1
|
Gui Z, Zeng Y, Xie T, Chen B, Wang J, Wen Y, Tan T, Zou T, Zhang F, Zhang J. Cavitation is the determining mechanism for the atomization of high-viscosity liquid. iScience 2024; 27:110071. [PMID: 38868199 PMCID: PMC11167525 DOI: 10.1016/j.isci.2024.110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/13/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024] Open
Abstract
Piezoelectric atomization is becoming mainstream in the field of inhalation therapy due to its significant advantages. With the rapid development of high-viscosity gene therapy drugs, the demand for piezoelectric atomization devices is increasing. However, conventional piezoelectric atomizers with a single-dimensional energy supply are unable to provide the energy required to atomize high-viscosity liquids. To address this problem, our team has designed a flow tube internal cavitation atomizer (FTICA). This study focuses on dissecting the atomization mechanism of FTICA. In contrast to the widely supported capillary wave hypothesis, our study provides evidence in favor of the cavitation hypothesis, proving that cavitation is the key to atomizing high-viscosity liquids with FTICA. In order to prove that the cavitation is the key to atomizing in the structure of FTICA, the performance of atomization is experimented after changing the cavitation conditions by heating and stirring of the liquids.
Collapse
Affiliation(s)
- Zhenzhen Gui
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Yaohua Zeng
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Tang Xie
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Bochuan Chen
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Jialong Wang
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Yuxin Wen
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Tian Tan
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Tao Zou
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Wai Huan Xi Road, Guangzhou 510006, China
- Guangdong-Hong Kong-Macao Key Laboratory of Multi-scale Information Fusion and Collaborative Optimization Control of Complex Manufacturing Process, Guangzhou 510006, China
| | - Fan Zhang
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Jianhui Zhang
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Wai Huan Xi Road, Guangzhou 510006, China
| |
Collapse
|
2
|
Escalona-Rayo O, Papadopoulou P, Slütter B, Kros A. Biological recognition and cellular trafficking of targeted RNA-lipid nanoparticles. Curr Opin Biotechnol 2024; 85:103041. [PMID: 38154322 DOI: 10.1016/j.copbio.2023.103041] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
Lipid nanoparticles (LNPs) have unlocked the potential of ribonucleic acid (RNA) therapeutics and vaccines. Production and large-scale manufacturing methods for RNA-LNPs have been established and rapidly accelerate. Despite this, basic research on LNPs is still required, due to their high assembly complexity and fairly new development, including research on lipid organization, transfection optimization, and in vivo behavior. Understanding fundamental aspects of LNPs that is, how lipid composition and physicochemical properties affect their biodistribution, cell recognition, and transfection, could propel their clinical development and facilitate overcoming current challenges. Herein, we review recent developments in the field of LNP technology and summarize the main findings focusing on nano-bio interactions.
Collapse
Affiliation(s)
- Oscar Escalona-Rayo
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Panagiota Papadopoulou
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Bram Slütter
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.
| |
Collapse
|