovich
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Tanner Kutoloski
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Lillian Rademacher
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Alexandra Alva
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Olivia Heinecke
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Ryan Adkins
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Shums Parkar
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Reesha Bhagat
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Jaelin Lunato
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Michael M. Francis
- Department of Neurobiology, University of Massachusetts Chan School of Medicine, Worcester, Massachusetts, United States of America
| | - Jennifer R. Kowalski
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| |
Collapse
|
42
|
Ramli NZ, Yahaya MF, Fahami NAM, Hamezah HS, Bakar ZHA, Arrozi AP, Yanagisawa D, Tooyama I, Singh M, Damanhuri HA. Spatial learning and memory impairment at the post-follicular depletion state is associated with reduced hippocampal glucose uptake. Exp Gerontol 2024; 197:112607. [PMID: 39389279 DOI: 10.1016/j.exger.2024.112607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The menopausal transition is a complex neuroendocrine aging process affecting brain structure and metabolic function. Such changes are consistent with neurological sequelae noted following the menopausal transition, including cognitive deficits. Although studies in rodent models of the menopause revealed changes in learning and memory, little is known about the structural and metabolic changes in the brain regions serving the cognitive function in these models. The administration 4-vinylcyclohexene diepoxide (VCD) in laboratory animals results in follicular depletion, and thus, is a powerful translational tool that models the human menopause. In the studies presented here, we evaluated behavior, brain structure, and metabolism in young female rats administered with either VCD or vehicle for 15 days across the early, mid, and post-follicular depletion states at 1-, 2-, and 3-months post-final injection, respectively. Additionally, we evaluated the serum hormonal profile and ovarian follicles based on the estrous cycle pattern. Positron emission tomography (PET) was utilized to determine regional brain glucose metabolism in the hippocampus, medial prefrontal cortex, and striatum. Subsequently, the rats were euthanized for ex-vivo magnetic resonance imaging (MRI) to assess regional brain volumes. VCD-induced rats at the post-follicular depleted time points had diminished spatial learning and memory as well as reduced hippocampal glucose uptake. Additionally, VCD-induced rats at post-follicular depletion time points had marked reductions in estradiol, progesterone, and anti-mullerian hormone with an increase in follicle-stimulating hormone. These rats also exhibited fewer ovarian follicles, indicating that substantial ovarian function loss during post-follicular time points impairs the female rats' spatial learning/memory abilities and triggers the metabolic changes in the hippocampus.
Collapse
Affiliation(s)
- Nur Zuliani Ramli
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Jalan Hospital, 47000 Sungai Buloh, Selangor, Malaysia.
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia.
| | - Nur Azlina Mohd Fahami
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia.
| | - Hamizah Shahirah Hamezah
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia.
| | - Zulzikry Hafiz Abu Bakar
- Medical Innovation Research Centre, Shiga University of Medical Sciences, Seta Tsukinowacho, Otsu 520-2192, Shiga, Japan.
| | - Aslina Pahrudin Arrozi
- Medical Innovation Research Centre, Shiga University of Medical Sciences, Seta Tsukinowacho, Otsu 520-2192, Shiga, Japan.
| | - Daijiro Yanagisawa
- Molecular Neuroscience Research Centre, Shiga University of Medical Sciences, Seta Tsukinowacho, Otsu 520-2192, Shiga, Japan.
| | - Ikuo Tooyama
- Medical Innovation Research Centre, Shiga University of Medical Sciences, Seta Tsukinowacho, Otsu 520-2192, Shiga, Japan.
| | - Meharvan Singh
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago Maywood, IL 60153, USA.
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia.
| |
Collapse
|
43
|
Almanza DLV, Koletar MM, Lai AY, Lam WW, Joo L, Hill ME, Stanisz GJ, McLaurin J, Stefanovic B. High caloric intake improves neuronal metabolism and functional hyperemia in a rat model of early AD pathology. Theranostics 2024; 14:7405-7423. [PMID: 39659583 PMCID: PMC11626934 DOI: 10.7150/thno.98793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/24/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction: While obesity has been linked to both increased and decreased rate of cognitive decline in Alzheimer's Disease (AD) patients, there is no consensus on the interaction between obesity and AD. Methods: The TgF344-AD rat model was used to investigate the effects of high carbohydrate, high fat (HCHF) diet on brain glucose metabolism and hemodynamics in the presence or absence of AD transgenes, in presymptomatic (6-month-old) vs. symptomatic (12-month-old) stages of AD progression using non-invasive neuroimaging. Results: In presymptomatic AD, HCHF exerted detrimental effects, attenuating both hippocampal glucose uptake and resting perfusion in both non-transgenic and TgAD cohorts, when compared to CHOW-fed cohorts. In contrast, HCHF consumption was beneficial in established AD, resolving the AD-progression associated attenuation in hippocampal glucose uptake and functional hyperemia. Discussion: Whereas HCHF was harmful to the presymptomatic AD brain, it ameliorated deficits in hippocampal metabolism and neurovascular coupling in symptomatic TgAD rats.
Collapse
Affiliation(s)
- Dustin Loren V. Almanza
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - Aaron Y. Lai
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Wilfred W. Lam
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Lewis Joo
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Mary E. Hill
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Greg J. Stanisz
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University, Lublin, Poland
| | - JoAnne McLaurin
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Bojana Stefanovic
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
44
|
Huang L, Sun S, Jiang G, Xie G, Yang Y, Chen S, Luo J, Lv C, Li X, Liao J, Wang Z, Zhang Z, Xiong J. Follicle-stimulating hormone induces depression-like phenotype by affecting synaptic function. Front Mol Neurosci 2024; 17:1459858. [PMID: 39498265 PMCID: PMC11532131 DOI: 10.3389/fnmol.2024.1459858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024] Open
Abstract
Depression is one of the most common affective disorders in people's life. Women are susceptibility to depression during puberty, peripartum and menopause transition, when they are suffering from sex hormone fluctuation. A lot of studies have demonstrated the neuroprotective effect of estrogen on depression in women, however, the effect of FSH on depression is unclear. In this study, we investigated the role of FSH on depression in mice. Our study demonstrated that FSH induced depression-like behaviors in mice in a dose-dependent manner. This induction was associated with elevated levels of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α in both serum and hippocampal tissues. Additionally, FSH treatment resulted in impaired synaptic plasticity and a reduction in the expression of key synaptic proteins. It is noteworthy that the depression-like behaviors, inflammatory cytokines expression and synaptic plasticity impairment induced by FSH could be alleviated by knocking down the expression of FSH receptor (FSHR) in the hippocampus of the mice. Therefore, our findings reveal that FSH may play an important role in the pathogenesis of depression and targeting FSH may be a potential therapeutic strategy for depression during hormone fluctuation in women.
Collapse
Affiliation(s)
- Liqin Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shangqi Sun
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science of Technology, Wuhan, China
| | - Gege Jiang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guanfeng Xie
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sichun Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Lv
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianming Liao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
45
|
Koh EH, Ewing SK, Sigurdsson S, Gudnason V, Hue TF, Vittinghoff E, Ohlsson C, Tivesten Å, Grahnemo L, Yuen T, Zaidi M, Rosen CJ, Schwartz AV, Schafer AL. Higher FSH Level Is Associated With Increased Risk Of Incident Hip Fracture In Older Adults, Independent Of Sex Hormones. J Clin Endocrinol Metab 2024:dgae690. [PMID: 39394788 DOI: 10.1210/clinem/dgae690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/17/2024] [Accepted: 10/11/2024] [Indexed: 10/14/2024]
Abstract
CONTEXT Higher levels of FSH are associated with bone loss among women during the perimenopausal transition and among older men, independent of estradiol and testosterone levels, but whether higher FSH is an independent fracture risk factor is unknown. OBJECTIVE Determine whether baseline FSH level predicts subsequent hip fracture in older adults. SETTING, DESIGN, PARTICIPANTS Using a case-cohort design, we randomly sampled 295 participants stratified by sex from the Age, Gene/Environment Susceptibility (AGES)-Reykjavik cohort, including 25 participants with incident hip fracture within 10 years after baseline. We sampled an additional 230 sex-stratified participants with incident hip fracture. Serum FSH and sex hormone levels were measured at baseline. Robust weighted Cox proportional hazards models were used to determine the relationship between FSH and hip fracture risk. MAIN OUTCOME Incident hip fracture. RESULTS As no interaction was identified between FSH and sex for the relationship with fracture, men and women were pooled for analysis. Higher levels of FSH were associated with a significantly increased risk of incident hip fracture in models adjusted for age and sex [hazard ratio (HR) 1.24 (95% CI 1.04-1.48, p=0.02)] and after further adjustment for estradiol, testosterone, and sex hormone binding globulin levels [HR 1.20 (95% CI 1.01-1.44, p=0.04) per sex-specific SD increase in FSH level]. CONCLUSIONS Higher FSH is associated with increased risk of subsequent hip fracture. Our findings support a growing body of evidence for direct pleiotropic effects of FSH on bone, and for a role for FSH in aging and disability independent of sex hormone levels.
Collapse
Affiliation(s)
- Eileen H Koh
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Susan K Ewing
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | | | - Vilmundur Gudnason
- Icelandic Heart Association Research Institute, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Trisha F Hue
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Eric Vittinghoff
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Åsa Tivesten
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden
- Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Louise Grahnemo
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Tony Yuen
- Center for Translational Medicine and Pharmacology and Mount Sinai Bone Program, and Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Mone Zaidi
- Center for Translational Medicine and Pharmacology and Mount Sinai Bone Program, and Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Anne L Schafer
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Endocrine Unit, San Francisco VA Health Care System, San Francisco, CA, USA
| |
Collapse
|
46
|
Jiang W, Vogelgsang J, Dan S, Durning P, McCoy TH, Berretta S, Klengel T. Association of RDoC dimensions with post-mortem brain transcriptional profiles in Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.07.24315057. [PMID: 39417104 PMCID: PMC11482973 DOI: 10.1101/2024.10.07.24315057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Neuropsychiatric symptoms are common in people with Alzheimer's disease (AD) across all severity stages. Their heterogeneous presentation and variable temporal association with cognitive decline suggest shared and distinct biological mechanisms. We hypothesized that specific patterns of gene expression associate with distinct NIMH Research Domain Criteria (RDoC) domains in AD. METHODS Post-mortem bulk RNAseq on the insula and anterior cingulate cortex from 60 brain donors representing the spectrum of canonical AD neuropathology combined with natural language processing approaches based on the RDoC Clinical Domains. RESULTS Distinct sets of >100 genes (p FDR <0.05) were specifically associated with at least one clinical domain (Cognitive, Social, Negative, Positive, Arousal). In addition, dysregulation of immune response pathways was shared across domains and brain regions. DISCUSSION Our findings provide evidence for distinct transcriptional profiles associated with RDoC domains suggesting that each dimension is characterized by specific sets of genes providing insight into the underlying mechanisms.
Collapse
|
47
|
Wen J, Yang Z, Nasrallah IM, Cui Y, Erus G, Srinivasan D, Abdulkadir A, Mamourian E, Hwang G, Singh A, Bergman M, Bao J, Varol E, Zhou Z, Boquet-Pujadas A, Chen J, Toga AW, Saykin AJ, Hohman TJ, Thompson PM, Villeneuve S, Gollub R, Sotiras A, Wittfeld K, Grabe HJ, Tosun D, Bilgel M, An Y, Marcus DS, LaMontagne P, Benzinger TL, Heckbert SR, Austin TR, Launer LJ, Espeland M, Masters CL, Maruff P, Fripp J, Johnson SC, Morris JC, Albert MS, Bryan RN, Resnick SM, Ferrucci L, Fan Y, Habes M, Wolk D, Shen L, Shou H, Davatzikos C. Genetic and clinical correlates of two neuroanatomical AI dimensions in the Alzheimer's disease continuum. Transl Psychiatry 2024; 14:420. [PMID: 39368996 PMCID: PMC11455841 DOI: 10.1038/s41398-024-03121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024] Open
Abstract
Alzheimer's disease (AD) is associated with heterogeneous atrophy patterns. We employed a semi-supervised representation learning technique known as Surreal-GAN, through which we identified two latent dimensional representations of brain atrophy in symptomatic mild cognitive impairment (MCI) and AD patients: the "diffuse-AD" (R1) dimension shows widespread brain atrophy, and the "MTL-AD" (R2) dimension displays focal medial temporal lobe (MTL) atrophy. Critically, only R2 was associated with widely known sporadic AD genetic risk factors (e.g., APOE ε4) in MCI and AD patients at baseline. We then independently detected the presence of the two dimensions in the early stages by deploying the trained model in the general population and two cognitively unimpaired cohorts of asymptomatic participants. In the general population, genome-wide association studies found 77 genes unrelated to APOE differentially associated with R1 and R2. Functional analyses revealed that these genes were overrepresented in differentially expressed gene sets in organs beyond the brain (R1 and R2), including the heart (R1) and the pituitary gland, muscle, and kidney (R2). These genes were enriched in biological pathways implicated in dendritic cells (R2), macrophage functions (R1), and cancer (R1 and R2). Several of them were "druggable genes" for cancer (R1), inflammation (R1), cardiovascular diseases (R1), and diseases of the nervous system (R2). The longitudinal progression showed that APOE ε4, amyloid, and tau were associated with R2 at early asymptomatic stages, but this longitudinal association occurs only at late symptomatic stages in R1. Our findings deepen our understanding of the multifaceted pathogenesis of AD beyond the brain. In early asymptomatic stages, the two dimensions are associated with diverse pathological mechanisms, including cardiovascular diseases, inflammation, and hormonal dysfunction-driven by genes different from APOE-which may collectively contribute to the early pathogenesis of AD. All results are publicly available at https://labs-laboratory.com/medicine/ .
Collapse
Affiliation(s)
- Junhao Wen
- Laboratory of AI and Biomedical Science (LABS), University of Southern California, Los Angeles, CA, USA.
| | - Zhijian Yang
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ilya M Nasrallah
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuhan Cui
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guray Erus
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dhivya Srinivasan
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Abdulkadir
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Research Lab in Neuroimaging of the Department of Clinical Neurosciences at Lausanne University Hospital, Lausanne, Switzerland
| | - Elizabeth Mamourian
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gyujoon Hwang
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashish Singh
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Bergman
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jingxuan Bao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Erdem Varol
- Department of Statistics, Center for Theoretical Neuroscience, Zuckerman Institute, Columbia University, New York, NY, USA
| | - Zhen Zhou
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aleix Boquet-Pujadas
- Laboratory of AI and Biomedical Science (LABS), University of Southern California, Los Angeles, CA, USA
| | - Jiong Chen
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arthur W Toga
- Laboratory of NeuroImaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Andrew J Saykin
- Radiology and Imaging Sciences, Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana Alzheimer's Disease Research Center and the Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt Genetics Institute, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, CA, USA
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
| | - Randy Gollub
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Aristeidis Sotiras
- Department of Radiology and Institute for Informatics, Washington University School of Medicine, St. Louis, MO, USA
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Daniel S Marcus
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pamela LaMontagne
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie L Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan R Heckbert
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Thomas R Austin
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Lenore J Launer
- Neuroepidemiology Section, Intramural Research Program, National Institute on Aging, Bethesda, MD, USA
| | - Mark Espeland
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Colin L Masters
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Paul Maruff
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jurgen Fripp
- CSIRO Health and Biosecurity, Australian e-Health Research Centre CSIRO, Brisbane, QLD, Australia
| | - Sterling C Johnson
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - John C Morris
- Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - R Nick Bryan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, Longitudinal Studies Section, National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital, 3001 S. Hanover Street, Baltimore, MD, 21225, USA
| | - Yong Fan
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohamad Habes
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David Wolk
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology and Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Haochang Shou
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
48
|
Wang HS, Karnik SJ, Margetts TJ, Plotkin LI, Movila A, Fehrenbacher JC, Kacena MA, Oblak AL. Mind Gaps and Bone Snaps: Exploring the Connection Between Alzheimer's Disease and Osteoporosis. Curr Osteoporos Rep 2024; 22:483-494. [PMID: 38236512 PMCID: PMC11420299 DOI: 10.1007/s11914-023-00851-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE OF REVIEW This comprehensive review discusses the complex relationship between Alzheimer's disease (AD) and osteoporosis, two conditions that are prevalent in the aging population and result in adverse complications on quality of life. The purpose of this review is to succinctly elucidate the many commonalities between the two conditions, including shared pathways, inflammatory and oxidative mechanisms, and hormonal deficiencies. RECENT FINDINGS AD and osteoporosis share many aspects of their respective disease-defining pathophysiology. These commonalities include amyloid beta deposition, the Wnt/β-catenin signaling pathway, and estrogen deficiency. The shared mechanisms and risk factors associated with AD and osteoporosis result in a large percentage of patients that develop both diseases. Previous literature has established that the progression of AD increases the risk of sustaining a fracture. Recent findings demonstrate that the reverse may also be true, suggesting that a fracture early in the life course can predispose one to developing AD due to the activation of these shared mechanisms. The discovery of these commonalities further guides the development of novel therapeutics in which both conditions are targeted. This detailed review delves into the commonalities between AD and osteoporosis to uncover the shared players that bring these two seemingly unrelated conditions together. The discussion throughout this review ultimately posits that the occurrence of fractures and the mechanism behind fracture healing can predispose one to developing AD later on in life, similar to how AD patients are at an increased risk of developing fractures. By focusing on the shared mechanisms between AD and osteoporosis, one can better understand the conditions individually and as a unit, thus informing therapeutic approaches and further research. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
Collapse
Affiliation(s)
- Hannah S Wang
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sonali J Karnik
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tyler J Margetts
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA
| | - Alexandru Movila
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - Jill C Fehrenbacher
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
| | - Adrian L Oblak
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Radiology & Imaging Sciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
49
|
Chen R, Pan C, Mao X, Zhang Y, Chen G, Xu M, Nivar J, Tao Y, Cao H, Li J. Chloride intracellular channel 4 blockade improves cognition in mice with Alzheimer's disease: CLIC4 protein expression and tau protein hyperphosphorylation. Int J Biol Macromol 2024; 278:134972. [PMID: 39181373 DOI: 10.1016/j.ijbiomac.2024.134972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Numerous academic literature suggests that amyloid-β (Aβ) deposition, tau protein phosphorylation, and irreversible neuronal death are the three major causes of AD. The chloride intracellular channel (CLIC) protein family not only regulates the polarisation of neurons, but also has important implications for neuronal survival. Chloride intracellular channel 4 (CLIC4) can be pathologically activated by cyclin-dependent kinase 5 (Cdk5), which causes a significant increase in the expression of CLIC4 and mediates neuronal apoptosis. CLIC4 knockdown inhibits H2O2-induced neuronal apoptosis; however, the relationship between CLIC4 and AD remains unknown. In the present study, we showed that CLIC4 expression was elevated in the hippocampus of AD mice; knockdown of hippocampal CLIC4 alleviated Aβ25-35-induced cognitive impairment in mice; overexpression of hippocampal CLIC4 accelerated Aβ deposition and tau protein hyperphosphorylation in young AD mice (APP/PS1 mice at three months of age). CLIC4 overexpressing mice had a longer escape latency compared to controls in behavioural testing (Morris water maze and T-maze tests). By Co-immunoprecipitation/mass spectrometry (Co-IP/MS) of HT22 cells to identify proteins that specifically bind to CLIC4, we found interactions with CCAAT enhancer binding protein (C/EBPβ); a critical pathway involved in the development of various neurodegenerative diseases. In addition, the knockdown of hippocampal CLIC4 alleviated AD-like pathology by inhibiting the C/EBPβ/AEP signaling pathway. These data suggest an essential role for high CLIC4 expression in the pathophysiology of AD and reveal that inhibition of CLIC4 expression may provide an opportunity for treatment.
Collapse
Affiliation(s)
- Rui Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou 325000, Zhejiang Province, China; The Second Affiliated Hospital Zhejiang University School of Medicine, Department of Anesthesiology, Hangzhou 310000, Zhejiang Province, China
| | - Chi Pan
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou 325000, Zhejiang Province, China
| | - Xinyu Mao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou 325000, Zhejiang Province, China
| | - Yantong Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou 325000, Zhejiang Province, China
| | - Gang Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou 325000, Zhejiang Province, China
| | - Mengting Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou 325000, Zhejiang Province, China
| | - John Nivar
- Rutgers New Jersey Medical School, Department of Anesthesiology, Newark, NJ, USA
| | - Yuanxiang Tao
- Rutgers New Jersey Medical School, Department of Anesthesiology, Newark, NJ, USA
| | - Hong Cao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou 325000, Zhejiang Province, China
| | - Jun Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou 325000, Zhejiang Province, China.
| |
Collapse
|
50
|
Granzotto A, Vissel B, Sensi SL. Lost in translation: Inconvenient truths on the utility of mouse models in Alzheimer's disease research. eLife 2024; 13:e90633. [PMID: 39329365 PMCID: PMC11434637 DOI: 10.7554/elife.90633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
The recent, controversial approval of antibody-based treatments for Alzheimer's disease (AD) is fueling a heated debate on the molecular determinants of this condition. The discussion should also incorporate a critical revision of the limitations of preclinical mouse models in advancing our understanding of AD. We critically discuss the limitations of animal models, stressing the need for careful consideration of how experiments are designed and results interpreted. We identify the shortcomings of AD models to recapitulate the complexity of the human disease. We dissect these issues at the quantitative, qualitative, temporal, and context-dependent levels. We argue that these models are based on the oversimplistic assumptions proposed by the amyloid cascade hypothesis (ACH) of AD and fail to account for the multifactorial nature of the condition. By shedding light on the constraints of current experimental tools, this review aims to foster the development and implementation of more clinically relevant tools. While we do not rule out a role for preclinical models, we call for alternative approaches to be explored and, most importantly, for a re-evaluation of the ACH.
Collapse
Affiliation(s)
- Alberto Granzotto
- Center for Advanced Studies and Technology – CAST, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d’Annunzio of Chieti-PescaraChietiItaly
| | - Bryce Vissel
- St Vincent’s Hospital Centre for Applied Medical Research, St Vincent’s HospitalDarlinghurstAustralia
- School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyAustralia
| | - Stefano L Sensi
- Center for Advanced Studies and Technology – CAST, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Institute for Advanced Biomedical Technologies – ITAB, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Institute of Neurology, SS Annunziata University Hospital, University G. d’Annunzio of Chieti-PescaraChietiItaly
| |
Collapse
|