1
|
Feigon J. A (Scientific) Lifetime Affair With Nucleic Acids. J Mol Biol 2025; 437:169088. [PMID: 40086689 DOI: 10.1016/j.jmb.2025.169088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
I am Distinguished Professor in the Chemistry and Biochemistry Department at University of California, Los Angeles, where I was hired in 1985 as the first female assistant professor in the department. I received my PhD from University of California, San Diego, under the guidance of Professor David Kearns, where I used NMR spectroscopy to study drug binding to random sequence DNA and published the first two-dimensional NMR spectra of short synthetic DNA duplexes. From 1982 to 1985 I was a Damon Runyon-Walter Winchell Postdoctoral fellow in the Professor Alexander Rich laboratory, where I investigated structures of Z-DNA by NMR. At UCLA, my lab pioneered the application of macromolecular NMR spectroscopy to the study of DNA and RNA structure, folding, and interactions with cations, drugs, and proteins. We published the first NMR structures of DNA triplexes, quadruplexes, and aptamers, and our work has provided fundamental insights into DNA A-tract bending, cation interactions with DNA, Hoogsteen base pairs, and drug binding to DNA. My lab has made major contributions to understanding RNA folding, dynamics, and function, including pseudoknots, aptamers, ribozymes, and riboswitches, and recognition of RNA by proteins. Over the past 2 decades, the Feigon laboratory pioneered structure-function studies of telomerase, from solution NMR and X-ray crystal structures and dynamics studies of RNA and RNA-protein domains of human and Tetrahymena telomerase, to the first structure of a telomerase holoenzyme, by negative stain EM in 2013, and subsequent cryo-EM structures of telomerase and associated proteins. Recent work also includes structural biology of 7SK RNP.
Collapse
Affiliation(s)
- Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569, United States.
| |
Collapse
|
2
|
Baranovskiy AG, Morstadt LM, Babayeva ND, Tahirov TH. Nsp1 stalls DNA polymerase α at DNA hairpins. Sci Rep 2025; 15:17666. [PMID: 40399356 PMCID: PMC12095515 DOI: 10.1038/s41598-025-00982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 05/02/2025] [Indexed: 05/23/2025] Open
Abstract
The human primosome, a four-subunit complex of DNA primase and DNA polymerase alpha (Polα), plays a critical role in DNA replication by initiating RNA and DNA synthesis on both chromosome strands. A recent study has shown that a major virulence factor in the SARS-CoV-2 infection, Nsp1 (non-structural protein 1), forms a stable complex with Polα but does not affect primosome activity. Here we show that Nsp1 inhibits DNA synthesis across inverted repeats prone to hairpin formation. Analysis of current structural data revealed the overlapping binding sites for Nsp1 and the winged helix-turn-helix domain of RPA (wHTH) on Polα, pointing to a potential competition between them. Comparison of the inhibitory effect of Nsp1 and wHTH on DNA hairpin bypass by Polα showed an eightfold lower IC50 value for Nsp1 (1 µM). This study provides valuable insight into the mechanism of inhibition of human DNA replication by Nsp1 during a SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Andrey G Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lucia M Morstadt
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nigar D Babayeva
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
3
|
Calugaru K, Yu EY, Huang S, González-Rodríguez N, Coloma J, Lue NF. The yeast CST and Polα/primase complexes act in concert to ensure proper telomere maintenance and protection. Nucleic Acids Res 2025; 53:gkaf245. [PMID: 40245101 PMCID: PMC11997776 DOI: 10.1093/nar/gkaf245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/19/2025] Open
Abstract
Polα/primase (PP), the polymerase that initiates DNA synthesis at replication origins, also completes the task of genome duplication by synthesizing the telomere C-strand under the control of the CTC1/CDC13-STN1-TEN1 (CST) complex. Using cryo-electron microscopy (cryo-EM) structures of the human CST-Polα/primase-DNA complex as guides in conjunction with AlphaFold modeling, we identified structural elements in yeast CST and PP that promote complex formation. Mutating these structures in Candida glabrata Stn1, Ten1, Pri1, and Pri2 abrogated the stimulatory activity of CST on PP in vitro, supporting the functional relevance of the physical contacts in cryo-EM structures as well as the conservation of mechanisms between yeast and humans. Introducing these mutations into C. glabrata yielded two distinct groups of mutants. One group exhibited progressive, telomerase-dependent telomere elongation without evidence of DNA damage. The other manifested slow growth, telomere length heterogeneity, single-stranded DNA accumulation and elevated C-circles, which are indicative of telomere deprotection. These telomere deprotection phenotypes are altered or suppressed by mutations in multiple DNA damage response (DDR) and DNA repair factors. We conclude that in yeast, the telomerase inhibition and telomere protection function previously ascribed to the CST complex are mediated jointly by both CST and Polα/primase, highlighting the critical importance of a replicative DNA polymerase in telomere regulation.
Collapse
Affiliation(s)
- Kimberly Calugaru
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, NY, NY 10065, United States
| | - Eun Young Yu
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, NY, NY 10065, United States
| | - Sophie Huang
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, NY, NY 10065, United States
| | - Nayim González-Rodríguez
- Structural Biology Programme, Spanish National Cancer Research Centre, Melchor Fernández Almagro, 3. 28029 Madrid, Spain
| | - Javier Coloma
- Structural Biology Programme, Spanish National Cancer Research Centre, Melchor Fernández Almagro, 3. 28029 Madrid, Spain
| | - Neal F Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, NY, NY 10065, United States
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, NY, NY 10065, United States
| |
Collapse
|
4
|
Chou YS, Logeswaran D, Chow CN, L. Dunn P, Podlevsky JD, Liu T, Akhter K, Chen JJL. A degenerate telomerase RNA directs telomeric DNA synthesis in lepidopteran insects. Proc Natl Acad Sci U S A 2025; 122:e2424443122. [PMID: 40020192 PMCID: PMC11892584 DOI: 10.1073/pnas.2424443122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/29/2025] [Indexed: 03/08/2025] Open
Abstract
Telomerase elongates telomeres to maintain chromosome stability in most eukaryotes. Despite extensive studies across eukaryotic kingdoms, the telomerase holoenzyme in arthropods remains poorly understood. In this study, we purify the telomerase ribonucleoprotein complex from the lepidopteran insect Spodoptera frugiperda (fall armyworm) and identify a copurified 135-nucleotide telomerase RNA (TR) component. This miniature S. frugiperda TR (sfTR), the smallest TR known to date, retains a universal pseudoknot structure and a structurally defined template. Despite its small size, sfTR assembles with the recombinant S. frugiperda telomerase reverse transcriptase (sfTERT) protein in vivo to reconstitute telomerase activity for the synthesis of insect telomeric DNA repeats (TTAGG)n. The sfTR gene, like other animal TR genes, features an snRNA-type RNA polymerase II promoter. Uniquely, the sfTR transcript harbors a 5'-7-methylguanosine (M7G) cap, as opposed to the more typical snRNA-type 2,2,7-trimethylguanosine (TMG) cap. The difference in 5'-cap is likely because sfTR lacks the H/ACA snoRNA biogenesis domain necessary for cap hypermethylation. Moreover, sfTR also lacks the CR4/5 regulatory domain that is indispensable in vertebrate TRs for telomerase activity. This degenerate sfTR complements an enigmatic sfTERT that is missing certain telomerase-specific elements yet catalytically active in the absence of sfTR. Thus, insects have evolved a simplified telomerase, consisting of a small noncoding RNA that retains only minimal attributes essential for telomerase function. The simplified insect telomerase demonstrates a plausible evolutionary pathway for the emergence of telomerase ribonucleoprotein complex, arising from an ancient reverse transcriptase associated with a simple templating RNA component in early eukaryotes.
Collapse
Affiliation(s)
- Yu-Shu Chou
- School of Molecular Sciences, Arizona State University, Tempe, AZ85281
| | | | - Chi-Nga Chow
- School of Molecular Sciences, Arizona State University, Tempe, AZ85281
| | - Phoebe L. Dunn
- School of Life Sciences, Arizona State University, Tempe, AZ85281
| | | | - Tianxiang Liu
- School of Molecular Sciences, Arizona State University, Tempe, AZ85281
| | - Khadiza Akhter
- School of Molecular Sciences, Arizona State University, Tempe, AZ85281
| | - Julian J.-L. Chen
- School of Molecular Sciences, Arizona State University, Tempe, AZ85281
| |
Collapse
|
5
|
Baranovskiy A, Morstadt L, Romero EE, Babayeva N, Tahirov TH. Human primosome requires replication protein A when copying DNA with inverted repeats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.11.584335. [PMID: 38559116 PMCID: PMC10979909 DOI: 10.1101/2024.03.11.584335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The human primosome, a four-subunit complex of primase and DNA polymerase alpha (Polα), initiates DNA synthesis on both chromosome strands by generating chimeric RNA-DNA primers for loading DNA polymerases delta and epsilon (Polε). Replication protein A (RPA) tightly binds to single-stranded DNA strands, protecting them from nucleolytic digestion and unauthorized transactions. We report here that RPA plays a critical role for the human primosome during DNA synthesis across inverted repeats prone to hairpin formation. On other alternatively structured DNA, forming a G-quadruplex, RPA does not assist primosome. A stimulatory effect of RPA on DNA synthesis across hairpins was also observed for the catalytic domain of Polα but not of Polε. The winged helix-turn-helix domain of RPA is essential for an efficient hairpin bypass and increases RPA-Polα cooperativity on the primed DNA template. Cryo-EM studies revealed that this domain is mainly responsible for the interaction between RPA and Polα. The flexible mode of RPA-Polα interaction during DNA synthesis implies the mechanism of template handover between them when the hairpin formation should be avoided. This work provides insight into a cooperative action of RPA and primosome on DNA, which is critical for DNA synthesis across inverted repeats.
Collapse
|
6
|
de Groot D, Spanjaard A, Shah R, Kreft M, Morris B, Lieftink C, Catsman JJI, Ormel S, Ayidah M, Pilzecker B, Buoninfante OA, van den Berk PCM, Beijersbergen RL, Jacobs H. Molecular dependencies and genomic consequences of a global DNA damage tolerance defect. Genome Biol 2024; 25:323. [PMID: 39741332 DOI: 10.1186/s13059-024-03451-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 11/29/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND DNA damage tolerance (DDT) enables replication to continue in the presence of fork stalling lesions. In mammalian cells, DDT is regulated by two independent pathways, controlled by the polymerase REV1 and ubiquitinated PCNA, respectively. RESULTS To determine the molecular and genomic impact of a global DDT defect, we studied PcnaK164R/-;Rev1-/- compound mutants in mouse cells. Double-mutant cells display increased replication stress, hypersensitivity to genotoxic agents, replication speed, and repriming. A whole-genome CRISPR-Cas9 screen revealed a strict reliance of double-mutant cells on the CST complex, where CST promotes fork stability. Whole-genome sequencing indicated that this double-mutant DDT defect favors the generation of large, replication-stress inducible deletions of 0.4-4.0 kbp, defined as type 3 deletions. Junction break sites of these deletions reveal microhomology preferences of 1-2 base pairs, differing from the smaller type 1 and type 2 deletions. These differential characteristics suggest the existence of molecularly distinct deletion pathways. Type 3 deletions are abundant in human tumors, can dominate the deletion landscape, and are associated with DNA damage response status and treatment modality. CONCLUSIONS Our data highlight the essential contribution of the DDT system to genome maintenance and type 3 deletions as mutational signature of replication stress. The unique characteristics of type 3 deletions implicate the existence of a novel deletion pathway in mice and humans that is counteracted by DDT.
Collapse
Affiliation(s)
- Daniel de Groot
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Aldo Spanjaard
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ronak Shah
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Maaike Kreft
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ben Morris
- Division of Molecular Carcinogenesis, The NKI Robotics and Screening Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, The NKI Robotics and Screening Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Joyce J I Catsman
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Shirley Ormel
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Matilda Ayidah
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Bas Pilzecker
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Olimpia Alessandra Buoninfante
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Paul C M van den Berk
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, The NKI Robotics and Screening Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Martínez-Carranza M, Vialle L, Madru C, Cordier F, Tekpinar AD, Haouz A, Legrand P, Le Meur RA, England P, Dulermo R, Guijarro JI, Henneke G, Sauguet L. Communication between DNA polymerases and Replication Protein A within the archaeal replisome. Nat Commun 2024; 15:10926. [PMID: 39738083 PMCID: PMC11686378 DOI: 10.1038/s41467-024-55365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025] Open
Abstract
Replication Protein A (RPA) plays a pivotal role in DNA replication by coating and protecting exposed single-stranded DNA, and acting as a molecular hub that recruits additional replication factors. We demonstrate that archaeal RPA hosts a winged-helix domain (WH) that interacts with two key actors of the replisome: the DNA primase (PriSL) and the replicative DNA polymerase (PolD). Using an integrative structural biology approach, combining nuclear magnetic resonance, X-ray crystallography and cryo-electron microscopy, we unveil how RPA interacts with PriSL and PolD through two distinct surfaces of the WH domain: an evolutionarily conserved interface and a novel binding site. Finally, RPA is shown to stimulate the activity of PriSL in a WH-dependent manner. This study provides a molecular understanding of the WH-mediated regulatory activity in central replication factors such as RPA, which regulate genome maintenance in Archaea and Eukaryotes.
Collapse
Affiliation(s)
- Markel Martínez-Carranza
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France
| | - Léa Vialle
- Univ Brest, Ifremer, CNRS, Biologie et Ecologie des Ecoystèmes marins profonds (BEEP), Plouzané, France
| | - Clément Madru
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France
| | - Florence Cordier
- Biological NMR & HDX-MS Technological Platform, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France
- Structural Bioinformatics, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France
| | - Ayten Dizkirici Tekpinar
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France
- Department of Molecular Biology and Genetics, Van Yüzüncü Yil University, Van, Turkey
| | - Ahmed Haouz
- Crystallography Platform, C2RT, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France
| | - Pierre Legrand
- Synchrotron SOLEIL, HelioBio group, L'Orme des Merisiers, Saint-Aubin, France
| | - Rémy A Le Meur
- Biological NMR & HDX-MS Technological Platform, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France
| | - Patrick England
- Molecular Biophysics Platform, C2RT, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France
| | - Rémi Dulermo
- Univ Brest, Ifremer, CNRS, Biologie et Ecologie des Ecoystèmes marins profonds (BEEP), Plouzané, France
| | - J Iñaki Guijarro
- Biological NMR & HDX-MS Technological Platform, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France
| | - Ghislaine Henneke
- Univ Brest, Ifremer, CNRS, Biologie et Ecologie des Ecoystèmes marins profonds (BEEP), Plouzané, France.
| | - Ludovic Sauguet
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France.
| |
Collapse
|
8
|
Sheu JJC, Lin WY, Liu TY, Chang CYY, Cheng J, Li YH, Chen CM, Tseng CC, Ding WY, Chung C, Hwang T, Chen PH, Tsai FJ. Ethnic-specific genetic susceptibility loci for endometriosis in Taiwanese-Han population: a genome-wide association study. J Hum Genet 2024; 69:573-583. [PMID: 38982179 DOI: 10.1038/s10038-024-01270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 07/11/2024]
Abstract
Endometriosis is a common gynecological disorder affecting around 10% of reproductive-age women. Although many hypotheses were proposed, genetic alteration has been considered as one of the key factors promoting pathogenesis. Due to racial/ethnic disparities in the process of hormone regulation and nutrition metabolism, a genome-wide association study (GWAS) with 2794 cases and 27,940 controls was conducted in a Taiwanese-Han population. Our study identified five significant susceptibility loci for endometriosis, and three of them, WNT4 (on the 1p36.12), RMND1 (6q25.1), and CCDC170 (6q25.1), have been previously associated with endometriosis across different populations, including European and Japanese descent cohorts. Other two including C5orf66/C5orf66-AS2 (5q31.1) and STN1 (10q24.33) are newly identified ones. Functional network analysis of potent risk genes revealed the involvement of cancer susceptibility and neurodevelopmental disorders in endometriosis development. In addition, long non-coding RNAs (lncRNAs) C5orf66 and C5orf66-AS2 can interact with many RNA-binding proteins (RBPs) which can influence RNA metabolic process, mRNA stabilization, and mRNA splicing, leading to dysregulation in tumor-promoting gene expression. Those findings support clinical observations of differences in the presentation of endometriosis in Taiwanese-Han population with higher risks of developing deeply infiltrating/invasive lesions and the associated malignancies.
Collapse
Affiliation(s)
- Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 804201, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yatsen University, Kaohsiung, 804201, Taiwan
- Institute of Precision Medicine, National Sun Yatsen University, Kaohsiung, 804201, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Wei-Yong Lin
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, 404333, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Ting-Yuan Liu
- Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Cherry Yin-Yi Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, 404327, Taiwan
- Department of Medicine, School of Medicine, China Medical University, Taichung, 404333, Taiwan
| | - Jack Cheng
- Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Yau-Hong Li
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 804201, Taiwan
- Department of Obstetrics and Gynecology, Pingtung Veterans General Hospital, Pingtung, 900053, Taiwan
| | - Chih-Mei Chen
- Genetics Center, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Chung-Chen Tseng
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 804201, Taiwan
| | - Wendy Yarou Ding
- Genetics Center, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Ching Chung
- Genetics Center, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Tritium Hwang
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 804201, Taiwan
| | - Ping-Ho Chen
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 804201, Taiwan
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan.
- Genetics Center, China Medical University Hospital, Taichung, 404327, Taiwan.
| |
Collapse
|
9
|
Douglas ME. How to write an ending: Telomere replication as a multistep process. DNA Repair (Amst) 2024; 144:103774. [PMID: 39426311 DOI: 10.1016/j.dnarep.2024.103774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
Telomeres are protective nucleoprotein caps found at the natural ends of eukaryotic chromosomes and are crucial for the preservation of stable chromosomal structure. In cycling cells, telomeres are maintained by a multi-step process called telomere replication, which involves the eukaryotic replisome navigating a complex repetitive template tightly bound by specific proteins, before terminating at the chromosome end prior to a 5' resection step that generates a protective 3' overhang. In this review, we examine mechanistic aspects of the telomere replication process and consider how individual parts of this multistep event are integrated and coordinated with one-another.
Collapse
Affiliation(s)
- Max E Douglas
- Telomere Biology Laboratory, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
10
|
Tummala H, Walne AJ, Badat M, Patel M, Walne AM, Alnajar J, Chow CC, Albursan I, Frost JM, Ballard D, Killick S, Szitányi P, Kelly AM, Raghavan M, Powell C, Raymakers R, Todd T, Mantadakis E, Polychronopoulou S, Pontikos N, Liao T, Madapura P, Hossain U, Vulliamy T, Dokal I. The evolving genetic landscape of telomere biology disorder dyskeratosis congenita. EMBO Mol Med 2024; 16:2560-2582. [PMID: 39198715 PMCID: PMC11473520 DOI: 10.1038/s44321-024-00118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Dyskeratosis congenita (DC) is a rare inherited bone marrow failure syndrome, caused by genetic mutations that principally affect telomere biology. Approximately 35% of cases remain uncharacterised at the genetic level. To explore the genetic landscape, we conducted genetic studies on a large collection of clinically diagnosed cases of DC as well as cases exhibiting features resembling DC, referred to as 'DC-like' (DCL). This led us to identify several novel pathogenic variants within known genetic loci and in the novel X-linked gene, POLA1. In addition, we have also identified several novel variants in POT1 and ZCCHC8 in multiple cases from different families expanding the allelic series of DC and DCL phenotypes. Functional characterisation of novel POLA1 and POT1 variants, revealed pathogenic effects on protein-protein interactions with primase, CTC1-STN1-TEN1 (CST) and shelterin subunit complexes, that are critical for telomere maintenance. ZCCHC8 variants demonstrated ZCCHC8 deficiency and signs of pervasive transcription, triggering inflammation in patients' blood. In conclusion, our studies expand the current genetic architecture and broaden our understanding of disease mechanisms underlying DC and DCL disorders.
Collapse
Affiliation(s)
- Hemanth Tummala
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK.
- Barts Health NHS Trust, London, UK.
| | - Amanda J Walne
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Mohsin Badat
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
- Barts Health NHS Trust, London, UK
| | - Manthan Patel
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Abigail M Walne
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Jenna Alnajar
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Chi Ching Chow
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Ibtehal Albursan
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Jennifer M Frost
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - David Ballard
- Department of Analytical, Environmental & Forensic Sciences, Kings College London, Franklin-Wilkins Building, Stamford Street, London, SE1 9NH, UK
| | - Sally Killick
- Department of Haematology, Royal Bournemouth Hospital NHS Foundation Trust, Bournemouth, BH7 7DW, UK
| | - Peter Szitányi
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 128 08 Praha 2, Prague, Czech Republic
| | - Anne M Kelly
- Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Manoj Raghavan
- Clinical Haematology, Queen Elizabeth Hospital, Edgbaston, Birmingham, B15 2TH, UK
| | - Corrina Powell
- Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, B15 2TG, UK
| | - Reinier Raymakers
- University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Tony Todd
- Department of Haematology, Royal Devon and Exeter Hospital, Exeter, EX2 5DW, UK
| | - Elpis Mantadakis
- Department of Pediatrics' University General Hospital of Alexandroupolis, Democritus University of Thrace Faculty of Medicine, 6th Kilometer Alexandroupolis-Makris, 68 100 Alexandroupolis, Thrace, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology-Oncology, Aghia Sophia Children's Hospital, Athens, Greece
| | - Nikolas Pontikos
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, Gower St, London, WC1E 6BT, UK
| | - Tianyi Liao
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Pradeep Madapura
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Upal Hossain
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
- Barts Health NHS Trust, London, UK
| | - Tom Vulliamy
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Inderjeet Dokal
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
- Barts Health NHS Trust, London, UK
| |
Collapse
|
11
|
Baranovskiy AG, Morstadt LM, Babayeva ND, Tahirov TH. Nsp1 stalls DNA Polymerase α at DNA hairpins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.608162. [PMID: 39282423 PMCID: PMC11398376 DOI: 10.1101/2024.09.03.608162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The human primosome, a four-subunit complex of DNA primase and DNA polymerase alpha (Polα), plays a critical role in DNA replication by initiating RNA and DNA synthesis on both chromosome strands. A recent study has shown that a major virulence factor in the SARS-CoV-2 infection, Nsp1 (non-structural protein 1), forms a stable complex with Polα but does not affect the primosome activity. Here we show that Nsp1 inhibits DNA synthesis across inverted repeats prone to hairpin formation. Analysis of current structural data revealed the overlapping binding sites for Nsp1 and the winged helix-turn-helix domain of RPA (wHTH) on Polα, indicating a competition between them. Comparison of the inhibitory effect of Nsp1 and wHTH on DNA hairpin bypass by Polα showed an 8-fold lower IC50 value for Nsp1 (1 μM). This study provides a valuable insight into the mechanism of inhibition of human DNA replication by Nsp1 during a SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Andrey G. Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center. University of Nebraska Medical Center, Omaha, NE, USA
| | - Lucia M. Morstadt
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center. University of Nebraska Medical Center, Omaha, NE, USA
| | - Nigar D. Babayeva
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center. University of Nebraska Medical Center, Omaha, NE, USA
| | - Tahir H. Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center. University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
12
|
Abe KM, Li G, He Q, Grant T, Lim CJ. Small LEA proteins mitigate air-water interface damage to fragile cryo-EM samples during plunge freezing. Nat Commun 2024; 15:7705. [PMID: 39231985 PMCID: PMC11375022 DOI: 10.1038/s41467-024-52091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
Air-water interface (AWI) interactions during cryo-electron microscopy (cryo-EM) sample preparation cause significant sample loss, hindering structural biology research. Organisms like nematodes and tardigrades produce Late Embryogenesis Abundant (LEA) proteins to withstand desiccation stress. Here we show that these LEA proteins, when used as additives during plunge freezing, effectively mitigate AWI damage to fragile multi-subunit molecular samples. The resulting high-resolution cryo-EM maps are comparable to or better than those obtained using existing AWI damage mitigation methods. Cryogenic electron tomography reveals that particles are localized at specific interfaces, suggesting LEA proteins form a barrier at the AWI. This interaction may explain the observed sample-dependent preferred orientation of particles. LEA proteins offer a simple, cost-effective, and adaptable approach for cryo-EM structural biologists to overcome AWI-related sample damage, potentially revitalizing challenging projects and advancing the field of structural biology.
Collapse
Affiliation(s)
- Kaitlyn M Abe
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Gan Li
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI, 53715, USA
| | - Qixiang He
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Timothy Grant
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI, 53715, USA
| | - Ci Ji Lim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
13
|
Johnson K, Seidel JM, Cech TR. Small molecule telomerase inhibitors are also potent inhibitors of telomeric C-strand synthesis. RNA (NEW YORK, N.Y.) 2024; 30:1213-1226. [PMID: 38918043 PMCID: PMC11331414 DOI: 10.1261/rna.080043.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Telomere replication is essential for continued proliferation of human cells, such as stem cells and cancer cells. Telomerase lengthens the telomeric G-strand, while C-strand replication is accomplished by CST-polymerase α-primase (CST-PP). Replication of both strands is inhibited by formation of G-quadruplex (GQ) structures in the G-rich single-stranded DNA. TMPyP4 and pyridostatin (PDS), which stabilize GQ structures in both DNA and RNA, inhibit telomerase in vitro, and in human cells they cause telomere shortening that has been attributed to telomerase inhibition. Here, we show that TMPyP4 and PDS also inhibit C-strand synthesis by stabilizing DNA secondary structures and thereby preventing CST-PP from binding to telomeric DNA. We also show that these small molecules inhibit CST-PP binding to a DNA sequence containing no consecutive guanine residues, which is unlikely to form GQs. Thus, while these "telomerase inhibitors" indeed inhibit telomerase, they are also robust inhibitors of telomeric C-strand synthesis. Furthermore, given their binding to GQ RNA and their limited specificity for GQ structures, they may disrupt many other protein-nucleic acid interactions in human cells.
Collapse
Affiliation(s)
- Kaitlin Johnson
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Julia M Seidel
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Thomas R Cech
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| |
Collapse
|
14
|
Wysong BC, Schuck PL, Sridharan M, Carrison S, Murakami Y, Balakrishnan L, Stewart JA. Human CST Stimulates Base Excision Repair to Prevent the Accumulation of Oxidative DNA Damage. J Mol Biol 2024; 436:168672. [PMID: 38908783 PMCID: PMC11864811 DOI: 10.1016/j.jmb.2024.168672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
CTC1-STN1-TEN1 (CST) is a single-stranded DNA binding protein vital for telomere length maintenance with additional genome-wide roles in DNA replication and repair. While CST was previously shown to function in double-strand break repair and promote replication restart, it is currently unclear whether it has specialized roles in other DNA repair pathways. Proper and efficient repair of DNA is critical to protecting genome integrity. Telomeres and other G-rich regions are strongly predisposed to oxidative DNA damage in the form of 8-oxoguanines, which are typically repaired by the base-excision repair (BER) pathway. Moreover, recent studies suggest that CST functions in the repair of oxidative DNA lesions. Therefore, we tested whether CST interacts with and regulates BER protein activity. Here, we show that CST robustly stimulates proteins involved in BER, including OGG1, Pol β, APE1, and LIGI, on both telomeric and non-telomeric DNA substrates. Biochemical reconstitution of the pathway indicates that CST stimulates BER. Finally, knockout of STN1 or CTC1 leads to increased levels of 8-oxoguanine, suggesting defective BER in the absence of CST. Combined, our results define an undiscovered function of CST in BER, where it acts as a stimulatory factor to promote efficient genome-wide oxidative repair.
Collapse
Affiliation(s)
- Brandon C Wysong
- Department of Biology, School of Science, Indiana University, Indianapolis, IN, USA
| | - P Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, USA
| | - Madhumita Sridharan
- Department of Biology, School of Science, Indiana University, Indianapolis, IN, USA
| | - Sophie Carrison
- Department of Biology, School of Science, Indiana University, Indianapolis, IN, USA
| | - Yuichihiro Murakami
- Department of Biology, School of Science, Indiana University, Indianapolis, IN, USA
| | - Lata Balakrishnan
- Department of Biology, School of Science, Indiana University, Indianapolis, IN, USA.
| | - Jason A Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, USA; Department of Biology, Western Kentucky University, Bowling Green, KY, USA.
| |
Collapse
|
15
|
Wentworth K, Nandakumar J. At the end, it is POT1 again: Phosphorylation allows human telomeric protein POT1 to recruit the C-rich strand end replication machinery. Mol Cell 2024; 84:2598-2600. [PMID: 39059369 PMCID: PMC11613731 DOI: 10.1016/j.molcel.2024.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Recently in Cell, Cai et al.1 reported how phosphorylation of human shelterin protein POT1 allows it to recruit the telomeric C-rich strand replication machinery, providing mechanistic insights into an understudied area of telomere biology with implications for telomere biology disorders.
Collapse
Affiliation(s)
- Katherine Wentworth
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
16
|
Cai SW, Takai H, Zaug AJ, Dilgen TC, Cech TR, Walz T, de Lange T. POT1 recruits and regulates CST-Polα/primase at human telomeres. Cell 2024; 187:3638-3651.e18. [PMID: 38838667 PMCID: PMC11246235 DOI: 10.1016/j.cell.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/12/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Telomere maintenance requires the extension of the G-rich telomeric repeat strand by telomerase and the fill-in synthesis of the C-rich strand by Polα/primase. At telomeres, Polα/primase is bound to Ctc1/Stn1/Ten1 (CST), a single-stranded DNA-binding complex. Like mutations in telomerase, mutations affecting CST-Polα/primase result in pathological telomere shortening and cause a telomere biology disorder, Coats plus (CP). We determined cryogenic electron microscopy structures of human CST bound to the shelterin heterodimer POT1/TPP1 that reveal how CST is recruited to telomeres by POT1. Our findings suggest that POT1 hinge phosphorylation is required for CST recruitment, and the complex is formed through conserved interactions involving several residues mutated in CP. Our structural and biochemical data suggest that phosphorylated POT1 holds CST-Polα/primase in an inactive, autoinhibited state until telomerase has extended the telomere ends. We propose that dephosphorylation of POT1 releases CST-Polα/primase into an active state that completes telomere replication through fill-in synthesis.
Collapse
Affiliation(s)
- Sarah W Cai
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA; Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY 10065, USA
| | - Hiroyuki Takai
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Arthur J Zaug
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Teague C Dilgen
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY 10065, USA.
| | - Titia de Lange
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
17
|
Manthei KA, Munson LM, Nandakumar J, Simmons LA. Structural and biochemical characterization of the mitomycin C repair exonuclease MrfB. Nucleic Acids Res 2024; 52:6347-6359. [PMID: 38661211 PMCID: PMC11194089 DOI: 10.1093/nar/gkae308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Mitomycin C (MMC) repair factor A (mrfA) and factor B (mrfB), encode a conserved helicase and exonuclease that repair DNA damage in the soil-dwelling bacterium Bacillus subtilis. Here we have focused on the characterization of MrfB, a DEDDh exonuclease in the DnaQ superfamily. We solved the structure of the exonuclease core of MrfB to a resolution of 2.1 Å, in what appears to be an inactive state. In this conformation, a predicted α-helix containing the catalytic DEDDh residue Asp172 adopts a random coil, which moves Asp172 away from the active site and results in the occupancy of only one of the two catalytic Mg2+ ions. We propose that MrfB resides in this inactive state until it interacts with DNA to become activated. By comparing our structure to an AlphaFold prediction as well as other DnaQ-family structures, we located residues hypothesized to be important for exonuclease function. Using exonuclease assays we show that MrfB is a Mg2+-dependent 3'-5' DNA exonuclease. We show that Leu113 aids in coordinating the 3' end of the DNA substrate, and that a basic loop is important for substrate binding. This work provides insight into the function of a recently discovered bacterial exonuclease important for the repair of MMC-induced DNA adducts.
Collapse
Affiliation(s)
- Kelly A Manthei
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lia M Munson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Mullins EA, Salay LE, Durie CL, Bradley NP, Jackman JE, Ohi MD, Chazin WJ, Eichman BF. A mechanistic model of primer synthesis from catalytic structures of DNA polymerase α-primase. Nat Struct Mol Biol 2024; 31:777-790. [PMID: 38491139 PMCID: PMC11102853 DOI: 10.1038/s41594-024-01227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 01/12/2024] [Indexed: 03/18/2024]
Abstract
The mechanism by which polymerase α-primase (polα-primase) synthesizes chimeric RNA-DNA primers of defined length and composition, necessary for replication fidelity and genome stability, is unknown. Here, we report cryo-EM structures of Xenopus laevis polα-primase in complex with primed templates representing various stages of DNA synthesis. Our data show how interaction of the primase regulatory subunit with the primer 5' end facilitates handoff of the primer to polα and increases polα processivity, thereby regulating both RNA and DNA composition. The structures detail how flexibility within the heterotetramer enables synthesis across two active sites and provide evidence that termination of DNA synthesis is facilitated by reduction of polα and primase affinities for the varied conformations along the chimeric primer-template duplex. Together, these findings elucidate a critical catalytic step in replication initiation and provide a comprehensive model for primer synthesis by polα-primase.
Collapse
Affiliation(s)
- Elwood A Mullins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Lauren E Salay
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Clarissa L Durie
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Noah P Bradley
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Walter J Chazin
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
19
|
Alanazi AR, Parkinson GN, Haider S. Structural Motifs at the Telomeres and Their Role in Regulatory Pathways. Biochemistry 2024; 63:827-842. [PMID: 38481135 PMCID: PMC10993422 DOI: 10.1021/acs.biochem.4c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Telomeres are specialized structures, found at the ends of linear chromosomes in eukaryotic cells, that play a crucial role in maintaining the stability and integrity of genomes. They are composed of repetitive DNA sequences, ssDNA overhangs, and several associated proteins. The length of telomeres is linked to cellular aging in humans, and deficiencies in their maintenance are associated with various diseases. Key structural motifs at the telomeres serve to protect vulnerable chromosomal ends. Telomeric DNA also has the ability to form diverse complex DNA higher-order structures, including T-loops, D-loops, R-loops, G-loops, G-quadruplexes, and i-motifs, in the complementary C-rich strand. While many essential proteins at telomeres have been identified, the intricacies of their interactions and structural details are still not fully understood. This Perspective highlights recent advancements in comprehending the structures associated with human telomeres. It emphasizes the significance of telomeres, explores various telomeric structural motifs, and delves into the structural biology surrounding telomeres and telomerase. Furthermore, telomeric loops, their topologies, and the associated proteins that contribute to the safeguarding of telomeres are discussed.
Collapse
Affiliation(s)
- Abeer
F R Alanazi
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Gary N Parkinson
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Shozeb Haider
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
- UCL
Centre for Advanced Research Computing, University College London, London WC1H 9RN, United
Kingdom
| |
Collapse
|
20
|
Yin Z, Kilkenny ML, Ker DS, Pellegrini L. CryoEM insights into RNA primer synthesis by the human primosome. FEBS J 2024; 291:1813-1829. [PMID: 38335062 DOI: 10.1111/febs.17082] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/24/2023] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Eukaryotic DNA replication depends on the primosome - a complex of DNA polymerase alpha (Pol α) and primase - to initiate DNA synthesis by polymerisation of an RNA-DNA primer. Primer synthesis requires the tight coordination of primase and polymerase activities. Recent cryo-electron microscopy (cryoEM) analyses have elucidated the extensive conformational transitions required for RNA primer handover between primase and Pol α and primer elongation by Pol α. Because of the intrinsic flexibility of the primosome, however, structural information about the initiation of RNA primer synthesis is still lacking. Here, we capture cryoEM snapshots of the priming reaction to reveal the conformational trajectory of the human primosome that brings DNA primase subunits 1 and 2 (PRIM1 and PRIM2, respectively) together, poised for RNA synthesis. Furthermore, we provide experimental evidence for the continuous association of primase subunit PRIM2 with the RNA primer during primer synthesis, and for how both initiation and termination of RNA primer polymerisation are licenced by specific rearrangements of DNA polymerase alpha catalytic subunit (POLA1), the polymerase subunit of Pol α. Our findings fill a critical gap in our understanding of the conformational changes that underpin the synthesis of the RNA primer by the primosome. Together with existing evidence, they provide a complete description of the structural dynamics of the human primosome during DNA replication initiation.
Collapse
Affiliation(s)
- Zhan Yin
- Department of Biochemistry, University of Cambridge, UK
| | | | - De-Sheng Ker
- Department of Biochemistry, University of Cambridge, UK
| | | |
Collapse
|
21
|
Nasheuer HP, Meaney AM. Starting DNA Synthesis: Initiation Processes during the Replication of Chromosomal DNA in Humans. Genes (Basel) 2024; 15:360. [PMID: 38540419 PMCID: PMC10969946 DOI: 10.3390/genes15030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 06/14/2024] Open
Abstract
The initiation reactions of DNA synthesis are central processes during human chromosomal DNA replication. They are separated into two main processes: the initiation events at replication origins, the start of the leading strand synthesis for each replicon, and the numerous initiation events taking place during lagging strand DNA synthesis. In addition, a third mechanism is the re-initiation of DNA synthesis after replication fork stalling, which takes place when DNA lesions hinder the progression of DNA synthesis. The initiation of leading strand synthesis at replication origins is regulated at multiple levels, from the origin recognition to the assembly and activation of replicative helicase, the Cdc45-MCM2-7-GINS (CMG) complex. In addition, the multiple interactions of the CMG complex with the eukaryotic replicative DNA polymerases, DNA polymerase α-primase, DNA polymerase δ and ε, at replication forks play pivotal roles in the mechanism of the initiation reactions of leading and lagging strand DNA synthesis. These interactions are also important for the initiation of signalling at unperturbed and stalled replication forks, "replication stress" events, via ATR (ATM-Rad 3-related protein kinase). These processes are essential for the accurate transfer of the cells' genetic information to their daughters. Thus, failures and dysfunctions in these processes give rise to genome instability causing genetic diseases, including cancer. In their influential review "Hallmarks of Cancer: New Dimensions", Hanahan and Weinberg (2022) therefore call genome instability a fundamental function in the development process of cancer cells. In recent years, the understanding of the initiation processes and mechanisms of human DNA replication has made substantial progress at all levels, which will be discussed in the review.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland;
| | | |
Collapse
|
22
|
Takai H, Aria V, Borges P, Yeeles JTP, de Lange T. CST-polymerase α-primase solves a second telomere end-replication problem. Nature 2024; 627:664-670. [PMID: 38418884 PMCID: PMC11160940 DOI: 10.1038/s41586-024-07137-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Telomerase adds G-rich telomeric repeats to the 3' ends of telomeres1, counteracting telomere shortening caused by loss of telomeric 3' overhangs during leading-strand DNA synthesis ('the end-replication problem'2). Here we report a second end-replication problem that originates from the incomplete duplication of the C-rich telomeric repeat strand (C-strand) by lagging-strand DNA synthesis. This problem is resolved by fill-in synthesis mediated by polymerase α-primase bound to Ctc1-Stn1-Ten1 (CST-Polα-primase). In vitro, priming for lagging-strand DNA replication does not occur on the 3' overhang and lagging-strand synthesis stops in a zone of approximately 150 nucleotides (nt) more than 26 nt from the end of the template. Consistent with the in vitro data, lagging-end telomeres of cells lacking CST-Polα-primase lost 50-60 nt of telomeric CCCTAA repeats per population doubling. The C-strands of leading-end telomeres shortened by around 100 nt per population doubling, reflecting the generation of 3' overhangs through resection. The measured overall C-strand shortening in the absence of CST-Polα-primase fill-in is consistent with the combined effects of incomplete lagging-strand synthesis and 5' resection at the leading ends. We conclude that canonical DNA replication creates two telomere end-replication problems that require telomerase to maintain the G-rich strand and CST-Polα-primase to maintain the C-strand.
Collapse
Affiliation(s)
- Hiroyuki Takai
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, NY, USA
| | - Valentina Aria
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Pamela Borges
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, NY, USA
| | - Joseph T P Yeeles
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, NY, USA.
| |
Collapse
|
23
|
Olson CL, Wuttke DS. Guardians of the Genome: How the Single-Stranded DNA-Binding Proteins RPA and CST Facilitate Telomere Replication. Biomolecules 2024; 14:263. [PMID: 38540683 PMCID: PMC10968030 DOI: 10.3390/biom14030263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 04/26/2024] Open
Abstract
Telomeres act as the protective caps of eukaryotic linear chromosomes; thus, proper telomere maintenance is crucial for genome stability. Successful telomere replication is a cornerstone of telomere length regulation, but this process can be fraught due to the many intrinsic challenges telomeres pose to the replication machinery. In addition to the famous "end replication" problem due to the discontinuous nature of lagging strand synthesis, telomeres require various telomere-specific steps for maintaining the proper 3' overhang length. Bulk telomere replication also encounters its own difficulties as telomeres are prone to various forms of replication roadblocks. These roadblocks can result in an increase in replication stress that can cause replication forks to slow, stall, or become reversed. Ultimately, this leads to excess single-stranded DNA (ssDNA) that needs to be managed and protected for replication to continue and to prevent DNA damage and genome instability. RPA and CST are single-stranded DNA-binding protein complexes that play key roles in performing this task and help stabilize stalled forks for continued replication. The interplay between RPA and CST, their functions at telomeres during replication, and their specialized features for helping overcome replication stress at telomeres are the focus of this review.
Collapse
Affiliation(s)
- Conner L. Olson
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Deborah S. Wuttke
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
24
|
Manthei KA, Munson LM, Nandakumar J, Simmons LA. Structural and biochemical characterization of the mitomycin C repair exonuclease MrfB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580553. [PMID: 38405983 PMCID: PMC10889028 DOI: 10.1101/2024.02.15.580553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Mitomycin C (MMC) repair factor A (mrfA) and factor B (mrfB), encode a conserved helicase and exonuclease that repair DNA damage in the soil-dwelling bacterium Bacillus subtilis. Here we have focused on the characterization of MrfB, a DEDDh exonuclease in the DnaQ superfamily. We solved the structure of the exonuclease core of MrfB to a resolution of 2.1 Å, in what appears to be an inactive state. In this conformation, a predicted α-helix containing the catalytic DEDDh residue Asp172 adopts a random coil, which moves Asp172 away from the active site and results in the occupancy of only one of the two catalytic Mg2+ ions. We propose that MrfB resides in this inactive state until it interacts with DNA to become activated. By comparing our structure to an AlphaFold prediction as well as other DnaQ-family structures, we located residues hypothesized to be important for exonuclease function. Using exonuclease assays we show that MrfB is a Mg2+-dependent 3'-5' DNA exonuclease. We show that Leu113 aids in coordinating the 3' end of the DNA substrate, and that a basic loop is important for substrate binding. This work provides insight into the function of a recently discovered bacterial exonuclease important for the repair of MMC-induced DNA adducts.
Collapse
Affiliation(s)
- Kelly A. Manthei
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lia M. Munson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
25
|
Abe KM, Lim CJ. Small LEA proteins as an effective air-water interface protectant for fragile samples during cryo-EM grid plunge freezing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579238. [PMID: 38370693 PMCID: PMC10871254 DOI: 10.1101/2024.02.06.579238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Sample loss due to air-water interface (AWI) interactions is a significant challenge during cryo-electron microscopy (cryo-EM) sample grid plunge freezing. We report that small Late Embryogenesis Abundant (LEA) proteins, which naturally bind to AWI, can protect samples from AWI damage during plunge freezing. This protection is demonstrated with two LEA proteins from nematodes and tardigrades, which rescued the cryo-EM structural determination outcome of two fragile multisubunit protein complexes.
Collapse
Affiliation(s)
- Kaitlyn M. Abe
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Ci Ji Lim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
26
|
Takai H, Aria V, Borges P, Yeeles JTP, de Lange T. CST-Polymeraseα-primase solves a second telomere end-replication problem. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.26.564248. [PMID: 37961611 PMCID: PMC10634868 DOI: 10.1101/2023.10.26.564248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Telomerase adds G-rich telomeric repeats to the 3' ends of telomeres1, counteracting telomere shortening caused by loss of telomeric 3' overhangs during leading-strand DNA synthesis ("the end-replication problem"2). We report a second end-replication problem that originates from the incomplete duplication of the C-rich telomeric repeat strand by lagging-strand synthesis. This problem is solved by CST-Polymeraseα(Polα)-primase fill-in synthesis. In vitro, priming for lagging-strand DNA replication does not occur on the 3' overhang and lagging-strand synthesis stops in an ~150-nt zone more than 26 nt from the end of the template. Consistent with the in vitro data, lagging-end telomeres of cells lacking CST-Polα-primase lost ~50-60 nt of CCCTAA repeats per population doubling (PD). The C-strands of leading-end telomeres shortened by ~100 nt/PD, reflecting the generation of 3' overhangs through resection. The measured overall C-strand shortening in absence of CST-Polα-primase fill-in is consistent with the combined effects of incomplete lagging-strand synthesis and 5' resection at the leading-ends. We conclude that canonical DNA replication creates two telomere end-replication problems that require telomerase to maintain the G-strand and CST-Polα-primase to maintain the C-strand.
Collapse
Affiliation(s)
- Hiroyuki Takai
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| | - Valentina Aria
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2, 0QH
| | - Pamela Borges
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| | - Joseph T. P. Yeeles
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2, 0QH
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| |
Collapse
|
27
|
Nasheuer HP, Meaney AM, Hulshoff T, Thiele I, Onwubiko NO. Replication Protein A, the Main Eukaryotic Single-Stranded DNA Binding Protein, a Focal Point in Cellular DNA Metabolism. Int J Mol Sci 2024; 25:588. [PMID: 38203759 PMCID: PMC10779431 DOI: 10.3390/ijms25010588] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Replication protein A (RPA) is a heterotrimeric protein complex and the main single-stranded DNA (ssDNA)-binding protein in eukaryotes. RPA has key functions in most of the DNA-associated metabolic pathways and DNA damage signalling. Its high affinity for ssDNA helps to stabilise ssDNA structures and protect the DNA sequence from nuclease attacks. RPA consists of multiple DNA-binding domains which are oligonucleotide/oligosaccharide-binding (OB)-folds that are responsible for DNA binding and interactions with proteins. These RPA-ssDNA and RPA-protein interactions are crucial for DNA replication, DNA repair, DNA damage signalling, and the conservation of the genetic information of cells. Proteins such as ATR use RPA to locate to regions of DNA damage for DNA damage signalling. The recruitment of nucleases and DNA exchange factors to sites of double-strand breaks are also an important RPA function to ensure effective DNA recombination to correct these DNA lesions. Due to its high affinity to ssDNA, RPA's removal from ssDNA is of central importance to allow these metabolic pathways to proceed, and processes to exchange RPA against downstream factors are established in all eukaryotes. These faceted and multi-layered functions of RPA as well as its role in a variety of human diseases will be discussed.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland
| | - Anna Marie Meaney
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland
| | - Timothy Hulshoff
- Molecular Systems Physiology Group, School of Biological and Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Ines Thiele
- Molecular Systems Physiology Group, School of Biological and Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Nichodemus O. Onwubiko
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
28
|
Lim CJ. Telomere C-Strand Fill-In Machinery: New Insights into the Human CST-DNA Polymerase Alpha-Primase Structures and Functions. Subcell Biochem 2024; 104:73-100. [PMID: 38963484 DOI: 10.1007/978-3-031-58843-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Telomeres at the end of eukaryotic chromosomes are extended by a specialized set of enzymes and telomere-associated proteins, collectively termed here the telomere "replisome." The telomere replisome acts on a unique replicon at each chromosomal end of the telomeres, the 3' DNA overhang. This telomere replication process is distinct from the replisome mechanism deployed to duplicate the human genome. The G-rich overhang is first extended before the complementary C-strand is filled in. This overhang is extended by telomerase, a specialized ribonucleoprotein and reverse transcriptase. The overhang extension process is terminated when telomerase is displaced by CTC1-STN1-TEN1 (CST), a single-stranded DNA-binding protein complex. CST then recruits DNA polymerase α-primase to complete the telomere replication process by filling in the complementary C-strand. In this chapter, the recent structure-function insights into the human telomere C-strand fill-in machinery (DNA polymerase α-primase and CST) will be discussed.
Collapse
Affiliation(s)
- Ci Ji Lim
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
29
|
Cordoba JJ, Mullins EA, Salay LE, Eichman BF, Chazin WJ. Flexibility and Distributive Synthesis Regulate RNA Priming and Handoff in Human DNA Polymerase α-Primase. J Mol Biol 2023; 435:168330. [PMID: 37884206 PMCID: PMC10872500 DOI: 10.1016/j.jmb.2023.168330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/22/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
DNA replication in eukaryotes relies on the synthesis of a ∼30-nucleotide RNA/DNA primer strand through the dual action of the heterotetrameric polymerase α-primase (pol-prim) enzyme. Synthesis of the 7-10-nucleotide RNA primer is regulated by the C-terminal domain of the primase regulatory subunit (PRIM2C) and is followed by intramolecular handoff of the primer to pol α for extension by ∼20 nucleotides of DNA. Here, we provide evidence that RNA primer synthesis is governed by a combination of the high affinity and flexible linkage of the PRIM2C domain and the surprisingly low affinity of the primase catalytic domain (PRIM1) for substrate. Using a combination of small angle X-ray scattering and electron microscopy, we found significant variability in the organization of PRIM2C and PRIM1 in the absence and presence of substrate, and that the population of structures with both PRIM2C and PRIM1 in a configuration aligned for synthesis is low. Crosslinking was used to visualize the orientation of PRIM2C and PRIM1 when engaged by substrate as observed by electron microscopy. Microscale thermophoresis was used to measure substrate affinities for a series of pol-prim constructs, which showed that the PRIM1 catalytic domain does not bind the template or emergent RNA-primed templates with appreciable affinity. Together, these findings support a model of RNA primer synthesis in which generation of the nascent RNA strand and handoff of the RNA-primed template from primase to polymerase α is mediated by the high degree of inter-domain flexibility of pol-prim, the ready dissociation of PRIM1 from its substrate, and the much higher affinity of the POLA1cat domain of polymerase α for full-length RNA-primed templates.
Collapse
Affiliation(s)
- John J Cordoba
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Elwood A Mullins
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Lauren E Salay
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Brandt F Eichman
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Walter J Chazin
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
30
|
Jaiswal RK, Lei KH, Chastain M, Wang Y, Shiva O, Li S, You Z, Chi P, Chai W. CaMKK2 and CHK1 phosphorylate human STN1 in response to replication stress to protect stalled forks from aberrant resection. Nat Commun 2023; 14:7882. [PMID: 38036565 PMCID: PMC10689503 DOI: 10.1038/s41467-023-43685-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
Keeping replication fork stable is essential for safeguarding genome integrity; hence, its protection is highly regulated. The CTC1-STN1-TEN1 (CST) complex protects stalled forks from aberrant MRE11-mediated nascent strand DNA degradation (NSD). However, the activation mechanism for CST at forks is unknown. Here, we report that STN1 is phosphorylated in its intrinsic disordered region. Loss of STN1 phosphorylation reduces the replication stress-induced STN1 localization to stalled forks, elevates NSD, increases MRE11 access to stalled forks, and decreases RAD51 localization at forks, leading to increased genome instability under perturbed DNA replication condition. STN1 is phosphorylated by both the ATR-CHK1 and the calcium-sensing kinase CaMKK2 in response to hydroxyurea/aphidicolin treatment or elevated cytosolic calcium concentration. Cancer-associated STN1 variants impair STN1 phosphorylation, conferring inability of fork protection. Collectively, our study uncovers that CaMKK2 and ATR-CHK1 target STN1 to enable its fork protective function, and suggests an important role of STN1 phosphorylation in cancer development.
Collapse
Affiliation(s)
- Rishi Kumar Jaiswal
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Kai-Hang Lei
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Megan Chastain
- Office of Research, Washington State University, Spokane, WA, USA
| | - Yuan Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Olga Shiva
- Office of Research, Washington State University, Spokane, WA, USA
| | - Shan Li
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Weihang Chai
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA.
| |
Collapse
|
31
|
Cai SW, Takai H, Walz T, de Lange T. POT1 recruits and regulates CST-Polα/Primase at human telomeres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539880. [PMID: 37215005 PMCID: PMC10197580 DOI: 10.1101/2023.05.08.539880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Telomere maintenance requires extension of the G-rich telomeric repeat strand by telomerase and fill-in synthesis of the C-rich strand by Polα/Primase. Telomeric Polα/Primase is bound to Ctc1-Stn1-Ten1 (CST), a single-stranded DNA-binding complex. Like mutations in telomerase, mutations affecting CST-Polα/Primase result in pathological telomere shortening and cause a telomere biology disorder, Coats plus (CP). We determined cryogenic electron microscopy structures of human CST bound to the shelterin heterodimer POT1/TPP1 that reveal how CST is recruited to telomeres by POT1. Phosphorylation of POT1 is required for CST recruitment, and the complex is formed through conserved interactions involving several residues mutated in CP. Our structural and biochemical data suggest that phosphorylated POT1 holds CST-Polα/Primase in an inactive auto-inhibited state until telomerase has extended the telomere ends. We propose that dephosphorylation of POT1 releases CST-Polα/Primase into an active state that completes telomere replication through fill-in synthesis.
Collapse
Affiliation(s)
- Sarah W. Cai
- Laboratory of Cell Biology and Genetics, The Rockefeller University; New York, NY, USA
- Laboratory of Molecular Electron Microscopy, The Rockefeller University; New York, NY, USA
| | - Hiroyuki Takai
- Laboratory of Cell Biology and Genetics, The Rockefeller University; New York, NY, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University; New York, NY, USA
| | - Titia de Lange
- Laboratory of Cell Biology and Genetics, The Rockefeller University; New York, NY, USA
- Lead contact
| |
Collapse
|
32
|
He Q, Lim CJ. Models for human telomere C-strand fill-in by CST-Polα-primase. Trends Biochem Sci 2023; 48:860-872. [PMID: 37586999 PMCID: PMC10528720 DOI: 10.1016/j.tibs.2023.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Telomere maintenance is essential for the genome integrity of eukaryotes, and this function is underpinned by the two-step telomeric DNA synthesis process: telomere G-overhang extension by telomerase and complementary strand fill-in by DNA polymerase alpha-primase (polα-primase). Compared to the telomerase step, the telomere C-strand fill-in mechanism is less understood. Recent studies have provided new insights into how telomeric single-stranded DNA-binding protein CTC1-STN1-TEN1 (CST) and polα-primase coordinate to synthesize the telomeric C-strand for telomere overhang fill-in. Cryogenic electron microscopy (cryo-EM) structures of CST-polα-primase complexes have provided additional insights into how they assemble at telomeric templates and de novo synthesize the telomere C-strand. In this review, we discuss how these latest findings coalesce with existing understanding to develop a human telomere C-strand fill-in mechanism model.
Collapse
Affiliation(s)
- Qixiang He
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ci Ji Lim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
33
|
Zabrady K, Li AWH, Doherty AJ. Mechanism of primer synthesis by Primase-Polymerases. Curr Opin Struct Biol 2023; 82:102652. [PMID: 37459807 DOI: 10.1016/j.sbi.2023.102652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 09/16/2023]
Abstract
Members of the primase-polymerase (Prim-Pol) superfamily are found in all domains of life and play diverse roles in genome stability, including primer synthesis during DNA replication, lesion repair and damage tolerance. This review focuses primarily on Prim-Pol members capable of de novo primer synthesis that have experimentally derived structural models available. We discuss the mechanism of DNA primer synthesis initiation by Prim-Pol catalytic domains, based on recent structural and functional studies. We also describe a general model for primer initiation that also includes the ancillary domains/subunits, which stimulate the initiation of primer synthesis.
Collapse
Affiliation(s)
- Katerina Zabrady
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK. https://twitter.com/@KZabrady
| | - Arthur W H Li
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK.
| |
Collapse
|
34
|
Mullins EA, Salay LE, Durie CL, Bradley NP, Jackman JE, Ohi MD, Chazin WJ, Eichman BF. A mechanistic model of primer synthesis from catalytic structures of DNA polymerase α-primase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533013. [PMID: 36993335 PMCID: PMC10055150 DOI: 10.1101/2023.03.16.533013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The mechanism by which polymerase α-primase (polα-primase) synthesizes chimeric RNA-DNA primers of defined length and composition, necessary for replication fidelity and genome stability, is unknown. Here, we report cryo-EM structures of polα-primase in complex with primed templates representing various stages of DNA synthesis. Our data show how interaction of the primase regulatory subunit with the primer 5'-end facilitates handoff of the primer to polα and increases polα processivity, thereby regulating both RNA and DNA composition. The structures detail how flexibility within the heterotetramer enables synthesis across two active sites and provide evidence that termination of DNA synthesis is facilitated by reduction of polα and primase affinities for the varied conformations along the chimeric primer/template duplex. Together, these findings elucidate a critical catalytic step in replication initiation and provide a comprehensive model for primer synthesis by polα-primase.
Collapse
|
35
|
Hara T, Nakaoka H, Miyoshi T, Ishikawa F. The CST complex facilitates cell survival under oxidative genotoxic stress. PLoS One 2023; 18:e0289304. [PMID: 37590191 PMCID: PMC10434909 DOI: 10.1371/journal.pone.0289304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/15/2023] [Indexed: 08/19/2023] Open
Abstract
Genomic DNA is constantly exposed to a variety of genotoxic stresses, and it is crucial for organisms to be equipped with mechanisms for repairing the damaged genome. Previously, it was demonstrated that the mammalian CST (CTC1-STN1-TEN1) complex, which was originally identified as a single-stranded DNA-binding trimeric protein complex essential for telomere maintenance, is required for survival in response to hydroxyurea (HU), which induces DNA replication fork stalling. It is still unclear, however, how the CST complex is involved in the repair of diverse types of DNA damage induced by oxidizing agents such as H2O2. STN1 knockdown (KD) sensitized HeLa cells to high doses of H2O2. While H2O2 induced DNA strand breaks throughout the cell cycle, STN1 KD cells were as resistant as control cells to H2O2 treatment when challenged in the G1 phase of the cell cycle, but they were sensitive when exposed to H2O2 in S/G2/M phase. STN1 KD cells showed a failure of DNA synthesis and RAD51 foci formation upon H2O2 treatment. Chemical inhibition of RAD51 in shSTN1 cells did not exacerbate the sensitivity to H2O2, implying that the CST complex and RAD51 act in the same pathway. Collectively, our results suggest that the CST complex is required for maintaining genomic stability in response to oxidative DNA damage, possibly through RAD51-dependent DNA repair/protection mechanisms.
Collapse
Affiliation(s)
- Tomohiko Hara
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hidenori Nakaoka
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tomoicihiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
36
|
Jones ML, Aria V, Baris Y, Yeeles JTP. How Pol α-primase is targeted to replisomes to prime eukaryotic DNA replication. Mol Cell 2023; 83:2911-2924.e16. [PMID: 37506699 PMCID: PMC10501992 DOI: 10.1016/j.molcel.2023.06.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
During eukaryotic DNA replication, Pol α-primase generates primers at replication origins to start leading-strand synthesis and every few hundred nucleotides during discontinuous lagging-strand replication. How Pol α-primase is targeted to replication forks to prime DNA synthesis is not fully understood. Here, by determining cryoelectron microscopy (cryo-EM) structures of budding yeast and human replisomes containing Pol α-primase, we reveal a conserved mechanism for the coordination of priming by the replisome. Pol α-primase binds directly to the leading edge of the CMG (CDC45-MCM-GINS) replicative helicase via a complex interaction network. The non-catalytic PRIM2/Pri2 subunit forms two interfaces with CMG that are critical for in vitro DNA replication and yeast cell growth. These interactions position the primase catalytic subunit PRIM1/Pri1 directly above the exit channel for lagging-strand template single-stranded DNA (ssDNA), revealing why priming occurs efficiently only on the lagging-strand template and elucidating a mechanism for Pol α-primase to overcome competition from RPA to initiate primer synthesis.
Collapse
Affiliation(s)
- Morgan L Jones
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Valentina Aria
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Yasemin Baris
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
37
|
Barbour AT, Wuttke DS. RPA-like single-stranded DNA-binding protein complexes including CST serve as specialized processivity factors for polymerases. Curr Opin Struct Biol 2023; 81:102611. [PMID: 37245465 PMCID: PMC10524659 DOI: 10.1016/j.sbi.2023.102611] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/30/2023]
Abstract
Telomeres and other single-stranded regions of the genome require specialized management to maintain stability and for proper progression of DNA metabolism pathways. Human Replication Protein A and CTC1-STN1-TEN1 are structurally similar heterotrimeric protein complexes that have essential ssDNA-binding roles in DNA replication, repair, and telomeres. Yeast and ciliates have related ssDNA-binding proteins with strikingly conserved structural features to these human heterotrimeric protein complexes. Recent breakthrough structures have extended our understanding of these commonalities by illuminating a common mechanism used by these proteins to act as processivity factors for their partner polymerases through their ability to manage ssDNA.
Collapse
Affiliation(s)
- Alexandra T Barbour
- Department of Biochemistry, University of Colorado Bouder, Boulder, CO 80309, USA
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado Bouder, Boulder, CO 80309, USA.
| |
Collapse
|
38
|
Cordoba JJ, Mullins EA, Salay LE, Eichman BF, Chazin WJ. Flexibility and distributive synthesis regulate RNA priming and handoff in human DNA polymerase α-primase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551538. [PMID: 37577606 PMCID: PMC10418221 DOI: 10.1101/2023.08.01.551538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
DNA replication in eukaryotes relies on the synthesis of a ~30-nucleotide RNA/DNA primer strand through the dual action of the heterotetrameric polymerase α-primase (pol-prim) enzyme. Synthesis of the 7-10-nucleotide RNA primer is regulated by the C-terminal domain of the primase regulatory subunit (PRIM2C) and is followed by intramolecular handoff of the primer to pol α for extension by ~20 nucleotides of DNA. Here we provide evidence that RNA primer synthesis is governed by a combination of the high affinity and flexible linkage of the PRIM2C domain and the low affinity of the primase catalytic domain (PRIM1) for substrate. Using a combination of small angle X-ray scattering and electron microscopy, we found significant variability in the organization of PRIM2C and PRIM1 in the absence and presence of substrate, and that the population of structures with both PRIM2C and PRIM1 in a configuration aligned for synthesis is low. Crosslinking was used to visualize the orientation of PRIM2C and PRIM1 when engaged by substrate as observed by electron microscopy. Microscale thermophoresis was used to measure substrate affinities for a series of pol-prim constructs, which showed that the PRIM1 catalytic domain does not bind the template or emergent RNA-primed templates with appreciable affinity. Together, these findings support a model of RNA primer synthesis in which generation of the nascent RNA strand and handoff of the RNA-primed template from primase to polymerase α is mediated by the high degree of inter-domain flexibility of pol-prim, the ready dissociation of PRIM1 from its substrate, and the much higher affinity of the POLA1cat domain of polymerase α for full-length RNA-primed templates.
Collapse
Affiliation(s)
- John J. Cordoba
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee, USA
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Elwood A. Mullins
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Lauren E. Salay
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee, USA
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Brandt F. Eichman
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee, USA
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Walter J. Chazin
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee, USA
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
39
|
Bainbridge L, Zabrady K, Doherty A. Primase-polymerases: how to make a primer from scratch. Biosci Rep 2023; 43:BSR20221986. [PMID: 37358261 PMCID: PMC10345425 DOI: 10.1042/bsr20221986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023] Open
Abstract
To pass on genetic information to the next generation, cells must faithfully replicate their genomes to provide copies for each daughter cell. To synthesise these duplicates, cells employ specialised enzymes called DNA polymerases, which rapidly and accurately replicate nucleic acid polymers. However, most polymerases lack the ability to directly initiate DNA synthesis and required specialised replicases called primases to make short polynucleotide primers, from which they then extend. Replicative primases (eukaryotes and archaea) belong to a functionally diverse enzyme superfamily known as Primase-Polymerases (Prim-Pols), with orthologues present throughout all domains of life. Characterised by a conserved catalytic Prim-Pol domain, these enzymes have evolved various roles in DNA metabolism, including DNA replication, repair, and damage tolerance. Many of these biological roles are fundamentally underpinned by the ability of Prim-Pols to generate primers de novo. This review examines our current understanding of the catalytic mechanisms utilised by Prim-Pols to initiate primer synthesis.
Collapse
Affiliation(s)
- Lewis J. Bainbridge
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, U.K
| | - Katerina Zabrady
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, U.K
| | - Aidan J. Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, U.K
| |
Collapse
|
40
|
Abstract
It has been known for decades that telomerase extends the 3' end of linear eukaryotic chromosomes and dictates the telomeric repeat sequence based on the template in its RNA. However, telomerase does not mitigate sequence loss at the 5' ends of chromosomes, which results from lagging strand DNA synthesis and nucleolytic processing. Therefore, a second enzyme is needed to keep telomeres intact: DNA polymerase α/Primase bound to Ctc1-Stn1-Ten1 (CST). CST-Polα/Primase maintains telomeres through a fill-in reaction that replenishes the lost sequences at the 5' ends. CST not only serves to maintain telomeres but also determines their length by keeping telomerase from overelongating telomeres. Here we discuss recent data on the evolution, structure, function, and recruitment of mammalian CST-Polα/Primase, highlighting the role of this complex and telomere length control in human disease.
Collapse
Affiliation(s)
- Sarah W Cai
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
41
|
Lue NF, Autexier C. Orchestrating nucleic acid-protein interactions at chromosome ends: telomerase mechanisms come into focus. Nat Struct Mol Biol 2023; 30:878-890. [PMID: 37400652 PMCID: PMC10539978 DOI: 10.1038/s41594-023-01022-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/16/2023] [Indexed: 07/05/2023]
Abstract
Telomerase is a special reverse transcriptase ribonucleoprotein dedicated to the synthesis of telomere repeats that protect chromosome ends. Among reverse transcriptases, telomerase is unique in using a stably associated RNA with an embedded template to synthesize a specified sequence. Moreover, it is capable of iteratively copying the same template region (repeat addition processivity) through multiple rounds of RNA-DNA unpairing and reannealing, that is, the translocation reaction. Biochemical analyses of telomerase over the past 3 decades in protozoa, fungi and mammals have identified structural elements that underpin telomerase mechanisms and have led to models that account for the special attributes of telomerase. Notably, these findings and models can now be interpreted and adjudicated through recent cryo-EM structures of Tetrahymena and human telomerase holoenzyme complexes in association with substrates and regulatory proteins. Collectively, these structures reveal the intricate protein-nucleic acid interactions that potentiate telomerase's unique translocation reaction and clarify how this enzyme reconfigures the basic reverse transcriptase scaffold to craft a polymerase dedicated to the synthesis of telomere DNA. Among the many new insights is the resolution of the telomerase 'anchor site' proposed more than 3 decades ago. The structures also highlight the nearly universal conservation of a protein-protein interface between an oligonucleotide/oligosaccharide-binding (OB)-fold regulatory protein and the telomerase catalytic subunit, which enables spatial and temporal regulation of telomerase function in vivo. In this Review, we discuss key features of the structures in combination with relevant functional analyses. We also examine conserved and divergent aspects of telomerase mechanisms as gleaned from studies in different model organisms.
Collapse
Affiliation(s)
- Neal F Lue
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
| | - Chantal Autexier
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Anatomy and Cell Biology and Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
42
|
Yuan Z, Georgescu R, Li H, O'Donnell ME. Molecular choreography of primer synthesis by the eukaryotic Pol α-primase. Nat Commun 2023; 14:3697. [PMID: 37344454 PMCID: PMC10284912 DOI: 10.1038/s41467-023-39441-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
The eukaryotic polymerase α (Pol α) synthesizes an RNA-DNA hybrid primer of 20-30 nucleotides. Pol α is composed of Pol1, Pol12, Primase 1 (Pri1), and Pri2. Pol1 and Pri1 contain the DNA polymerase and RNA primase activities, respectively. It has been unclear how Pol α hands over an RNA primer from Pri1 to Pol1 for DNA primer extension, and how the primer length is defined. Here we report the cryo-EM analysis of yeast Pol α in the apo, primer initiation, primer elongation, RNA primer hand-off from Pri1 to Pol1, and DNA extension states, revealing a series of very large movements. We reveal a critical point at which Pol1-core moves to take over the 3'-end of the RNA from Pri1. DNA extension is limited by a spiral motion of Pol1-core. Since both Pri1 and Pol1-core are flexibly attached to a stable platform, primer growth produces stress that limits the primer length.
Collapse
Affiliation(s)
- Zuanning Yuan
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Roxana Georgescu
- DNA Replication Laboratory and Howard Hughes Medical Institute, Rockefeller University, New York, NY, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| | - Michael E O'Donnell
- DNA Replication Laboratory and Howard Hughes Medical Institute, Rockefeller University, New York, NY, USA.
| |
Collapse
|
43
|
Wang H, Ma T, Zhang X, Chen W, Lan Y, Kuang G, Hsu SJ, He Z, Chen Y, Stewart J, Bhattacharjee A, Luo Z, Price C, Feng X. CTC1 OB-B interaction with TPP1 terminates telomerase and prevents telomere overextension. Nucleic Acids Res 2023; 51:4914-4928. [PMID: 37021555 PMCID: PMC10250220 DOI: 10.1093/nar/gkad237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
CST (CTC1-STN1-TEN1) is a telomere associated complex that binds ssDNA and is required for multiple steps in telomere replication, including termination of G-strand extension by telomerase and synthesis of the complementary C-strand. CST contains seven OB-folds which appear to mediate CST function by modulating CST binding to ssDNA and the ability of CST to recruit or engage partner proteins. However, the mechanism whereby CST achieves its various functions remains unclear. To address the mechanism, we generated a series of CTC1 mutants and studied their effect on CST binding to ssDNA and their ability to rescue CST function in CTC1-/- cells. We identified the OB-B domain as a key determinant of telomerase termination but not C-strand synthesis. CTC1-ΔB expression rescued C-strand fill-in, prevented telomeric DNA damage signaling and growth arrest. However, it caused progressive telomere elongation and the accumulation of telomerase at telomeres, indicating an inability to limit telomerase action. The CTC1-ΔB mutation greatly reduced CST-TPP1 interaction but only modestly affected ssDNA binding. OB-B point mutations also weakened TPP1 association, with the deficiency in TPP1 interaction tracking with an inability to limit telomerase action. Overall, our results indicate that CTC1-TPP1 interaction plays a key role in telomerase termination.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tengfei Ma
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaotong Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Chen
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yina Lan
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guotao Kuang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shih-Jui Hsu
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Zibin He
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuxi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jason Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | | | - Zhenhua Luo
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Carolyn Price
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Xuyang Feng
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
44
|
Olson CL, Barbour AT, Wieser TA, Wuttke DS. RPA engages telomeric G-quadruplexes more effectively than CST. Nucleic Acids Res 2023; 51:5073-5086. [PMID: 37140062 PMCID: PMC10250233 DOI: 10.1093/nar/gkad315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Abstract
G-quadruplexes (G4s) are a set of stable secondary structures that form within guanine-rich regions of single-stranded nucleic acids that pose challenges for DNA maintenance. The G-rich DNA sequence at telomeres has a propensity to form G4s of various topologies. The human protein complexes Replication Protein A (RPA) and CTC1-STN1-TEN1 (CST) are implicated in managing G4s at telomeres, leading to DNA unfolding and allowing telomere replication to proceed. Here, we use fluorescence anisotropy equilibrium binding measurements to determine the ability of these proteins to bind various telomeric G4s. We find that the ability of CST to specifically bind G-rich ssDNA is substantially inhibited by the presence of G4s. In contrast, RPA tightly binds telomeric G4s, showing negligible changes in affinity for G4 structure compared to linear ssDNAs. Using a mutagenesis strategy, we found that RPA DNA-binding domains work together for G4 binding, and simultaneous disruption of these domains reduces the affinity of RPA for G4 ssDNA. The relative inability of CST to disrupt G4s, combined with the greater cellular abundance of RPA, suggests that RPA could act as a primary protein complex responsible for resolving G4s at telomeres.
Collapse
Affiliation(s)
- Conner L Olson
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO80309, USA
| | - Alexandra T Barbour
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO80309, USA
| | - Thomas A Wieser
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO80309, USA
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO80309, USA
| |
Collapse
|
45
|
Yuan Z, Georgescu R, Li H, O'Donnell ME. Molecular choreography of primer synthesis by the eukaryotic Pol α-primase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539257. [PMID: 37205351 PMCID: PMC10187153 DOI: 10.1101/2023.05.03.539257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The eukaryotic polymerase α (Pol α) is a dual-function DNA polymerase/primase complex that synthesizes an RNA-DNA hybrid primer of 20-30 nucleotides for DNA replication. Pol α is composed of Pol1, Pol12, Primase 1 (Pri1), and Pri2, with Pol1 and Pri1 containing the DNA polymerase activity and RNA primase activity, respectively, whereas Pol12 and Pri2 serve a structural role. It has been unclear how Pol α hands over an RNA primer made by Pri1 to Pol1 for DNA primer extension, and how the primer length is defined, perhaps due to the difficulty in studying the highly mobile structure. Here we report a comprehensive cryo-EM analysis of the intact 4-subunit yeast Pol α in the apo, primer initiation, primer elongation, RNA primer hand-off from Pri1 to Pol1, and DNA extension states in a 3.5 Å - 5.6 Å resolution range. We found that Pol α is a three-lobed flexible structure. Pri2 functions as a flexible hinge that holds together the catalytic Pol1-core, and the noncatalytic Pol1 CTD that binds to Pol 12 to form a stable platform upon which the other components are organized. In the apo state, Pol1-core is sequestered on the Pol12-Pol1-CTD platform, and Pri1 is mobile perhaps in search of a template. Upon binding a ssDNA template, a large conformation change is induced that enables Pri1 to perform RNA synthesis, and positions Pol1-core to accept the future RNA primed site 50 Å upstream of where Pri1 binds. We reveal in detail the critical point at which Pol1-core takes over the 3'-end of the RNA from Pri1. DNA primer extension appears limited by the spiral motion of Pol1-core while Pri2-CTD stably holds onto the 5' end of the RNA primer. Since both Pri1 and Pol1-core are attached via two linkers to the platform, primer growth will produce stress within this "two-point" attachment that may limit the length of the RNA-DNA hybrid primer. Hence, this study reveals the large and dynamic series of movements that Pol α undergoes to synthesize a primer for DNA replication.
Collapse
|
46
|
Nasheuer HP, Onwubiko NO. Lagging Strand Initiation Processes in DNA Replication of Eukaryotes-Strings of Highly Coordinated Reactions Governed by Multiprotein Complexes. Genes (Basel) 2023; 14:genes14051012. [PMID: 37239371 DOI: 10.3390/genes14051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
In their influential reviews, Hanahan and Weinberg coined the term 'Hallmarks of Cancer' and described genome instability as a property of cells enabling cancer development. Accurate DNA replication of genomes is central to diminishing genome instability. Here, the understanding of the initiation of DNA synthesis in origins of DNA replication to start leading strand synthesis and the initiation of Okazaki fragment on the lagging strand are crucial to control genome instability. Recent findings have provided new insights into the mechanism of the remodelling of the prime initiation enzyme, DNA polymerase α-primase (Pol-prim), during primer synthesis, how the enzyme complex achieves lagging strand synthesis, and how it is linked to replication forks to achieve optimal initiation of Okazaki fragments. Moreover, the central roles of RNA primer synthesis by Pol-prim in multiple genome stability pathways such as replication fork restart and protection of DNA against degradation by exonucleases during double-strand break repair are discussed.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, Arts & Science Building, Main Concourse, School of Biological and Chemical Sciences, Biochemistry, University of Galway, Distillery Road, H91 TK33 Galway, Ireland
| | - Nichodemus O Onwubiko
- Centre for Chromosome Biology, Arts & Science Building, Main Concourse, School of Biological and Chemical Sciences, Biochemistry, University of Galway, Distillery Road, H91 TK33 Galway, Ireland
| |
Collapse
|
47
|
Madru C, Martínez-Carranza M, Laurent S, Alberti AC, Chevreuil M, Raynal B, Haouz A, Le Meur RA, Delarue M, Henneke G, Flament D, Krupovic M, Legrand P, Sauguet L. DNA-binding mechanism and evolution of replication protein A. Nat Commun 2023; 14:2326. [PMID: 37087464 PMCID: PMC10122647 DOI: 10.1038/s41467-023-38048-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023] Open
Abstract
Replication Protein A (RPA) is a heterotrimeric single stranded DNA-binding protein with essential roles in DNA replication, recombination and repair. Little is known about the structure of RPA in Archaea, the third domain of life. By using an integrative structural, biochemical and biophysical approach, we extensively characterize RPA from Pyrococcus abyssi in the presence and absence of DNA. The obtained X-ray and cryo-EM structures reveal that the trimerization core and interactions promoting RPA clustering on ssDNA are shared between archaea and eukaryotes. However, we also identified a helical domain named AROD (Acidic Rpa1 OB-binding Domain), and showed that, in Archaea, RPA forms an unanticipated tetrameric supercomplex in the absence of DNA. The four RPA molecules clustered within the tetramer could efficiently coat and protect stretches of ssDNA created by the advancing replisome. Finally, our results provide insights into the evolution of this primordial replication factor in eukaryotes.
Collapse
Affiliation(s)
- Clément Madru
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Markel Martínez-Carranza
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Sébastien Laurent
- Univ Brest, Ifremer, CNRS, Biologie et Ecologie des Ecoystèmes marins profonds (BEEP), F-29280, Plouzané, France
| | - Alessandra C Alberti
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Maelenn Chevreuil
- Molecular Biophysics Platform, C2RT, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Bertrand Raynal
- Molecular Biophysics Platform, C2RT, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Ahmed Haouz
- Crystallography Platform, C2RT, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Rémy A Le Meur
- Biological NMR Platform & HDX, C2RT, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Marc Delarue
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Ghislaine Henneke
- Univ Brest, Ifremer, CNRS, Biologie et Ecologie des Ecoystèmes marins profonds (BEEP), F-29280, Plouzané, France
| | - Didier Flament
- Univ Brest, Ifremer, CNRS, Biologie et Ecologie des Ecoystèmes marins profonds (BEEP), F-29280, Plouzané, France
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université Paris Cité, CNRS, UMR 6047, Paris, France
| | - Pierre Legrand
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
- Synchrotron SOLEIL, HelioBio group, L'Orme des Merisiers, 91190, Saint-Aubin, France
| | - Ludovic Sauguet
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France.
| |
Collapse
|
48
|
Human primase hangs on the primer-template and Polα to facilitate primer termination. Nat Struct Mol Biol 2023; 30:575-576. [PMID: 37081321 DOI: 10.1038/s41594-023-00972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
|
49
|
He Q, Baranovskiy AG, Morstadt LM, Lisova AE, Babayeva ND, Lusk BL, Lim CJ, Tahirov TH. Structures of human primosome elongation complexes. Nat Struct Mol Biol 2023; 30:579-583. [PMID: 37069376 PMCID: PMC10268227 DOI: 10.1038/s41594-023-00971-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/20/2023] [Indexed: 04/19/2023]
Abstract
The synthesis of RNA-DNA primer by primosome requires coordination between primase and DNA polymerase α subunits, which is accompanied by unknown architectural rearrangements of multiple domains. Using cryogenic electron microscopy, we solved a 3.6 Å human primosome structure caught at an early stage of RNA primer elongation with deoxynucleotides. The structure confirms a long-standing role of primase large subunit and reveals new insights into how primosome is limited to synthesizing short RNA-DNA primers.
Collapse
Affiliation(s)
- Qixiang He
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrey G Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lucia M Morstadt
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alisa E Lisova
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nigar D Babayeva
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin L Lusk
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ci Ji Lim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
50
|
Coloma J, Gonzalez-Rodriguez N, Balaguer FA, Gmurczyk K, Aicart-Ramos C, Nuero ÓM, Luque-Ortega JR, Calugaru K, Lue NF, Moreno-Herrero F, Llorca O. Molecular architecture and oligomerization of Candida glabrata Cdc13 underpin its telomeric DNA-binding and unfolding activity. Nucleic Acids Res 2023; 51:668-686. [PMID: 36629261 PMCID: PMC9881146 DOI: 10.1093/nar/gkac1261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The CST complex is a key player in telomere replication and stability, which in yeast comprises Cdc13, Stn1 and Ten1. While Stn1 and Ten1 are very well conserved across species, Cdc13 does not resemble its mammalian counterpart CTC1 either in sequence or domain organization, and Cdc13 but not CTC1 displays functions independently of the rest of CST. Whereas the structures of human CTC1 and CST have been determined, the molecular organization of Cdc13 remains poorly understood. Here, we dissect the molecular architecture of Candida glabrata Cdc13 and show how it regulates binding to telomeric sequences. Cdc13 forms dimers through the interaction between OB-fold 2 (OB2) domains. Dimerization stimulates binding of OB3 to telomeric sequences, resulting in the unfolding of ssDNA secondary structure. Once bound to DNA, Cdc13 prevents the refolding of ssDNA by mechanisms involving all domains. OB1 also oligomerizes, inducing higher-order complexes of Cdc13 in vitro. OB1 truncation disrupts these complexes, affects ssDNA unfolding and reduces telomere length in C. glabrata. Together, our results reveal the molecular organization of C. glabrata Cdc13 and how this regulates the binding and the structure of DNA, and suggest that yeast species evolved distinct architectures of Cdc13 that share some common principles.
Collapse
Affiliation(s)
- Javier Coloma
- Correspondence may also be addressed to Javier Coloma. Tel: +34 91 732 8000 (Ext 3033);
| | | | - Francisco A Balaguer
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Karolina Gmurczyk
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Óscar M Nuero
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Juan Román Luque-Ortega
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Kimberly Calugaru
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, NY, USA
| | - Neal F Lue
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, NY, USA
| | | | - Oscar Llorca
- To whom correspondence should be addressed. Tel: +34 91 732 8000 (Ext 3000);
| |
Collapse
|