1
|
Chen JK, Liu T, Cai S, Ruan W, Ng CT, Shi J, Surana U, Gan L. Nanoscale analysis of human G1 and metaphase chromatin in situ. EMBO J 2025; 44:2658-2694. [PMID: 40097852 PMCID: PMC12048539 DOI: 10.1038/s44318-025-00407-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
The structure of chromatin at the nucleosome level inside cells is still incompletely understood. Here we present in situ electron cryotomography analyses of chromatin in both G1 and metaphase RPE-1 cells. G1 nucleosomes are concentrated in globular chromatin domains, and metaphase nucleosomes are concentrated in the chromatids. Classification analysis reveals that canonical mononucleosomes, and in some conditions ordered stacked dinucleosomes and mononucleosomes with a disordered gyre-proximal density, are abundant in both cell-cycle states. We do not detect class averages that have more than two stacked nucleosomes or side-by-side dinucleosomes, suggesting that groups of more than two nucleosomes are heterogeneous. Large multi-megadalton structures are abundant in G1 nucleoplasm, but not found in G1 chromatin domains and metaphase chromatin. The macromolecular phenotypes studied here represent a starting point for the comparative analysis of compaction in normal vs. unhealthy human cells, in other cell-cycle states, other organisms, and in vitro chromatin assemblies.
Collapse
Affiliation(s)
- Jon Ken Chen
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA
| | - Tingsheng Liu
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Shujun Cai
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Weimei Ruan
- Institute of Molecular and Cell Biology and Agency for Science Technology and Research, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Cai Tong Ng
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Jian Shi
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology and Agency for Science Technology and Research, 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, 117543, Singapore
| | - Lu Gan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore.
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
2
|
Delvaux de Fenffe CM, Govers J, Mattiroli F. Always on the Move: Overview on Chromatin Dynamics within Nuclear Processes. Biochemistry 2025. [PMID: 40312022 DOI: 10.1021/acs.biochem.5c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Our genome is organized into chromatin, a dynamic and modular structure made of nucleosomes. Chromatin organization controls access to the DNA sequence, playing a fundamental role in cell identity and function. How nucleosomes enable these processes is an active area of study. In this review, we provide an overview of chromatin dynamics, its properties, mechanisms, and functions. We highlight the diverse ways by which chromatin dynamics is controlled during transcription, DNA replication, and repair. Recent technological developments have promoted discoveries in this area, to which we provide an outlook on future research directions.
Collapse
Affiliation(s)
| | - Jolijn Govers
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
3
|
Hatazawa S, Horikoshi N, Kurumizaka H. Structural diversity of noncanonical nucleosomes: Functions in chromatin. Curr Opin Struct Biol 2025; 92:103054. [PMID: 40311546 DOI: 10.1016/j.sbi.2025.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025]
Abstract
In eukaryotes, genomic DNA is compacted into chromatin, with nucleosomes acting as its basic structural units. In addition to canonical nucleosomes, noncanonical nucleosomes, such as hexasomes, H3-H4 octasomes, and overlapping dinucleosomes, exhibit alternative histone compositions and play key roles in chromatin remodeling, transcription, and replication. Recent cryo-electron microscopy (cryo-EM) studies have elucidated the structural details of these noncanonical nucleosomes and their interactions with histone chaperones and chromatin remodelers. This review highlights recent advances in the structural and functional understanding of noncanonical nucleosomes and their roles in maintaining chromatin integrity and facilitating transcriptional dynamics.
Collapse
Affiliation(s)
- Suguru Hatazawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Naoki Horikoshi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
4
|
Zhang H, Guo W, Xu W, Li A, Jiang L, Li L, Peng Y. Electrostatic interactions in nucleosome and higher-order structures are regulated by protonation state of histone ionizable residue. J Chem Phys 2025; 162:105101. [PMID: 40071606 DOI: 10.1063/5.0252788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/18/2025] [Indexed: 05/13/2025] Open
Abstract
The nucleosome serves as the fundamental unit of chromatin organization, with electrostatic interactions acting as the driving forces in the folding of nucleosomes into chromatin. Perturbations around physiological pH conditions can lead to changes in the protonation states of titratable histone residues, impacting nucleosome surface electrostatic potentials and interactions. However, the effects of proton uptake or release of histone ionizable groups on nucleosome-partner protein interactions and higher-order chromatin structures remain largely unexplored. Here, we conducted comprehensive analyses of histone titratable residue pKa values in various nucleosome contexts, utilizing 96 experimentally determined complex structures. We revealed that pH-induced changes in histone residue protonation states modulated nucleosome surface electrostatic potentials and significantly influenced nucleosome-partner protein interactions. Furthermore, we observed that proton uptake or release often accompanied nucleosome-partner protein interactions, facilitating their binding processes. In addition, our findings suggest that alterations in histone protonation can also regulate nucleosome self-association, thereby modulating the organization and dynamics of higher-order chromatin structure. This study advances our understanding of nucleosome-chromatin factor interactions and how chromatin organization is regulated at the molecular level.
Collapse
Affiliation(s)
- Houfang Zhang
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Wenhan Guo
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79902, USA
| | - Wang Xu
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Anbang Li
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Lijun Jiang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Lin Li
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79902, USA
| | - Yunhui Peng
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
5
|
Bhat A, Bhan S, Kabiraj A, Pandita RK, Ramos KS, Nandi S, Sopori S, Sarkar PS, Dhar A, Pandita S, Kumar R, Das C, Tainer JA, Pandita TK. A predictive chromatin architecture nexus regulates transcription and DNA damage repair. J Biol Chem 2025; 301:108300. [PMID: 39947477 PMCID: PMC11931391 DOI: 10.1016/j.jbc.2025.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/16/2024] [Accepted: 01/16/2025] [Indexed: 03/28/2025] Open
Abstract
Genomes are blueprints of life essential for an organism's survival, propagation, and evolutionary adaptation. Eukaryotic genomes comprise of DNA, core histones, and several other nonhistone proteins, packaged into chromatin in the tiny confines of nucleus. Chromatin structural organization restricts transcription factors to access DNA, permitting binding only after specific chromatin remodeling events. The fundamental processes in living cells, including transcription, replication, repair, and recombination, are thus regulated by chromatin structure through ATP-dependent remodeling, histone variant incorporation, and various covalent histone modifications including phosphorylation, acetylation, and ubiquitination. These modifications, particularly involving histone variant H2AX, furthermore play crucial roles in DNA damage responses by enabling repair protein's access to damaged DNA. Chromatin also stabilizes the genome by regulating DNA repair mechanisms while suppressing damage from endogenous and exogenous sources. Environmental factors such as ionizing radiations induce DNA damage, and if repair is compromised, can lead to chromosomal abnormalities and gene amplifications as observed in several tumor types. Consequently, chromatin architecture controls the genome fidelity and activity: it orchestrates correct gene expression, genomic integrity, DNA repair, transcription, replication, and recombination. This review considers connecting chromatin organization to functional outcomes impacting transcription, DNA repair and genomic integrity as an emerging grand challenge for predictive molecular cell biology.
Collapse
Affiliation(s)
- Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Jammu and Kashmir, India.
| | - Sonali Bhan
- Centre for Molecular Biology, Central University of Jammu, Jammu and Kashmir, India
| | - Aindrila Kabiraj
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India
| | - Raj K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Keneth S Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India
| | - Shreya Sopori
- Centre for Molecular Biology, Central University of Jammu, Jammu and Kashmir, India
| | - Parthas S Sarkar
- Department of Neurobiology and Neurology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Telangana, India
| | | | - Rakesh Kumar
- Department of Biotechnology, Shri Mata Vaishnav Devi University, Katra, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India.
| | - John A Tainer
- Department of Molecular & Cellular Oncology and Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA.
| |
Collapse
|
6
|
Dias JK, D'Arcy S. Beyond the mono-nucleosome. Biochem Soc Trans 2025; 53:BCJ20240452. [PMID: 39887339 DOI: 10.1042/bst20230721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 02/01/2025]
Abstract
Nucleosomes, the building block of chromatin, are responsible for regulating access to the DNA sequence. This control is critical for essential cellular processes, including transcription and DNA replication and repair. Studying chromatin can be challenging both in vitro and in vivo, leading many to use a mono-nucleosome system to answer fundamental questions relating to chromatin regulators and binding partners. However, the mono-nucleosome fails to capture essential features of the chromatin structure, such as higher-order chromatin folding, local nucleosome-nucleosome interactions, and linker DNA trajectory and flexibility. We briefly review significant discoveries enabled by the mono-nucleosome and emphasize the need to go beyond this model system in vitro. Di-, tri-, and tetra-nucleosome arrays can answer important questions about chromatin folding, function, and dynamics. These multi-nucleosome arrays have highlighted the effects of varying linker DNA lengths, binding partners, and histone post-translational modifications in a more chromatin-like environment. We identify various chromatin regulatory mechanisms yet to be explored with multi-nucleosome arrays. Combined with in-solution biophysical techniques, studies of minimal multi-nucleosome chromatin models are feasible.
Collapse
Affiliation(s)
- Juliana Kikumoto Dias
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas, 75080, USA
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas, 75080, USA
| |
Collapse
|
7
|
Kable B, Portillo-Ledesma S, Popova EY, Jentink N, Swulius M, Li Z, Schlick T, Grigoryev SA. Compromised 2-start zigzag chromatin folding in immature mouse retina cells driven by irregularly spaced nucleosomes with short DNA linkers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633430. [PMID: 39868111 PMCID: PMC11760397 DOI: 10.1101/2025.01.16.633430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The formation of condensed heterochromatin is critical for establishing cell-specific transcriptional programs. To reveal structural transitions underlying heterochromatin formation in maturing mouse rod photoreceptors, we apply cryo-EM tomography, AI-assisted deep denoising, and molecular modeling. We find that chromatin isolated from immature retina cells contains many closely apposed nucleosomes with extremely short or absent nucleosome linkers, which are inconsistent with the typical two-start zigzag chromatin folding. In mature retina cells, the fraction of short-linker nucleosomes is much lower, supporting stronger chromatin compaction. By Cryo-EM-assisted nucleosome interaction capture we observe that chromatin in immature retina is enriched with i±1 interactions while chromatin in mature retina contains predominantly i±2 interactions typical of the two-start zigzag. By mesoscale modeling and computational simulation, we clarify that the unusually short linkers typical of immature retina are sufficient to inhibit the two-start zigzag and chromatin compaction by the interference of very short linkers with linker DNA stems. We propose that this short linker composition renders nucleosome arrays more open in immature retina and that, as the linker DNA length increases in mature retina, chromatin fibers become globally condensed via tight zigzag folding. This mechanism may be broadly utilized to introduce higher chromatin folding entropy for epigenomic plasticity.
Collapse
|
8
|
Sun T, Korolev N, Lyubartsev AP, Nordenskiöld L. CG modeling of nucleosome arrays reveals the salt-dependent chromatin fiber conformational variability. J Chem Phys 2025; 162:024101. [PMID: 39774881 DOI: 10.1063/5.0242509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Eukaryotic DNA is packaged in the cell nucleus into chromatin, composed of arrays of DNA-histone protein octamer complexes, the nucleosomes. Over the past decade, it has become clear that chromatin structure in vivo is not a hierarchy of well-organized folded nucleosome fibers but displays considerable conformational variability and heterogeneity. In vitro and in vivo studies, as well as computational modeling, have revealed that attractive nucleosome-nucleosome interaction with an essential role of nucleosome stacking defines chromatin compaction. The internal structure of compacted nucleosome arrays is regulated by the flexible and dynamic histone N-terminal tails. Since DNA is a highly negatively charged polyelectrolyte, electrostatic forces make a decisive contribution to chromatin formation and require the histones, particularly histone tails, to carry a significant positive charge. This also results in an essential role of mobile cations of the cytoplasm (K+, Na+, Mg2+) in regulating electrostatic interactions. Building on a previously successfully established bottom-up coarse-grained (CG) nucleosome model, we have developed a CG nucleosome array (chromatin fiber) model with the explicit presence of mobile ions and studied its conformational variability as a function of Na+ and Mg2+ ion concentration. With progressively elevated ion concentrations, we identified four main conformational states of nucleosome arrays characterized as extended, flexible, nucleosome-clutched, and globular fibers.
Collapse
Affiliation(s)
- Tiedong Sun
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, Stockholm SE-106 91, Sweden
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
9
|
Di Pietro E, Burla R, La Torre M, González-García MP, Dello Ioio R, Saggio I. Telomeres: an organized string linking plants and mammals. Biol Direct 2024; 19:119. [PMID: 39568075 PMCID: PMC11577926 DOI: 10.1186/s13062-024-00558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
Telomeres are pivotal determinants of cell stemness, organismal aging, and lifespan. Herein, we examined similarities in telomeres of Arabidopsis thaliana, mice, and humans. We report the common traits, which include their composition in multimers of TTAGGG sequences and their protection by specialized proteins. Moreover, given the link between telomeres, on the one hand, and cell proliferation and stemness on the other, we discuss the counterintuitive convergence between plants and mammals in this regard, focusing on the impact of niches on cell stemness. Finally, we suggest that tackling the study of telomere function and cell stemness by taking into consideration both plants and mammals can aid in the understanding of interconnections and contribute to research focusing on aging and organismal lifespan determinants.
Collapse
Affiliation(s)
- Edison Di Pietro
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Romina Burla
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
- CNR Institute of Biology and Pathology, Rome, Italy
| | - Mattia La Torre
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Mary-Paz González-García
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), UPM-INIA/CSIC. Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Raffaele Dello Ioio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy.
| | - Isabella Saggio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy.
| |
Collapse
|
10
|
Machelová A, Dadejová MN, Franek M, Mougeot G, Simon L, Le Goff S, Duc C, Bassler J, Demko M, Schwarzerová J, Desset S, Probst AV, Dvořáčková M. The histone chaperones ASF1 and HIRA are required for telomere length and 45S rDNA copy number homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1125-1141. [PMID: 39400911 DOI: 10.1111/tpj.17041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
Genome stability is significantly influenced by the precise coordination of chromatin complexes that facilitate the loading and eviction of histones from chromatin during replication, transcription, and DNA repair processes. In this study, we investigate the role of the Arabidopsis H3 histone chaperones ANTI-SILENCING FUNCTION 1 (ASF1) and HISTONE REGULATOR A (HIRA) in the maintenance of telomeres and 45S rDNA loci, genomic sites that are particularly susceptible to changes in the chromatin structure. We find that both ASF1 and HIRA are essential for telomere length regulation, as telomeres are significantly shorter in asf1a1b and hira mutants. However, these shorter telomeres remain localized around the nucleolus and exhibit a comparable relative H3 occupancy to the wild type. In addition to regulating telomere length, ASF1 and HIRA contribute to silencing 45S rRNA genes and affect their copy number. Besides, ASF1 supports global heterochromatin maintenance. Our findings also indicate that ASF1 transiently binds to the TELOMERE REPEAT BINDING 1 protein and the N terminus of telomerase in vivo, suggesting a physical link between the ASF1 histone chaperone and the telomere maintenance machinery.
Collapse
Affiliation(s)
- Adéla Machelová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
| | - Martina Nešpor Dadejová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Michal Franek
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Guillaume Mougeot
- iGReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, Clermont-Ferrand, 63001, France
| | - Lauriane Simon
- iGReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, Clermont-Ferrand, 63001, France
| | - Samuel Le Goff
- iGReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, Clermont-Ferrand, 63001, France
| | - Céline Duc
- Nantes Université, CNRS, US2B UMR 6286, Nantes, F-44000, France
| | - Jasmin Bassler
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, 1030, Austria
| | - Martin Demko
- Core Facility Bioinformatics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Jana Schwarzerová
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, 616 00, Czech Republic
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, 1030, Austria
| | - Sophie Desset
- iGReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, Clermont-Ferrand, 63001, France
| | - Aline V Probst
- iGReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, Clermont-Ferrand, 63001, France
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
| |
Collapse
|
11
|
Chin SY, Chen Y, Zhao L, Liu X, Chng CP, Soman A, Nordenskiöld L, Huang C, Shi X, Xue K. Investigating Different Dynamic pHP1α States in Their KCl-Mediated Liquid-Liquid Phase Separation (LLPS) Using Solid-State NMR (SSNMR) and Molecular Dynamic (MD) Simulations. J Phys Chem B 2024; 128:10451-10459. [PMID: 39387162 DOI: 10.1021/acs.jpcb.4c03749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Chromatin phase separation is dynamically regulated by many factors, such as post-translational modifications and effector proteins, and plays a critical role in genomic activities. The liquid-liquid phase separation (LLPS) of chromatin and/or effector proteins has been observed both in vitro and in vivo. However, the underlying mechanisms are largely unknown, and elucidating the physicochemical properties of the phase-separated complexes remains technically challenging. In this study, we detected dynamic, viscous, and intermediate components within the phosphorylated heterochromatin protein 1α (pHP1α) phase-separated system by using modified solid-state NMR (SSNMR) pulse sequences. The basis of these sequences relies on the different time scale of motion detected by heteronuclear Overhauser effect (hetNOE), scalar coupling-based, and dipolar coupling-based transfer schemes in NMR. In comparison to commonly utilized scalar coupling-based methods for studying the dynamic components in phase-separated systems, hetNOE offers more direct insight into molecular dynamics. NMR signals from the three different states in the protein gel were selectively excited and individually studied. Combined with molecular dynamics (MD) simulations, our findings indicate that at low KCl concentration (30 mM), the protein gel displays reduced molecular motion. Conversely, an increase in molecular motion was observed at a high KCl concentration (150 mM), which we attribute to the resultant intermolecular electrostatic interactions regulated by KCl.
Collapse
Affiliation(s)
- Sze Yuet Chin
- Centre of High Field NMR Spectroscopy and Imaging, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Yinglu Chen
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province 518172, China
| | - Lei Zhao
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province 518172, China
| | - Xinyi Liu
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province 518172, China
| | - Choon-Peng Chng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 637798 Singapore
| | - Aghil Soman
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 637798 Singapore
| | - Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province 518172, China
| | - Kai Xue
- Centre of High Field NMR Spectroscopy and Imaging, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
- School of Physical and Mathematical Science, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
12
|
Rubtsova MP, Nikishin DA, Vyssokikh MY, Koriagina MS, Vasiliev AV, Dontsova OA. Telomere Reprogramming and Cellular Metabolism: Is There a Link? Int J Mol Sci 2024; 25:10500. [PMID: 39408829 PMCID: PMC11476947 DOI: 10.3390/ijms251910500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Telomeres-special DNA-protein structures at the ends of linear eukaryotic chromosomes-define the proliferation potential of cells. Extremely short telomeres promote a DNA damage response and cell death to eliminate cells that may have accumulated mutations after multiple divisions. However, telomere elongation is associated with the increased proliferative potential of specific cell types, such as stem and germ cells. This elongation can be permanent in these cells and is activated temporally during immune response activation and regeneration processes. The activation of telomere lengthening mechanisms is coupled with increased proliferation and the cells' need for energy and building resources. To obtain the necessary nutrients, cells are capable of finely regulating energy production and consumption, switching between catabolic and anabolic processes. In this review, we focused on the interconnection between metabolism programs and telomere lengthening mechanisms during programmed activation of proliferation, such as in germ cell maturation, early embryonic development, neoplastic lesion growth, and immune response activation. It is generally accepted that telomere disturbance influences biological processes and promotes dysfunctionality. Here, we propose that metabolic conditions within proliferating cells should be involved in regulating telomere lengthening mechanisms, and telomere length may serve as a marker of defects in cellular functionality. We propose that it is possible to reprogram metabolism in order to regulate the telomere length and proliferative activity of cells, which may be important for the development of approaches to regeneration, immune response modulation, and cancer therapy. However, further investigations in this area are necessary to improve the understanding and manipulation of the molecular mechanisms involved in the regulation of proliferation, metabolism, and aging.
Collapse
Affiliation(s)
- Maria P. Rubtsova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (M.S.K.); (O.A.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
| | - Denis A. Nikishin
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (D.A.N.); (A.V.V.)
| | - Mikhail Y. Vyssokikh
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Maria S. Koriagina
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (M.S.K.); (O.A.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
| | - Andrey V. Vasiliev
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (D.A.N.); (A.V.V.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Olga A. Dontsova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (M.S.K.); (O.A.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia;
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia
| |
Collapse
|
13
|
Engeholm M, Roske JJ, Oberbeckmann E, Dienemann C, Lidschreiber M, Cramer P, Farnung L. Resolution of transcription-induced hexasome-nucleosome complexes by Chd1 and FACT. Mol Cell 2024; 84:3423-3437.e8. [PMID: 39270644 PMCID: PMC11441371 DOI: 10.1016/j.molcel.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/07/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
To maintain the nucleosome organization of transcribed genes, ATP-dependent chromatin remodelers collaborate with histone chaperones. Here, we show that at the 5' ends of yeast genes, RNA polymerase II (RNAPII) generates hexasomes that occur directly adjacent to nucleosomes. The resulting hexasome-nucleosome complexes are then resolved by Chd1. We present two cryoelectron microscopy (cryo-EM) structures of Chd1 bound to a hexasome-nucleosome complex before and after restoration of the missing inner H2A/H2B dimer by FACT. Chd1 uniquely interacts with the complex, positioning its ATPase domain to shift the hexasome away from the nucleosome. In the absence of the inner H2A/H2B dimer, its DNA-binding domain (DBD) packs against the ATPase domain, suggesting an inhibited state. Restoration of the dimer by FACT triggers a rearrangement that displaces the DBD and stimulates Chd1 remodeling. Our results demonstrate how chromatin remodelers interact with a complex nucleosome assembly and suggest how Chd1 and FACT jointly support transcription by RNAPII.
Collapse
Affiliation(s)
- Maik Engeholm
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany.
| | - Johann J Roske
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Elisa Oberbeckmann
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Christian Dienemann
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Michael Lidschreiber
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany.
| | - Lucas Farnung
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany; Harvard Medical School, Blavatnik Institute, Department of Cell Biology, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Hu Z, Lin G, Zhang M, Piao S, Fan J, Liu J, Liu P, Fu S, Sun W, Li L, Qiu X, Zhang J, Yang Y, Zhou C. Mechanistic Characterization of De Novo Generation of Variable Number Tandem Repeats in Circular Plasmids during Site-Directed Mutagenesis and Optimization for Coding Gene Application. Adv Biol (Weinh) 2024; 8:e2400084. [PMID: 38880850 DOI: 10.1002/adbi.202400084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/21/2024] [Indexed: 06/18/2024]
Abstract
Site-directed mutagenesis for creating point mutations, sometimes, gives rise to plasmids carrying variable number tandem repeats (VNTRs) locally, which are arbitrarily regarded as polymerase chain reaction (PCR) related artifacts. Here, the alternative end-joining mechanism is reported rather than PCR artifacts accounts largely for that VNTRs formation and expansion. During generating a point mutation on GPLD1 gene, an unexpected formation of VNTRs employing the 31 bp mutagenesis primers is observed as the repeat unit in the pcDNA3.1-GPLD1 plasmid. The 31 bp VNTRs are formed in 24.75% of the resulting clones with copy number varied from 2 to 13. All repeat units are aligned with the same orientation as GPLD1 gene. 43.54% of the repeat junctions harbor nucleotide mutations while the rest don't. Their demonstrated short primers spanning the 3' part of the mutagenesis primers are essential for initial creation of the 2-copy tandem repeats (TRs) in circular plasmids. The dimerization of mutagenesis primers by the alternative end-joining in a correct orientation is required for further expansion of the 2-copy TRs. Lastly, a half-double priming strategy is established, verified the findings and offered a simple method for VNTRs creation on coding genes in circular plasmids without junction mutations.
Collapse
Affiliation(s)
- Ziqi Hu
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Guochao Lin
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Mingzhu Zhang
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Shengwen Piao
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Jiankun Fan
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Jichao Liu
- The Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Peng Liu
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Songbin Fu
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, China
| | - Wenjing Sun
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, China
| | - Li Li
- The Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Xiaohong Qiu
- The Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Jinwei Zhang
- The Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Yu Yang
- The Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Chunshui Zhou
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- The Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, China
| |
Collapse
|
15
|
Hu H, Yan HL, Nguyen THD. Structural biology of shelterin and telomeric chromatin: the pieces and an unfinished puzzle. Biochem Soc Trans 2024; 52:1551-1564. [PMID: 39109533 PMCID: PMC7617103 DOI: 10.1042/bst20230300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
The six-subunit shelterin complex binds to mammalian telomeres and protects them from triggering multiple DNA damage response pathways. The loss of this protective function by shelterin can have detrimental effects on cells. In this review, we first discuss structural studies of shelterin, detailing the contributions of each subunit and inter-subunit interactions in protecting chromosome ends. We then examine the influence of telomeric chromatin dynamics on the function of shelterin at telomeres. These studies provide valuable insights and underscore the challenges that future research must tackle to attain high-resolution structures of shelterin.
Collapse
Affiliation(s)
- Hongmiao Hu
- MRC Laboratory of Molecular Biology, Cambridge, U.K
| | | | | |
Collapse
|
16
|
Brandani GB, Gu C, Gopi S, Takada S. Multiscale Bayesian simulations reveal functional chromatin condensation of gene loci. PNAS NEXUS 2024; 3:pgae226. [PMID: 38881841 PMCID: PMC11179106 DOI: 10.1093/pnasnexus/pgae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
Chromatin, the complex assembly of DNA and associated proteins, plays a pivotal role in orchestrating various genomic functions. To aid our understanding of the principles underlying chromatin organization, we introduce Hi-C metainference, a Bayesian approach that integrates Hi-C contact frequencies into multiscale prior models of chromatin. This approach combines both bottom-up (the physics-based prior) and top-down (the data-driven posterior) strategies to characterize the 3D organization of a target genomic locus. We first demonstrate the capability of this method to accurately reconstruct the structural ensemble and the dynamics of a system from contact information. We then apply the approach to investigate the Sox2, Pou5f1, and Nanog loci of mouse embryonic stem cells using a bottom-up chromatin model at 1 kb resolution. We observe that the studied loci are conformationally heterogeneous and organized as crumpled globules, favoring contacts between distant enhancers and promoters. Using nucleosome-resolution simulations, we then reveal how the Nanog gene is functionally organized across the multiple scales of chromatin. At the local level, we identify diverse tetranucleosome folding motifs with a characteristic distribution along the genome, predominantly open at cis-regulatory elements and compact in between. At the larger scale, we find that enhancer-promoter contacts are driven by the transient condensation of chromatin into compact domains stabilized by extensive internucleosome interactions. Overall, this work highlights the condensed, but dynamic nature of chromatin in vivo, contributing to a deeper understanding of gene structure-function relationships.
Collapse
Affiliation(s)
- Giovanni B Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Chenyang Gu
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Soundhararajan Gopi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
17
|
Rudnizky S, Murray PJ, Wolfe CH, Ha T. Single-Macromolecule Studies of Eukaryotic Genomic Maintenance. Annu Rev Phys Chem 2024; 75:209-230. [PMID: 38382570 DOI: 10.1146/annurev-physchem-090722-010601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Genomes are self-organized and self-maintained as long, complex macromolecules of chromatin. The inherent heterogeneity, stochasticity, phase separation, and chromatin dynamics of genome operation make it challenging to study genomes using ensemble methods. Various single-molecule force-, fluorescent-, and sequencing-based techniques rooted in different disciplines have been developed to fill critical gaps in the capabilities of bulk measurements, each providing unique, otherwise inaccessible, insights into the structure and maintenance of the genome. Capable of capturing molecular-level details about the organization, conformational changes, and packaging of genetic material, as well as processive and stochastic movements of maintenance factors, a single-molecule toolbox provides an excellent opportunity for collaborative research to understand how genetic material functions in health and malfunctions in disease. In this review, we discuss novel insights brought to genomic sciences by single-molecule techniques and their potential to continue to revolutionize the field-one molecule at a time.
Collapse
Affiliation(s)
- Sergei Rudnizky
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter J Murray
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA;
| | - Clara H Wolfe
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Segura J, Díaz-Ingelmo O, Martínez-García B, Ayats-Fraile A, Nikolaou C, Roca J. Nucleosomal DNA has topological memory. Nat Commun 2024; 15:4526. [PMID: 38806488 PMCID: PMC11133463 DOI: 10.1038/s41467-024-49023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
One elusive aspect of the chromosome architecture is how it constrains the DNA topology. Nucleosomes stabilise negative DNA supercoils by restraining a DNA linking number difference (∆Lk) of about -1.26. However, whether this capacity is uniform across the genome is unknown. Here, we calculate the ∆Lk restrained by over 4000 nucleosomes in yeast cells. To achieve this, we insert each nucleosome in a circular minichromosome and perform Topo-seq, a high-throughput procedure to inspect the topology of circular DNA libraries in one gel electrophoresis. We show that nucleosomes inherently restrain distinct ∆Lk values depending on their genomic origin. Nucleosome DNA topologies differ at gene bodies (∆Lk = -1.29), intergenic regions (∆Lk = -1.23), rDNA genes (∆Lk = -1.24) and telomeric regions (∆Lk = -1.07). Nucleosomes near the transcription start and termination sites also exhibit singular DNA topologies. Our findings demonstrate that nucleosome DNA topology is imprinted by its native chromatin context and persists when the nucleosome is relocated.
Collapse
Affiliation(s)
- Joana Segura
- DNA Topology Lab, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Madrid, Spain
| | - Ofelia Díaz-Ingelmo
- DNA Topology Lab, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Belén Martínez-García
- DNA Topology Lab, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Alba Ayats-Fraile
- DNA Topology Lab, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | | | - Joaquim Roca
- DNA Topology Lab, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain.
| |
Collapse
|
19
|
Hu G, Grover CE, Vera DL, Lung PY, Girimurugan SB, Miller ER, Conover JL, Ou S, Xiong X, Zhu D, Li D, Gallagher JP, Udall JA, Sui X, Zhang J, Bass HW, Wendel JF. Evolutionary Dynamics of Chromatin Structure and Duplicate Gene Expression in Diploid and Allopolyploid Cotton. Mol Biol Evol 2024; 41:msae095. [PMID: 38758089 PMCID: PMC11140268 DOI: 10.1093/molbev/msae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Polyploidy is a prominent mechanism of plant speciation and adaptation, yet the mechanistic understandings of duplicated gene regulation remain elusive. Chromatin structure dynamics are suggested to govern gene regulatory control. Here, we characterized genome-wide nucleosome organization and chromatin accessibility in allotetraploid cotton, Gossypium hirsutum (AADD, 2n = 4X = 52), relative to its two diploid parents (AA or DD genome) and their synthetic diploid hybrid (AD), using DNS-seq. The larger A-genome exhibited wider average nucleosome spacing in diploids, and this intergenomic difference diminished in the allopolyploid but not hybrid. Allopolyploidization also exhibited increased accessibility at promoters genome-wide and synchronized cis-regulatory motifs between subgenomes. A prominent cis-acting control was inferred for chromatin dynamics and demonstrated by transposable element removal from promoters. Linking accessibility to gene expression patterns, we found distinct regulatory effects for hybridization and later allopolyploid stages, including nuanced establishment of homoeolog expression bias and expression level dominance. Histone gene expression and nucleosome organization are coordinated through chromatin accessibility. Our study demonstrates the capability to track high-resolution chromatin structure dynamics and reveals their role in the evolution of cis-regulatory landscapes and duplicate gene expression in polyploids, illuminating regulatory ties to subgenomic asymmetry and dominance.
Collapse
Affiliation(s)
- Guanjing Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated, Chinese Academy of Agricultural Sciences, Institute of Cotton Research, Anyang 455000, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Daniel L Vera
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Pei-Yau Lung
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | | | - Emma R Miller
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Justin L Conover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Shujun Ou
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Xianpeng Xiong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - De Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Dongming Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Joseph P Gallagher
- Forage Seed and Cereal Research Unit, USDA/Agricultural Research Service, Corvallis, OR 97331, USA
| | - Joshua A Udall
- Crop Germplasm Research Unit, USDA/Agricultural Research Service, College Station, TX 77845, USA
| | - Xin Sui
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Hank W Bass
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
20
|
Nordenskiöld L, Shi X, Korolev N, Zhao L, Zhai Z, Lindman B. Liquid-liquid phase separation (LLPS) in DNA and chromatin systems from the perspective of colloid physical chemistry. Adv Colloid Interface Sci 2024; 326:103133. [PMID: 38547652 DOI: 10.1016/j.cis.2024.103133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024]
Abstract
DNA is a highly charged polyelectrolyte and is prone to associative phase separation driven by the presence of multivalent cations, charged surfactants, proteins, polymers and colloids. The process of DNA phase separation induced by positively charged species is often called DNA condensation. Generally, it refers to either intramolecular DNA compaction (coil-globule transition) or intermolecular DNA aggregation with macroscopic phase separation, but the formation of a DNA liquid crystalline system is also displayed. This has traditionally been described by polyelectrolyte theory and qualitative (Flory-Huggins-based) polymer theory approaches. DNA in the cell nucleus is packed into chromatin wound around the histone octamer (a protein complex comprising two copies each of the four histone proteins H2A, H2B, H3 and H4) to form nucleosomes separated by linker DNA. During the last decade, the phenomenon of the formation of biomolecular condensates (dynamic droplets) by liquid-liquid phase separation (LLPS) has emerged as a generally important mechanism for the formation of membraneless organelles from proteins, nucleic acids and their complexes. DNA and chromatin droplet formation through LLPS has recently received much attention by in vitro as well as in vivo studies that established the importance of this for compartmentalisation in the cell nucleus. Here, we review DNA and chromatin LLPS from a general colloid physical chemistry perspective. We start with a general discussion of colloidal phase separation in aqueous solutions and review the original (pre-LLPS era) work on DNA (macroscopic) phase separation for simpler systems with DNA in the presence of multivalent cations and well-defined surfactants and colloids. Following that, we discuss and illustrate the similarities of such macroscopic phase separation with the general behaviour of LLPS droplet formation by associative phase separation for DNA-protein systems, including chromatin; we also note cases of segregative association. The review ends with a discussion of chromatin LLPS in vivo and its physiological significance.
Collapse
Affiliation(s)
- Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China.
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Lei Zhao
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Ziwei Zhai
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Björn Lindman
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Physical Chemistry, University of Lund, P.O. Box 124, S-221 00 Lund, Sweden; Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| |
Collapse
|
21
|
Hocher A, Warnecke T. Nucleosomes at the Dawn of Eukaryotes. Genome Biol Evol 2024; 16:evae029. [PMID: 38366053 PMCID: PMC10919886 DOI: 10.1093/gbe/evae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/09/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024] Open
Abstract
Genome regulation in eukaryotes revolves around the nucleosome, the fundamental building block of eukaryotic chromatin. Its constituent parts, the four core histones (H3, H4, H2A, H2B), are universal to eukaryotes. Yet despite its exceptional conservation and central role in orchestrating transcription, repair, and other DNA-templated processes, the origins and early evolution of the nucleosome remain opaque. Histone-fold proteins are also found in archaea, but the nucleosome we know-a hetero-octameric complex composed of histones with long, disordered tails-is a hallmark of eukaryotes. What were the properties of the earliest nucleosomes? Did ancestral histones inevitably assemble into nucleosomes? When and why did the four core histones evolve? This review will look at the evolution of the eukaryotic nucleosome from the vantage point of archaea, focusing on the key evolutionary transitions required to build a modern nucleosome. We will highlight recent work on the closest archaeal relatives of eukaryotes, the Asgardarchaea, and discuss what their histones can and cannot tell us about the early evolution of eukaryotic chromatin. We will also discuss how viruses have become an unexpected source of information about the evolutionary path toward the nucleosome. Finally, we highlight the properties of early nucleosomes as an area where new tools and data promise tangible progress in the not-too-distant future.
Collapse
Affiliation(s)
- Antoine Hocher
- Medical Research Council Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Tobias Warnecke
- Medical Research Council Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Trinity College, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Das A, Giri AK, Bhattacharjee P. Targeting 'histone mark': Advanced approaches in epigenetic regulation of telomere dynamics in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195007. [PMID: 38237857 DOI: 10.1016/j.bbagrm.2024.195007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Telomere integrity is required for the maintenance of genome stability and prevention of oncogenic transformation of cells. Recent evidence suggests the presence of epigenetic modifications as an important regulator of mammalian telomeres. Telomeric and subtelomeric regions are rich in epigenetic marks that regulate telomere length majorly through DNA methylation and post-translational histone modifications. Specific histone modifying enzymes play an integral role in establishing telomeric histone codes necessary for the maintenance of structural integrity. Alterations of crucial histone moieties and histone modifiers cause deregulations in the telomeric chromatin leading to carcinogenic manifestations. This review delves into the significance of histone modifications and their influence on telomere dynamics concerning cancer. Additionally, it highlights the existing research gaps that hold the potential to drive the development of therapeutic interventions targeting the telomere epigenome.
Collapse
Affiliation(s)
- Ankita Das
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India; Department of Zoology, University of Calcutta, Kolkata 700019, India
| | - Ashok K Giri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
23
|
Wenck BR, Vickerman RL, Burkhart BW, Santangelo TJ. Archaeal histone-based chromatin structures regulate transcription elongation rates. Commun Biol 2024; 7:236. [PMID: 38413771 PMCID: PMC10899632 DOI: 10.1038/s42003-024-05928-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
Many archaea encode and express histone proteins to compact their genomes. Archaeal and eukaryotic histones share a near-identical fold that permits DNA wrapping through select histone-DNA contacts to generate chromatin-structures that must be traversed by RNA polymerase (RNAP) to generate transcripts. As archaeal histones can spontaneously assemble with a single histone isoform, single-histone chromatin variants provide an idealized platform to detail the impacts of distinct histone-DNA contacts on transcription efficiencies and to detail the role of the conserved cleavage stimulatory factor, Transcription Factor S (TFS), in assisting RNAP through chromatin landscapes. We demonstrate that substitution of histone residues that modify histone-DNA contacts or the three-dimensional chromatin structure result in radically altered transcription elongation rates and pausing patterns. Chromatin-barriers slow and pause RNAP, providing regulatory potential. The modest impacts of TFS on elongation rates through chromatin landscapes is correlated with TFS-dispensability from the archaeon Thermococcus kodakarensis. Our results detail the importance of distinct chromatin structures for archaeal gene expression and provide a unique perspective on the evolution of, and regulatory strategies imposed by, eukaryotic chromatin.
Collapse
Affiliation(s)
- Breanna R Wenck
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Robert L Vickerman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Brett W Burkhart
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Thomas J Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
24
|
Wong SY, Soman A, Korolev N, Surya W, Chen Q, Shum W, van Noort J, Nordenskiöld L. The shelterin component TRF2 mediates columnar stacking of human telomeric chromatin. EMBO J 2024; 43:87-111. [PMID: 38177309 PMCID: PMC10883271 DOI: 10.1038/s44318-023-00002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 01/06/2024] Open
Abstract
Telomere repeat binding factor 2 (TRF2) is an essential component of the telomeres and also plays an important role in a number of other non-telomeric processes. Detailed knowledge of the binding and interaction of TRF2 with telomeric nucleosomes is limited. Here, we study the binding of TRF2 to in vitro-reconstituted kilobasepair-long human telomeric chromatin fibres using electron microscopy, single-molecule force spectroscopy and analytical ultracentrifugation sedimentation velocity. Our electron microscopy results revealed that full-length and N-terminally truncated TRF2 promote the formation of a columnar structure of the fibres with an average width and compaction larger than that induced by the addition of Mg2+, in agreement with the in vivo observations. Single-molecule force spectroscopy showed that TRF2 increases the mechanical and thermodynamic stability of the telomeric fibres when stretched with magnetic tweezers. This was in contrast to the result for fibres reconstituted on the 'Widom 601' high-affinity nucleosome positioning sequence, where minor effects on fibre stability were observed. Overall, TRF2 binding induces and stabilises columnar fibres, which may play an important role in telomere maintenance.
Collapse
Affiliation(s)
- Sook Yi Wong
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- Department of Emerging Infectious Diseases, Duke-NUS, Medical School, Singapore, 169857, Singapore
| | - Aghil Soman
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Qinming Chen
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- M Diagnostics PTE. LTD, 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
| | - Wayne Shum
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - John van Noort
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- Huygens-Kamerlingh Ones Laboratory, Leiden University, Leiden, 2333 AL, The Netherlands
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
25
|
Talbert PB, Henikoff S, Armache KJ. Giant variations in giant virus genome packaging. Trends Biochem Sci 2023; 48:1071-1082. [PMID: 37777391 DOI: 10.1016/j.tibs.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023]
Abstract
Giant viruses (Nucleocytoviricota) have a largely conserved lifecycle, yet how they cram their large genomes into viral capsids is mostly unknown. The major capsid protein and the packaging ATPase (pATPase) comprise a highly conserved morphogenesis module in giant viruses, yet some giant viruses dispense with an icosahedral capsid, and others encode multiple versions of pATPases, including conjoined ATPase doublets, or encode none. Some giant viruses have acquired DNA-condensing proteins to compact their genomes, including sheath-like structures encasing folded DNA or densely packed viral nucleosomes that show a resemblance to eukaryotic nucleosomes at the telomeres. Here, we review what is known and unknown about these ATPases and condensing proteins, and place these variations in the context of viral lifecycles.
Collapse
Affiliation(s)
- Paul B Talbert
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Karim-Jean Armache
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
26
|
El-Khoury R, Roman M, Assi HA, Moye AL, Bryan T, Damha M. Telomeric i-motifs and C-strands inhibit parallel G-quadruplex extension by telomerase. Nucleic Acids Res 2023; 51:10395-10410. [PMID: 37742080 PMCID: PMC10602923 DOI: 10.1093/nar/gkad764] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
Telomeric C-rich repeated DNA sequences fold into tetrahelical i-motif structures in vitro at acidic pH. While studies have suggested that i-motifs may form in cells, little is known about their potential role in human telomere biology. In this study, we explore the effect of telomeric C-strands and i-motifs on the ability of human telomerase to extend G-rich substrates. To promote i-motif formation at neutral pH, we use telomeric sequences where the cytidines have been substituted with 2'-fluoroarabinocytidine. Using FRET-based studies, we show that the stabilized i-motifs resist hybridization to concomitant parallel G-quadruplexes, implying that both structures could exist simultaneously at telomeric termini. Moreover, through telomerase activity assays, we show that both unstructured telomeric C-strands and telomeric i-motifs can inhibit the activity and processivity of telomerase extension of parallel G-quadruplexes and linear telomeric DNA. The data suggest at least three modes of inhibition by C-strands and i-motifs: direct hybridization to the substrate DNA, hybridization to nascent product DNA resulting in early telomerase dissociation, and interference with the unique mechanism of telomerase unwinding and extension of a G-quadruplex. Overall, this study highlights a potential inhibitory role for the telomeric C-strand in telomere maintenance.
Collapse
Affiliation(s)
- Roberto El-Khoury
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Morgane Roman
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Hala Abou Assi
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Aaron L Moye
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
27
|
Ofer S, Blombach F, Erkelens AM, Barker D, Soloviev Z, Schwab S, Smollett K, Matelska D, Fouqueau T, van der Vis N, Kent NA, Thalassinos K, Dame RT, Werner F. DNA-bridging by an archaeal histone variant via a unique tetramerisation interface. Commun Biol 2023; 6:968. [PMID: 37740023 PMCID: PMC10516927 DOI: 10.1038/s42003-023-05348-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
In eukaryotes, histone paralogues form obligate heterodimers such as H3/H4 and H2A/H2B that assemble into octameric nucleosome particles. Archaeal histones are dimeric and assemble on DNA into 'hypernucleosome' particles of varying sizes with each dimer wrapping 30 bp of DNA. These are composed of canonical and variant histone paralogues, but the function of these variants is poorly understood. Here, we characterise the structure and function of the histone paralogue MJ1647 from Methanocaldococcus jannaschii that has a unique C-terminal extension enabling homotetramerisation. The 1.9 Å X-ray structure of a dimeric MJ1647 species, structural modelling of the tetramer, and site-directed mutagenesis reveal that the C-terminal tetramerization module consists of two alpha helices in a handshake arrangement. Unlike canonical histones, MJ1647 tetramers can bridge two DNA molecules in vitro. Using single-molecule tethered particle motion and DNA binding assays, we show that MJ1647 tetramers bind ~60 bp DNA and compact DNA in a highly cooperative manner. We furthermore show that MJ1647 effectively competes with the transcription machinery to block access to the promoter in vitro. To the best of our knowledge, MJ1647 is the first histone shown to have DNA bridging properties, which has important implications for genome structure and gene expression in archaea.
Collapse
Affiliation(s)
- Sapir Ofer
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Fabian Blombach
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Amanda M Erkelens
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Declan Barker
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Zoja Soloviev
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Samuel Schwab
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Katherine Smollett
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Dorota Matelska
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Thomas Fouqueau
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Nico van der Vis
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Nicholas A Kent
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Konstantinos Thalassinos
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.
| | - Finn Werner
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
28
|
Jentink N, Purnell C, Kable B, Swulius MT, Grigoryev SA. Cryoelectron tomography reveals the multiplex anatomy of condensed native chromatin and its unfolding by histone citrullination. Mol Cell 2023; 83:3236-3252.e7. [PMID: 37683647 PMCID: PMC10566567 DOI: 10.1016/j.molcel.2023.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/31/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023]
Abstract
Nucleosome chains fold and self-associate to form higher-order structures whose internal organization is unknown. Here, cryoelectron tomography (cryo-ET) of native human chromatin reveals intrinsic folding motifs such as (1) non-uniform nucleosome stacking, (2) intermittent parallel and perpendicular orientations of adjacent nucleosome planes, and (3) a regressive nucleosome chain path, which deviates from the direct zigzag topology seen in reconstituted nucleosomal arrays. By examining the self-associated structures, we observed prominent nucleosome stacking in cis and anti-parallel nucleosome interactions, which are consistent with partial nucleosome interdigitation in trans. Histone citrullination strongly inhibits nucleosome stacking and self-association with a modest effect on chromatin folding, whereas the reconstituted arrays undergo a dramatic unfolding into open zigzag chains induced by histone citrullination. This study sheds light on the internal structure of compact chromatin nanoparticles and suggests a mechanism for how epigenetic changes in chromatin folding are retained across both open and condensed forms.
Collapse
Affiliation(s)
- Nathan Jentink
- Penn State University College of Medicine, Department of Biochemistry & Molecular Biology, H171, Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, PA 17033, USA
| | - Carson Purnell
- Penn State University College of Medicine, Department of Biochemistry & Molecular Biology, H171, Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, PA 17033, USA
| | - Brianna Kable
- Penn State University College of Medicine, Department of Biochemistry & Molecular Biology, H171, Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, PA 17033, USA
| | - Matthew T Swulius
- Penn State University College of Medicine, Department of Biochemistry & Molecular Biology, H171, Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, PA 17033, USA.
| | - Sergei A Grigoryev
- Penn State University College of Medicine, Department of Biochemistry & Molecular Biology, H171, Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
29
|
Teano G, Concia L, Wolff L, Carron L, Biocanin I, Adamusová K, Fojtová M, Bourge M, Kramdi A, Colot V, Grossniklaus U, Bowler C, Baroux C, Carbone A, Probst AV, Schrumpfová PP, Fajkus J, Amiard S, Grob S, Bourbousse C, Barneche F. Histone H1 protects telomeric repeats from H3K27me3 invasion in Arabidopsis. Cell Rep 2023; 42:112894. [PMID: 37515769 DOI: 10.1016/j.celrep.2023.112894] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 12/02/2022] [Accepted: 07/13/2023] [Indexed: 07/31/2023] Open
Abstract
While the pivotal role of linker histone H1 in shaping nucleosome organization is well established, its functional interplays with chromatin factors along the epigenome are just starting to emerge. Here we show that, in Arabidopsis, as in mammals, H1 occupies Polycomb Repressive Complex 2 (PRC2) target genes where it favors chromatin condensation and H3K27me3 deposition. We further show that, contrasting with its conserved function in PRC2 activation at genes, H1 selectively prevents H3K27me3 accumulation at telomeres and large pericentromeric interstitial telomeric repeat (ITR) domains by restricting DNA accessibility to Telomere Repeat Binding (TRB) proteins, a group of H1-related Myb factors mediating PRC2 cis recruitment. This study provides a mechanistic framework by which H1 avoids the formation of gigantic H3K27me3-rich domains at telomeric sequences and contributes to safeguard nucleus architecture.
Collapse
Affiliation(s)
- Gianluca Teano
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France; Université Paris-Saclay, 91190 Orsay, France
| | - Lorenzo Concia
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Léa Wolff
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Léopold Carron
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Ivona Biocanin
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France; Université Paris-Saclay, 91190 Orsay, France
| | - Kateřina Adamusová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michael Bourge
- Cytometry Facility, Imagerie-Gif, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Amira Kramdi
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Vincent Colot
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Chris Bowler
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Célia Baroux
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Alessandra Carbone
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Aline V Probst
- CNRS UMR6293, Université Clermont Auvergne, INSERM U1103, GReD, CRBC, Clermont-Ferrand, France
| | - Petra Procházková Schrumpfová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Simon Amiard
- CNRS UMR6293, Université Clermont Auvergne, INSERM U1103, GReD, CRBC, Clermont-Ferrand, France
| | - Stefan Grob
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Clara Bourbousse
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Fredy Barneche
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
30
|
Hu H, van Roon AMM, Ghanim GE, Ahsan B, Oluwole AO, Peak-Chew SY, Robinson CV, Nguyen THD. Structural basis of telomeric nucleosome recognition by shelterin factor TRF1. SCIENCE ADVANCES 2023; 9:eadi4148. [PMID: 37624885 PMCID: PMC10456876 DOI: 10.1126/sciadv.adi4148] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
Shelterin and nucleosomes are the key players that organize mammalian chromosome ends into the protective telomere caps. However, how they interact with each other at telomeres remains unknown. We report cryo-electron microscopy structures of a human telomeric nucleosome both unbound and bound to the shelterin factor TRF1. Our structures reveal that TRF1 binds unwrapped nucleosomal DNA ends by engaging both the nucleosomal DNA and the histone octamer. Unexpectedly, TRF1 binding shifts the register of the nucleosomal DNA by 1 bp. We discovered that phosphorylation of the TRF1 C terminus and a noncanomical DNA binding surface on TRF1 are critical for its association with telomeric nucleosomes. These insights into shelterin-chromatin interactions have crucial implications for understanding telomeric chromatin organization and other roles of shelterin at telomeres including replication and transcription.
Collapse
Affiliation(s)
- Hongmiao Hu
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | | | | - Bilal Ahsan
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Abraham O. Oluwole
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU UK
| | | | - Carol V. Robinson
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU UK
| | | |
Collapse
|
31
|
Jiang T, Mo X, Zhan R, Zhang Y. Causal pathway from telomere length to occurrence and 28-day mortality of sepsis: an observational and mendelian randomization study. Aging (Albany NY) 2023; 15:7727-7740. [PMID: 37543429 PMCID: PMC10457059 DOI: 10.18632/aging.204937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 07/14/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Telomeres are considered to be a physiological marker of aging. Elucidating relationship between telomere length and sepsis is an essential step towards understanding the biological processes involved in sepsis and its salvation. Mendelian randomization studies based on SNPs have given us new insights into genetic susceptibility to disease. OBJECTIVES To explore the causal pathway from telomere length to occurrence and 28-day mortality of sepsis. METHODS Leveraging genetic information resource of UK Biobank, we captured three groups of large-scale GWAS data: leukocyte telomere length (LTL), sepsis and all-cause death of 28-day. Study design consisted of three parts: forward analysis, reverse analysis and one-way analysis. Genetic instrumental variables were selected for different analyses under the premise that three MR core assumptions were satisfied. Causality was determined by means of IVW. RESULTS In forward analysis, we did not observe a significant causal pathway from sepsis to LTL under IVW model: β (SE) was -0.0051 (0.0075) with a p-value of 0.499. In reverse analysis, based on the IVW model, the OR (95% CI) was 0.89 (0.80-0.99) and the p-values was 0.043; based on the results of leave out method and single SNP analysis, we obtained seven key SNPs. There were results of IVW model in the one-way analysis: β (SE) was -0.0287(0.1261). CONCLUSIONS Short LTL increases susceptibility to sepsis, but sepsis does not shorten telomere length. LTL does not affect sepsis 28-day all-cause mortality and does not serve as a causal intermediate in gene regulation during the progression of sepsis to 28-day death.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Xuan Mo
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Ruonan Zhan
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University Gaoxin District, Hefei, Anhui, People’s Republic of China
| | - Yi Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
32
|
Shi X, Kannaian B, Prasanna C, Soman A, Nordenskiöld L. Structural and dynamical investigation of histone H2B in well-hydrated nucleosome core particles by solid-state NMR. Commun Biol 2023; 6:672. [PMID: 37355718 PMCID: PMC10290710 DOI: 10.1038/s42003-023-05050-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
H2A-H2B dimer is a key component of nucleosomes and an important player in chromatin biology. Here, we characterized the structure and dynamics of H2B in precipitated nucleosome core particles (NCPs) with a physiologically relevant concentration using solid-state NMR. Our recent investigation of H3-H4 tetramer determined its unique dynamic properties and the present work provides a deeper understanding of the previously observed dynamic networks in NCP that is potentially functionally significant. Nearly complete 13C, 15N assignments were obtained for H2B R30-A121, which permit extracting unprecedented detailed structural and amino-acid site-specific dynamics. The derived structure of H2B in the well-hydrated NCP sample agrees well with that of X-ray crystals. Dynamics at different timescales were determined semi-quantitatively for H2B in a site-specific manner. Particularly, higher millisecond-microsecond dynamics are observed for H2B core regions including partial α1, L1, partial α2, and partial L3. The analysis of these regions in the context of the tertiary structure reveals the clustering of dynamical residues. Overall, this work fills a gap to a complete resonance assignment of all four histones in nucleosomes and delineates that the dynamic networks in NCP extend to H2B, which suggests a potential mechanism to couple histone core with distant DNA to modulate the DNA activities.
Collapse
Affiliation(s)
- Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province, China.
| | - Bhuvaneswari Kannaian
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chinmayi Prasanna
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Aghil Soman
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
33
|
Are extraordinary nucleosome structures more ordinary than we thought? Chromosoma 2023:10.1007/s00412-023-00791-w. [PMID: 36917245 DOI: 10.1007/s00412-023-00791-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023]
Abstract
The nucleosome is a DNA-protein assembly that is the basic unit of chromatin. A nucleosome can adopt various structures. In the canonical nucleosome structure, 145-147 bp of DNA is wrapped around a histone heterooctamer. The strong histone-DNA interactions cause the DNA to be inaccessible for nuclear processes such as transcription. Therefore, the canonical nucleosome structure has to be altered into different, non-canonical structures to increase DNA accessibility. While it is recognised that non-canonical structures do exist, these structures are not well understood. In this review, we discuss both the evidence for various non-canonical nucleosome structures in the nucleus and the factors that are believed to induce these structures. The wide range of non-canonical structures is likely to regulate the amount of accessible DNA, and thus have important nuclear functions.
Collapse
|
34
|
Machida S, Diogo Dias J, Benkirane M. Faithful to the Marseille tradition: Unique and intriguing-that's how Marseillevirus packs its DNA. Mol Cell 2022; 82:4401-4402. [PMID: 36459981 DOI: 10.1016/j.molcel.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022]
Abstract
Not only does Marseillevirus bear the name of the city where it was identified, it also encompasses its values and what makes Marseille a wonderful city. Marseillevirus is unique and intriguing. As such, Bryson et al. in this issue of Molecular Cell reveal how virion-associated Marseillevirus DNA is packed with nucleosomes.
Collapse
Affiliation(s)
- Shinichi Machida
- Department of Structural Virology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Joao Diogo Dias
- Institut de Génétique Humaine, Université de Montpellier, Laboratoire de Virologie Moléculaire CNRS-UMR9002, 34000 Montpellier, France
| | - Monsef Benkirane
- Institut de Génétique Humaine, Université de Montpellier, Laboratoire de Virologie Moléculaire CNRS-UMR9002, 34000 Montpellier, France.
| |
Collapse
|
35
|
A giant virus genome is densely packaged by stable nucleosomes within virions. Mol Cell 2022; 82:4458-4470.e5. [PMID: 36370708 DOI: 10.1016/j.molcel.2022.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022]
Abstract
The two doublet histones of Marseillevirus are distantly related to the four eukaryotic core histones and wrap 121 base pairs of DNA to form remarkably similar nucleosomes. By permeabilizing Marseillevirus virions and performing genome-wide nuclease digestion, chemical cleavage, and mass spectrometry assays, we find that the higher-order organization of Marseillevirus chromatin fundamentally differs from that of eukaryotes. Marseillevirus nucleosomes fully protect DNA within virions as closely abutted 121-bp DNA-wrapped cores without linker DNA or phasing along genes. Likewise, we observed that nucleosomes reconstituted onto multi-copy tandem repeats of a nucleosome-positioning sequence are tightly packed. Dense promiscuous packing of fully wrapped nucleosomes rather than "beads on a string" with genic punctuation represents a distinct mode of DNA packaging by histones. We suggest that doublet histones have evolved for viral genome protection and may resemble an early stage of histone differentiation leading to the eukaryotic octameric nucleosome.
Collapse
|
36
|
Soman A, Korolev N, Nordenskiöld L. Telomeric chromatin structure. Curr Opin Struct Biol 2022; 77:102492. [PMID: 36335846 DOI: 10.1016/j.sbi.2022.102492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Eukaryotic DNA is packaged into nucleosomes, which further condenses into chromosomes. The telomeres, which form the protective end-capping of chromosomes, play a pivotal role in ageing and cancer. Recently, significant advances have been made in understanding the nucleosomal and telomeric chromatin structure at the molecular level. In addition, recent studies shed light on the nucleosomal organisation at telomeres revealing its ultrastructural organisation, the atomic structure at the nucleosome level, its dynamic properties, and higher-order packaging of telomeric chromatin. Considerable advances have furthermore been made in understanding the structure, function and organisation of shelterin, telomerase and CST complexes. Here we discuss these recent advances in the organisation of telomeric nucleosomes and chromatin and highlight progress in the structural understanding of shelterin, telomerase and CST complexes.
Collapse
Affiliation(s)
- Aghil Soman
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
37
|
Mandemaker IK, Mattiroli F. A new chromatin flavor to cap chromosomes: Where structure, function, and evolution meet. Mol Cell 2022; 82:4199-4201. [PMID: 36400007 DOI: 10.1016/j.molcel.2022.10.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022]
Abstract
Soman, A., Wong, S.Y., et al. find that telomeric DNA assembles into a new high-order chromatin structure resembling a columnar stack of nucleosomes with dynamic properties. This raises new questions on telomere biology mechanisms and chromatin evolution.
Collapse
Affiliation(s)
- Imke K Mandemaker
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| |
Collapse
|
38
|
Chen Q, Zhao L, Soman A, Arkhipova AY, Li J, Li H, Chen Y, Shi X, Nordenskiöld L. Chromatin Liquid-Liquid Phase Separation (LLPS) Is Regulated by Ionic Conditions and Fiber Length. Cells 2022; 11:cells11193145. [PMID: 36231107 PMCID: PMC9564186 DOI: 10.3390/cells11193145] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
The dynamic regulation of the physical states of chromatin in the cell nucleus is crucial for maintaining cellular homeostasis. Chromatin can exist in solid- or liquid-like forms depending on the surrounding ions, binding proteins, post-translational modifications and many other factors. Several recent studies suggested that chromatin undergoes liquid-liquid phase separation (LLPS) in vitro and also in vivo; yet, controversial conclusions about the nature of chromatin LLPS were also observed from the in vitro studies. These inconsistencies are partially due to deviations in the in vitro buffer conditions that induce the condensation/aggregation of chromatin as well as to differences in chromatin (nucleosome array) constructs used in the studies. In this work, we present a detailed characterization of the effects of K+, Mg2+ and nucleosome fiber length on the physical state and property of reconstituted nucleosome arrays. LLPS was generally observed for shorter nucleosome arrays (15-197-601, reconstituted from 15 repeats of the Widom 601 DNA with 197 bp nucleosome repeat length) at physiological ion concentrations. In contrast, gel- or solid-like condensates were detected for the considerably longer 62-202-601 and lambda DNA (~48.5 kbp) nucleosome arrays under the same conditions. In addition, we demonstrated that the presence of reduced BSA and acetate buffer is not essential for the chromatin LLPS process. Overall, this study provides a comprehensive understanding of several factors regarding chromatin physical states and sheds light on the mechanism and biological relevance of chromatin phase separation in vivo.
Collapse
Affiliation(s)
- Qinming Chen
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (Q.C.); (A.S.)
| | - Lei Zhao
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China; (L.Z.); (A.Y.A.); (J.L.); (H.L.); (Y.C.)
| | - Aghil Soman
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (Q.C.); (A.S.)
| | - Anastasia Yu Arkhipova
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China; (L.Z.); (A.Y.A.); (J.L.); (H.L.); (Y.C.)
- Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Jindi Li
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China; (L.Z.); (A.Y.A.); (J.L.); (H.L.); (Y.C.)
| | - Hao Li
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China; (L.Z.); (A.Y.A.); (J.L.); (H.L.); (Y.C.)
| | - Yinglu Chen
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China; (L.Z.); (A.Y.A.); (J.L.); (H.L.); (Y.C.)
| | - Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China; (L.Z.); (A.Y.A.); (J.L.); (H.L.); (Y.C.)
- Correspondence: (X.S.); (L.N.)
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (Q.C.); (A.S.)
- Correspondence: (X.S.); (L.N.)
| |
Collapse
|
39
|
Telomeres and Their Neighbors. Genes (Basel) 2022; 13:genes13091663. [PMID: 36140830 PMCID: PMC9498494 DOI: 10.3390/genes13091663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Telomeres are essential structures formed from satellite DNA repeats at the ends of chromosomes in most eukaryotes. Satellite DNA repeat sequences are useful markers for karyotyping, but have a more enigmatic role in the eukaryotic cell. Much work has been done to investigate the structure and arrangement of repetitive DNA elements in classical models with implications for species evolution. Still more is needed until there is a complete picture of the biological function of DNA satellite sequences, particularly when considering non-model organisms. Celebrating Gregor Mendel’s anniversary by going to the roots, this review is designed to inspire and aid new research into telomeres and satellites with a particular focus on non-model organisms and accessible experimental and in silico methods that do not require specialized equipment or expensive materials. We describe how to identify telomere (and satellite) repeats giving many examples of published (and some unpublished) data from these techniques to illustrate the principles behind the experiments. We also present advice on how to perform and analyse such experiments, including details of common pitfalls. Our examples are a selection of recent developments and underexplored areas of research from the past. As a nod to Mendel’s early work, we use many examples from plants and insects, especially as much recent work has expanded beyond the human and yeast models traditional in telomere research. We give a general introduction to the accepted knowledge of telomere and satellite systems and include references to specialized reviews for the interested reader.
Collapse
|