1
|
Xu Y, Yang Y, Song H, Li M, Shi W, Yu T, Lin J, Yu Y. The Role of Exerkines in the Treatment of Knee Osteoarthritis: From Mechanisms to Exercise Strategies. Orthop Surg 2025; 17:1021-1035. [PMID: 39854050 PMCID: PMC11962297 DOI: 10.1111/os.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
With the increasing prevalence of knee osteoarthritis (KOA), the limitations of traditional treatments, such as their limited efficacy in halting disease progression and their potential side effects, are becoming more evident. This situation has prompted scientists to seek more effective strategies. In recent years, exercise therapy has gained prominence in KOA treatment due to its safety, efficacy, and cost-effectiveness, which are underpinned by the molecular actions of exerkines. Unlike conventional therapies, exerkines offer specific advantages by targeting inflammatory responses, enhancing chondrocyte proliferation, and slowing cartilage degradation at the molecular level. This review explores the potential mechanisms involved in and application prospects of exerkines in KOA treatment and provides a comprehensive analysis of their role. Studies show that appropriate exercise not only promotes overall health, but also positively impacts KOA by stimulating exerkine production. The effectiveness of exerkines, however, is influenced by exercise modality, intensity, and duration of exercise, making the development of personalized exercise plans crucial for KOA patients. Based on these insights, this paper proposes targeted exercise strategies designed to maximize exerkine benefits, aiming to provide novel perspectives for KOA prevention and treatment.
Collapse
Affiliation(s)
- Yuxiong Xu
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Yizhuo Yang
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Hanan Song
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Ming Li
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Weihao Shi
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Tongwu Yu
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Jianhao Lin
- Arthritis Clinic & Research CenterPeking University People's HospitalBeijingChina
| | - Yanli Yu
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| |
Collapse
|
2
|
Lokau J, Bollmann M, Garbers Y, Feist E, Lohmann CH, Bertrand J, Garbers C. Transforming growth factor beta induces interleukin-11 expression in osteoarthritis. Cytokine 2025; 187:156863. [PMID: 39879889 DOI: 10.1016/j.cyto.2025.156863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/04/2025] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
Interleukin-11 (IL-11) is a member of the IL-6 family of cytokines and possesses both pro- and anti-inflammatory properties. IL-11 activates its target cells via binding to a membrane-bound IL-11R and subsequent formation of a homodimer of the signal-transducing receptor gp130. Thus, the expression pattern of the IL-11R determines which cells can be activated by IL-11. However, knowledge about IL-11 target cells and cells that secrete IL-11 are sparse, and the overall roles of IL-11 in inflammatory diseases are largely unexplored. In this study, we show that high amounts of IL-11 can be detected via ELISA in the synovial fluid of osteoarthritis (OA) patients in comparison to rheumatoid arthritis (RA) patients. Using primary cells and tissue of OA patients, we show that IL-11 is expressed by chondrocytes in cartilage, but not in the synovium. We further identify the cytokine transforming growth factor β 1(TGF-β1) as a potent inducer of IL-11 secretion in both primary chondrocytes and fibroblasts, and TGF-β1 and IL-11 levels correlate significantly in the synovial fluid of OA patients. Using immunohistochemistry, we show that both cartilage and synovium express IL-11R, and the amount of IL-11R is independent of the disease severity. Primary chondrocytes and fibroblasts from OA patients respond to IL-11 stimulation with potent activation of the Jak/STAT3 signaling cascade, suggesting that these cell types are not only the source, but also the targets of IL-11 in OA patients. Our results uncover IL-11 as a potential new target for therapy in OA.
Collapse
Affiliation(s)
- Juliane Lokau
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany; Department of Pathology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Miriam Bollmann
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Yvonne Garbers
- Faculty of Management, Culture and Technology (Lingen campus), Osnabrück University of Applied Sciences, 49809 Lingen, (Ems), Germany
| | - Eugen Feist
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, and Experimental Rheumatology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Christoph Garbers
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany; Department of Pathology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
3
|
Papadopoulou A, Litkowski EM, Graff M, Wang Z, Smit RAJ, Chittoor G, Dinsmore I, Josyula NS, Lin M, Shortt J, Zhu W, Vedantam SL, Yengo L, Wood AR, Berndt SI, Holm IA, Mentch FD, Hakonarson H, Kiryluk K, Weng C, Jarvik GP, Crosslin D, Carrell D, Kullo IJ, Dikilitas O, Hayes MG, Wei WQ, Edwards DRV, Assimes TL, Hirschhorn JN, Below JE, Gignoux CR, Justice AE, Loos RJF, Sun YV, Raghavan S, Deloukas P, North KE, Marouli E. Insights from the largest diverse ancestry sex-specific disease map for genetically predicted height. NPJ Genom Med 2025; 10:14. [PMID: 40016231 PMCID: PMC11868580 DOI: 10.1038/s41525-025-00464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/20/2025] [Indexed: 03/01/2025] Open
Abstract
We performed ancestry and sex specific Phenome Wide Association Studies (PheWAS) to explore disease related outcomes associated with genetically predicted height. This is the largest PheWAS on genetically predicted height involving up to 840,000 individuals of diverse ancestry. We explored European, African, East Asian ancestries and Hispanic population groups. Increased genetically predicted height is associated with hyperpotassemia and autism in the male cross-ancestry analysis. We report male-only European ancestry associations with anxiety disorders, post-traumatic stress and substance addiction and disorders. We identify a signal with benign neoplasm of other parts of digestive system in females. We report associations with a series of disorders, several with no prior evidence of association with height, involving mental disorders and the endocrine system. Our study suggests that increased genetically predicted height is associated with higher prevalence of many clinically relevant traits which has important implications for epidemiological and clinical disease surveillance and risk stratification.
Collapse
Affiliation(s)
- A Papadopoulou
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - E M Litkowski
- VA Eastern Colorado Health Care System, Aurora, CO, USA
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - M Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Z Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R A J Smit
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Clinical Epidemiology, Leiden University Medical Center Leiden, Leiden, NL, The Netherlands
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - G Chittoor
- Department of Population Health Sciences, Geisinger, Danville, PA, USA
| | - I Dinsmore
- Department of Genomic Health, Geisinger, Danville, PA, USA
| | - N S Josyula
- Department of Population Health Sciences, Geisinger, Danville, PA, USA
| | - M Lin
- Colorado Center for Personalized Medicine, Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - J Shortt
- Colorado Center for Personalized Medicine, Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - W Zhu
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - S L Vedantam
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - L Yengo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - A R Wood
- Department of Biomedical Science, Centre of Membrane Interactions and Dynamics, University of Sheffield, Western Bank, Sheffield, UK
| | - S I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - I A Holm
- Division of Genetics and Genomics and Manton Center for Orphan Diseases Research, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - F D Mentch
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - H Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - K Kiryluk
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - C Weng
- Department of Biomedical Informatics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - G P Jarvik
- Department of Medicine (Medical Genetics) and Genome Sciences, University of Washington Medical Center, Seattle, WA, USA
| | - D Crosslin
- Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, Tulane University, School of Medicine, New Orleans, LA, USA
| | - D Carrell
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - I J Kullo
- Department of Cardiovascular Medicine and the Gonda Vascular Center, Mayo Clinic, Rochester, MN, USA
| | - O Dikilitas
- Department of Cardiovascular Medicine and the Gonda Vascular Center, Mayo Clinic, Rochester, MN, USA
| | - M G Hayes
- Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - W -Q Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - D R V Edwards
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - T L Assimes
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - J N Hirschhorn
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Boston, MA, USA
- Departments of Genetics and Pediatrics Harvard Medical School, Boston, MA, USA
| | - J E Below
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - C R Gignoux
- Colorado Center for Personalized Medicine, Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - A E Justice
- Department of Population Health Sciences, Geisinger, Danville, PA, USA
| | - R J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Y V Sun
- Atlanta VA Health Care System, Decatur, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - S Raghavan
- VA Eastern Colorado Health Care System, Aurora, CO, USA
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - P Deloukas
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - K E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - E Marouli
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
- Digital Environment Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
4
|
Peng X, Chen X, Zhang Y, Tian Z, Wang M, Chen Z. Advances in the pathology and treatment of osteoarthritis. J Adv Res 2025:S2090-1232(25)00072-4. [PMID: 39889821 DOI: 10.1016/j.jare.2025.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA), a widespread degenerative joint disease, predominantly affects individuals from middle age onwards, exhibiting non-inflammatory characteristics. OA leads to the gradual deterioration of articular cartilage and subchondral bone, causing pain and reduced mobility. The risk of OA increases with age, making it a critical health concern for seniors. Despite significant research efforts and various therapeutic approaches, the precise causes of OA remain unclear. AIM OF REVIEW This paper provides a thorough examination of OA characteristics, pathogenic mechanisms at various levels, and personalized treatment strategies for different OA stages. The review aims to enhance understanding of disease mechanisms and establish a theoretical framework for developing more effective therapeutic interventions. KEY SCIENTIFIC CONCEPTS OF REVIEW This review systematically examines OA through multiple perspectives, integrating current knowledge of clinical presentation, pathological mechanisms, and associated signaling pathways. It assesses diagnostic methods and reviews both pharmacological and surgical treatments for OA, as well as emerging tissue engineering approaches to manage the disease. While therapeutic strategies such as exercise, anti-inflammatory drugs, and surgical interventions are employed to manage symptoms and modify joint structure, none have been able to effectively halt OA's advancement or achieve long-lasting symptom relief. Tissue engineering strategies, such as cell-seeded scaffolds, supportive matrices, and growth factor delivery, have emerged as promising approaches for cartilage repair and OA treatment. To combat the debilitating effects of OA, it is crucial to investigate the molecular basis of its pathogenesis and seek out innovative therapeutic targets for more potent preventive and treatment strategies.
Collapse
Affiliation(s)
- Xueliang Peng
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Xuanning Chen
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200215, China
| | - Yifan Zhang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Zhichao Tian
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Meihua Wang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Zhuoyue Chen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China.
| |
Collapse
|
5
|
Tuerlings M, Houtman E, Muusers EJH, Simon J, de Haan MW, Boone I, Ramos YFM, Mahdad R, Meulenbelt I. Exploring the therapeutic effect of human recombinant IL11 on lesioned OA human osteochondral explants. Arthritis Res Ther 2025; 27:15. [PMID: 39856704 PMCID: PMC11761764 DOI: 10.1186/s13075-025-03480-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVE To explore IL11 co-expression profiles in our previously reported RNA-sequencing dataset of OA articular cartilage, in interaction with IL6, and to investigate the effects of hrIL11 administration as potential therapeutic strategy for OA articular cartilage using our biomimetic aged human osteochondral explant model of OA. METHODS We used RNA-sequencing datasets of macroscopically preserved and lesioned OA articular cartilage (N = 35 patients). Spearman correlations were calculated between IL11 and IL6 expression levels and genes expressed in cartilage (N = 20048 genes). Osteochondral explants were isolated from macroscopically preserved and lesioned areas of the joint and were kept in culture for two weeks, with or without exposure to 200ng/ml hrIL11. RESULTS We found no overlap in correlating genes between IL11 and IL6, indicating their distinct roles in articular cartilage. Moreover, we identified more genes being correlated to IL11 in the lesioned compared to preserved articular cartilage (N = 203 and 106 genes, respectively). Upon treatment of ex vivo OA articular cartilage with hrIL11, we overall observed unbeneficial effects on chondrocyte phenotype, as illustrated by upregulation of MMP13, EPAS1, RUNX2, and POSTN. We did not observe significant differences in Mankin scores upon addition of hrIL11. CONCLUSION The current study showed that treatment of OA articular cartilage with hrIL11 is unlikely to be beneficial despite previous indications of hrIL11 as potential druggable target. These findings underscore the importance of functionally investigating OA risk genes. Better understanding of IL11 signaling and the underlying pathways is necessary towards the development of OA treatment strategy.
Collapse
Affiliation(s)
- Margo Tuerlings
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Evelyn Houtman
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Elisa J H Muusers
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Janneke Simon
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Maurice W de Haan
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Ilja Boone
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Yolande F M Ramos
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Rachid Mahdad
- Department Orthopaedics, Alrijne Hospital, Leiderdorp, Netherlands
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
6
|
Pan Q, Tao Y, Cai T, Veluchamy A, Hebert HL, Zhu P, Haque M, Dottorini T, Colvin LA, Smith BH, Meng W. A genome-wide association study identifies genetic variants associated with hip pain in the UK Biobank cohort (N = 221,127). Sci Rep 2025; 15:2812. [PMID: 39843573 PMCID: PMC11754597 DOI: 10.1038/s41598-025-85871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Hip pain is a common musculoskeletal complaint that leads many people to seek medical attention. We conducted a primary genome-wide association study (GWAS) on the hip pain phenotype within the UK Biobank cohort. Sex-stratified GWAS analysis approach was also performed to explore sex specific variants associated with hip pain. We found seven different loci associated with hip pain at GWAS significance level, with the most significant single nucleotide polymorphism (SNP) being rs77641763 within the EXD3 (p value = 2.20 × 10-13). We utilized summary statistics from the FinnGen cohort and a previous GWAS meta-analysis on hip osteoarthritis as replication cohorts. Four loci (rs509345, rs73581564, rs9597759, rs2018384) were replicated with a p value less than 0.05. Sex-stratified GWAS analyses revealed a unique locus within the CUL1 gene (rs4726995, p = 2.56 × 10-9) in males, and three unique loci in females: rs1651359966 on chromosome 7 (p = 1.15 × 10-8), rs552965738 on chromosome 9 (p = 2.72 × 10-8), and rs1978969 on chromosome 13 (p = 2.87 × 10-9). This study has identified seven genetic loci associated with hip pain. Sex-stratified analysis also revealed sex specific variants associated with hip pain in males and females. This study has provided a foundation for advancing research of hip pain and hip osteoarthritis.
Collapse
Affiliation(s)
- Qi Pan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Yiwen Tao
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Tengda Cai
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Abi Veluchamy
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF, UK
| | - Harry L Hebert
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF, UK
| | - Peixi Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Mainul Haque
- School of Mathematical Sciences, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Lesley A Colvin
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF, UK
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF, UK
| | - Weihua Meng
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China.
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF, UK.
- Center for Public Health, Faculty of Medicine, Health and Life Sciences, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT12 6BA, UK.
| |
Collapse
|
7
|
Zhang Z, Lian Y, He Y, Liu H, Meng K, Wang Y, Ma W. Genetic insights into the risk of hip osteoarthritis on stroke: A single-variable and multivariable Mendelian randomization. PLoS One 2025; 20:e0313032. [PMID: 39787159 PMCID: PMC11717317 DOI: 10.1371/journal.pone.0313032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/17/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Hip osteoarthritis has been identified as a potential risk factor for stroke, with previous studies have demonstrated an association between hip osteoarthritis and stroke. This study aims to further elucidate the causal relationship between the two, employing Two-Sample and Multivariable Mendelian randomization methods. METHODS SNPs, derived from two extensive GWAS, served as instruments in exploring the association between genetically predicted hip osteoarthritis and stroke risk, utilizing two-sample Mendelian randomization. In Multivariable Mendelian randomization, factors such as cigarettes per day, alcoholic drinks per week, hypertension, body mass index, type 2 diabetes, C-reactive protein, rheumatoid arthritis were incorporated to further account for the independent causal effects of multiple correlated exposures. RESULTS Two-sample Mendelian randomization analysis revealed that hip osteoarthritis exerts a potential causal effect on any stroke, any ischemic stroke, and cardioembolic stroke, while it did not influence large artery stroke and small vessel stroke. Multivariable MR analysis indicated that the causal effect of hip osteoarthritis on any ischemic stroke and cardioembolic stroke was no longer evident after adjusting for C-reactive protein, and similarly, the effect on any ischemic stroke was not observed after adjusting for type 2 diabetes. However, the effects on any stroke, any ischemic stroke, and cardioembolic stroke remained significant after adjustments for hypertension, alcoholic drinks per week, cigarettes per day, body mass index, and rheumatoid arthritis. CONCLUSION The study demonstrated that elevated hip osteoarthritis, as predicted by genetic factors, was potential associated with an increased risk of any stroke, any ischemic stroke, and cardioembolic stroke, but showed no correlation with hypertension, alcoholic drinks per week, cigarettes per day, type 2 diabetes, C-reactive protein, body mass index levels, and rheumatoid arthritis.
Collapse
Affiliation(s)
- Zhengze Zhang
- The First Clinical Medical School of Guangzhou University of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yanan Lian
- Shandong Mental Health Center, Jinan, Shandong, PR China
| | - Yuewen He
- The First Clinical Medical School of Guangzhou University of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Hao Liu
- The First Clinical Medical School of Guangzhou University of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Kai Meng
- Department of Orthopaedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Yong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Wuhua Ma
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| |
Collapse
|
8
|
Boer CG. Osteoarthritis year in review 2024: Genetics, genomics, and epigenetics. Osteoarthritis Cartilage 2025; 33:50-57. [PMID: 39537019 DOI: 10.1016/j.joca.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE The purpose of this narrative review is to highlight the advances made in the past 12 months in the field of osteoarthritis genetics, genomics and epigenetics. METHODS The Medline and Embase databases were systematically searched for original publications using terminology, and combinations of terminology, relating to: "osteoarthritis", "genetics", "genomics", and "epigenetics". Only original research articles published in the English language between the OARSI congresses of April 2032 and April 2024 were considered. RESULTS This narrative review focuses only on studies using genome-wide omics techniques in human material. There was a rise in functional genomics studies across different osteoarthritis-relevant tissues, which have robustly identified an additional 26 genes involved in osteoarthritis pathology. Two of such previously identified genes (MGP, ALDH1A2) are currently the target of ongoing clinical trials for osteoarthritis. This past year also saw the use of single-cell transcriptomics and two relatively new omics: epitranscriptomics and mitochondrial genomics. CONCLUSION This past year of genomics research has led to multiple exciting findings involving genes and mechanisms linked to osteoarthritis. Moreover, the comprehensive genome-wide omics datasets generated for diverse osteoarthritis tissues will prove invaluable for future research aimed at elucidating more causal biological mechanisms and possible therapeutic targets for osteoarthritis.
Collapse
Affiliation(s)
- Cindy G Boer
- Department of Internal Medicine, Genomics Medicine Center, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
9
|
Zhai G, Huang J. Genetics of osteoarthritis. Best Pract Res Clin Rheumatol 2024; 38:101972. [PMID: 38971692 DOI: 10.1016/j.berh.2024.101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Osteoarthritis (OA) is the most common form of arthritis with well recognized multifactorial nature. While several environmental factors such as older age, obesity and previous joint injury are strongly associated with its development, a genetic influence on OA has been recognized for over 80 years. Identification of genes associated with OA has received considerable attention over the last two decades, aided by the rapidly evolving genotyping and sequencing technologies. More than 300 genomic loci have been identified to be associated with OA at different joints. These findings are likely to help our better understanding of the pathogenesis of OA and lead to important therapeutic and diagnostic advances in this most common disabling rheumatic disorder. This article will review the data that support the role of genetic factors in common idiopathic OA.
Collapse
Affiliation(s)
- Guangju Zhai
- Human Genetics & Genomics, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Canada.
| | - Jingyi Huang
- Human Genetics & Genomics, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Canada
| |
Collapse
|
10
|
Jacobsen KK, Laborie LB, Kristiansen H, Schäfer A, Gundersen T, Zayats T, Rosendahl K. Genetics of hip dysplasia - a systematic literature review. BMC Musculoskelet Disord 2024; 25:762. [PMID: 39354451 PMCID: PMC11445845 DOI: 10.1186/s12891-024-07795-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/19/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Developmental dysplasia of the hip (DDH) is a congenital condition affecting 2-3% of all newborns. DDH increases the risk of osteoarthritis and is the cause of 30% of all total hip arthroplasties in adults < 40 years of age. We aim to explore the genetic background of DDH in order to improve diagnosis and personalize treatment. METHODS We conducted a structured literature review using PRISMA guidelines searching the Medline, Embase and Cochrane databases. We included 31 case control studies examining single nucleotide polymorphisms (SNPs) in non-syndromic DDH. RESULTS A total of 73 papers were included for full text review, of which 31 were single nucleotide polymorphism (SNP) case/control association studies. The literature review revealed that the majority of published papers on the genetics of DDH were mostly underpowered for detection of any significant association. One large genome wide association study has been published (N = 9,915), establishing GDF5 as a plausible risk factor. CONCLUSIONS DDH is known to be congenital and heritable, with family occurrence of DDH already included as a risk factor in most screening programs. Despite this, high quality genetic research is scarce and no genetic risk factors have been soundly established, prompting the need for more research.
Collapse
Affiliation(s)
- Kaya Kvarme Jacobsen
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
- Department of Orthopedic Surgery, District General Hospital of Førde, Førde, Norway.
| | - Lene Bjerke Laborie
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Section for pediatric radiology, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Hege Kristiansen
- Department of Paediatrics, District General Hospital of Førde, Førde, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Annette Schäfer
- Department of Paediatrics, District General Hospital of Førde, Førde, Norway
| | - Trude Gundersen
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Orthopaedic Surgery, Haukeland University Hospital, Bergen, Norway
| | - Tetyana Zayats
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychology, PROMENTA, University of Oslo, Oslo, Norway
| | - Karen Rosendahl
- Department of Radiology, University Hospital of North-Norway, Tromsø, Norway
- Department of Clinical Medicine, UiT, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
11
|
Jurynec MJ, Nosyreva E, Thompson D, Munoz C, Novak KA, Matheson DJ, Kazmers NH, Syeda R. PIEZO1 variants that reduce open channel probability are associated with familial osteoarthritis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.03.24312969. [PMID: 39281748 PMCID: PMC11398433 DOI: 10.1101/2024.09.03.24312969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The synovial joints senses and responds to a multitude of physical forces to maintain joint homeostasis. Disruption of joint homeostasis results in development of osteoarthritis (OA), a disease characterized by loss of joint space, degeneration of articular cartilage, remodeling of bone and other joint tissues, low-grade inflammation, and pain. How changes in mechanosensing in the joint contribute to OA susceptibility remains elusive. PIEZO1 is a major mechanosensitive cation channel in the joint directly regulated by mechanical stimulus. To test whether altered PIEZO1 channel activity causes increased OA susceptibility, we determined whether variants affecting PIEZO1 are associated with dominant inheritance of age-associated familial OA. We identified four rare coding variants affecting PIEZO1 that are associated with familial hand OA. Single channel analyses demonstrated that all four PIEZO1 mutant channels act in a dominant-negative manner to reduce the open probability of the channel in response to pressure. Furthermore, we show that a GWAS mutation in PIEZO1 associated with reduced joint replacement results in increased channel activity when compared with WT and the mutants. Our data support the hypothesis that reduced PIEZO1 activity confers susceptibility to age-associated OA whereas increased PIEZO1 activity may be associated with reduced OA susceptibility.
Collapse
Affiliation(s)
- Michael J Jurynec
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, 84108
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112
| | - Elena Nosyreva
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390
| | - David Thompson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390
| | - Crystal Munoz
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390
| | - Kendra A Novak
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, 84108
| | - Derek J Matheson
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, 84108
| | - Nikolas H Kazmers
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, 84108
| | - Ruhma Syeda
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390
| |
Collapse
|
12
|
Arruda AL, Katsoula G, Chen S, Reimann E, Kreitmaier P, Zeggini E. The Genetics and Functional Genomics of Osteoarthritis. Annu Rev Genomics Hum Genet 2024; 25:239-257. [PMID: 39190913 DOI: 10.1146/annurev-genom-010423-095636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Osteoarthritis is the most prevalent whole-joint degenerative disorder, and is characterized by the degradation of articular cartilage and the underlying bone structures. Almost 600 million people are affected by osteoarthritis worldwide. No curative treatments are available, and management strategies focus mostly on pain relief. Here, we provide a comprehensive overview of the available human genetic and functional genomics studies for osteoarthritis to date and delineate how these studies have helped shed light on disease etiopathology. We highlight genetic discoveries from genome-wide association studies and provide a detailed overview of molecular-level investigations in osteoarthritis tissues, including methylation-, transcriptomics-, and proteomics-level analyses. We review how functional genomics data from different molecular levels have helped to prioritize effector genes that can be used as drug targets or drug-repurposing opportunities. Finally, we discuss future directions with the potential to drive a step change in osteoarthritis research.
Collapse
Affiliation(s)
- Ana Luiza Arruda
- Graduate School of Experimental Medicine, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- Munich School for Data Science, Helmholtz Munich, Neuherberg, Germany
| | - Georgia Katsoula
- Graduate School of Experimental Medicine, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| | - Shibo Chen
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
| | - Ene Reimann
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Peter Kreitmaier
- Graduate School of Experimental Medicine, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| |
Collapse
|
13
|
Bittner N, Shi C, Zhao D, Ding J, Southam L, Swift D, Kreitmaier P, Tutino M, Stergiou O, Cheung JTS, Katsoula G, Hankinson J, Wilkinson JM, Orozco G, Zeggini E. Primary osteoarthritis chondrocyte map of chromatin conformation reveals novel candidate effector genes. Ann Rheum Dis 2024; 83:1048-1059. [PMID: 38479789 PMCID: PMC11287644 DOI: 10.1136/ard-2023-224945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/29/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVES Osteoarthritis is a complex disease with a huge public health burden. Genome-wide association studies (GWAS) have identified hundreds of osteoarthritis-associated sequence variants, but the effector genes underpinning these signals remain largely elusive. Understanding chromosome organisation in three-dimensional (3D) space is essential for identifying long-range contacts between distant genomic features (e.g., between genes and regulatory elements), in a tissue-specific manner. Here, we generate the first whole genome chromosome conformation analysis (Hi-C) map of primary osteoarthritis chondrocytes and identify novel candidate effector genes for the disease. METHODS Primary chondrocytes collected from 8 patients with knee osteoarthritis underwent Hi-C analysis to link chromosomal structure to genomic sequence. The identified loops were then combined with osteoarthritis GWAS results and epigenomic data from primary knee osteoarthritis chondrocytes to identify variants involved in gene regulation via enhancer-promoter interactions. RESULTS We identified 345 genetic variants residing within chromatin loop anchors that are associated with 77 osteoarthritis GWAS signals. Ten of these variants reside directly in enhancer regions of 10 newly described active enhancer-promoter loops, identified with multiomics analysis of publicly available chromatin immunoprecipitation sequencing (ChIP-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) data from primary knee chondrocyte cells, pointing to two new candidate effector genes SPRY4 and PAPPA (pregnancy-associated plasma protein A) as well as further support for the gene SLC44A2 known to be involved in osteoarthritis. For example, PAPPA is directly associated with the turnover of insulin-like growth factor 1 (IGF-1) proteins, and IGF-1 is an important factor in the repair of damaged chondrocytes. CONCLUSIONS We have constructed the first Hi-C map of primary human chondrocytes and have made it available as a resource for the scientific community. By integrating 3D genomics with large-scale genetic association and epigenetic data, we identify novel candidate effector genes for osteoarthritis, which enhance our understanding of disease and can serve as putative high-value novel drug targets.
Collapse
Affiliation(s)
- Norbert Bittner
- Institute of Translational Genomics, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Chenfu Shi
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Danyun Zhao
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - James Ding
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Diane Swift
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Peter Kreitmaier
- Institute of Translational Genomics, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
- Graduate School of Experimental Medicine, Technical University of Munich, München, Germany
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, München, Germany
| | - Mauro Tutino
- Institute of Translational Genomics, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Odysseas Stergiou
- Institute of Translational Genomics, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | | | - Georgia Katsoula
- Institute of Translational Genomics, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
- Graduate School of Experimental Medicine, Technical University of Munich, München, Germany
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, München, Germany
| | - Jenny Hankinson
- Institute of Translational Genomics, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | | | - Gisela Orozco
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, München, Germany
| |
Collapse
|
14
|
Saevarsdottir S, Bjarnadottir K, Markusson T, Berglund J, Olafsdottir TA, Halldorsson GH, Rutsdottir G, Gunnarsdottir K, Arnthorsson AO, Lund SH, Stefansdottir L, Gudmundsson J, Johannesson AJ, Sturluson A, Oddsson A, Halldorsson B, Ludviksson BR, Ferkingstad E, Ivarsdottir EV, Sveinbjornsson G, Grondal G, Masson G, Eldjarn GH, Thorisson GA, Kristjansdottir K, Knowlton KU, Moore KHS, Gudjonsson SA, Rognvaldsson S, Knight S, Nadauld LD, Holm H, Magnusson OT, Sulem P, Gudbjartsson DF, Rafnar T, Thorleifsson G, Melsted P, Norddahl GL, Jonsdottir I, Stefansson K. Start codon variant in LAG3 is associated with decreased LAG-3 expression and increased risk of autoimmune thyroid disease. Nat Commun 2024; 15:5748. [PMID: 38982041 PMCID: PMC11233504 DOI: 10.1038/s41467-024-50007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Autoimmune thyroid disease (AITD) is a common autoimmune disease. In a GWAS meta-analysis of 110,945 cases and 1,084,290 controls, 290 sequence variants at 225 loci are associated with AITD. Of these variants, 115 are previously unreported. Multiomics analysis yields 235 candidate genes outside the MHC-region and the findings highlight the importance of genes involved in T-cell regulation. A rare 5'-UTR variant (rs781745126-T, MAF = 0.13% in Iceland) in LAG3 has the largest effect (OR = 3.42, P = 2.2 × 10-16) and generates a novel start codon for an open reading frame upstream of the canonical protein translation initiation site. rs781745126-T reduces mRNA and surface expression of the inhibitory immune checkpoint LAG-3 co-receptor on activated lymphocyte subsets and halves LAG-3 levels in plasma among heterozygotes. All three homozygous carriers of rs781745126-T have AITD, of whom one also has two other T-cell mediated diseases, that is vitiligo and type 1 diabetes. rs781745126-T associates nominally with vitiligo (OR = 5.1, P = 6.5 × 10-3) but not with type 1 diabetes. Thus, the effect of rs781745126-T is akin to drugs that inhibit LAG-3, which unleash immune responses and can have thyroid dysfunction and vitiligo as adverse events. This illustrates how a multiomics approach can reveal potential drug targets and safety concerns.
Collapse
Affiliation(s)
- Saedis Saevarsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
- Department of Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland.
| | | | - Thorsteinn Markusson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Thorunn A Olafsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Gisli H Halldorsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Gudrun Rutsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | - Ari J Johannesson
- Department of Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | | | - Björn R Ludviksson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Erna V Ivarsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Gerdur Grondal
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | | | | | - Kirk U Knowlton
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, USA
- School of Medicine, University of Utah, Salt Lake City, UT, USA
| | | | | | | | - Stacey Knight
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, USA
| | | | - Hilma Holm
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | | | | | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Pall Melsted
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
15
|
Fan Y, Bian X, Meng X, Li L, Fu L, Zhang Y, Wang L, Zhang Y, Gao D, Guo X, Lammi MJ, Peng G, Sun S. Unveiling inflammatory and prehypertrophic cell populations as key contributors to knee cartilage degeneration in osteoarthritis using multi-omics data integration. Ann Rheum Dis 2024; 83:926-944. [PMID: 38325908 PMCID: PMC11187367 DOI: 10.1136/ard-2023-224420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVES Single-cell and spatial transcriptomics analysis of human knee articular cartilage tissue to present a comprehensive transcriptome landscape and osteoarthritis (OA)-critical cell populations. METHODS Single-cell RNA sequencing and spatially resolved transcriptomic technology have been applied to characterise the cellular heterogeneity of human knee articular cartilage which were collected from 8 OA donors, and 3 non-OA control donors, and a total of 19 samples. The novel chondrocyte population and marker genes of interest were validated by immunohistochemistry staining, quantitative real-time PCR, etc. The OA-critical cell populations were validated through integrative analyses of publicly available bulk RNA sequencing data and large-scale genome-wide association studies. RESULTS We identified 33 cell population-specific marker genes that define 11 chondrocyte populations, including 9 known populations and 2 new populations, that is, pre-inflammatory chondrocyte population (preInfC) and inflammatory chondrocyte population (InfC). The novel findings that make this an important addition to the literature include: (1) the novel InfC activates the mediator MIF-CD74; (2) the prehypertrophic chondrocyte (preHTC) and hypertrophic chondrocyte (HTC) are potentially OA-critical cell populations; (3) most OA-associated differentially expressed genes reside in the articular surface and superficial zone; (4) the prefibrocartilage chondrocyte (preFC) population is a major contributor to the stratification of patients with OA, resulting in both an inflammatory-related subtype and a non-inflammatory-related subtype. CONCLUSIONS Our results highlight InfC, preHTC, preFC and HTC as potential cell populations to target for therapy. Also, we conclude that profiling of those cell populations in patients might be used to stratify patient populations for defining cohorts for clinical trials and precision medicine.
Collapse
Affiliation(s)
- Yue Fan
- Center for Single-Cell Omics and Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Shaanxi Province; Key Laboratory of Trace Elements and Endemic Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuzhao Bian
- Center for Single-Cell Omics and Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xiaogao Meng
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Lei Li
- Center for Single-Cell Omics and Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Laiyi Fu
- School of Automation Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yanan Zhang
- Center for Single-Cell Omics and Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Long Wang
- Center for Single-Cell Omics and Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yan Zhang
- Center for Single-Cell Omics and Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Department of Orthopaedics, Honghui Hospital, Xi'an, Shaanxi, China
| | - Dalong Gao
- Department of Orthopaedics, The Central Hospital of Xianyang, Xianyang, China
| | - Xiong Guo
- Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Shaanxi Province; Key Laboratory of Trace Elements and Endemic Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mikko Juhani Lammi
- Department of Integrative Medical Biology, University of Umeå, Umeå, Sweden
| | - Guangdun Peng
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiquan Sun
- Center for Single-Cell Omics and Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Shaanxi Province; Key Laboratory of Trace Elements and Endemic Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
16
|
Zhang G, Qin J, Xu W, Liu M, Wu R, Qin Y. Gene expression and immune infiltration analysis comparing lesioned and preserved subchondral bone in osteoarthritis. PeerJ 2024; 12:e17417. [PMID: 38827307 PMCID: PMC11141552 DOI: 10.7717/peerj.17417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/28/2024] [Indexed: 06/04/2024] Open
Abstract
Background Osteoarthritis (OA) is a degenerative disease requiring additional research. This study compared gene expression and immune infiltration between lesioned and preserved subchondral bone. The results were validated using multiple tissue datasets and experiments. Methods Differentially expressed genes (DEGs) between the lesioned and preserved tibial plateaus of OA patients were identified in the GSE51588 dataset. Moreover, functional annotation and protein-protein interaction (PPI) network analyses were performed on the lesioned and preserved sides to explore potential therapeutic targets in OA subchondral bones. In addition, multiple tissues were used to screen coexpressed genes, and the expression levels of identified candidate DEGs in OA were measured by quantitative real-time polymerase chain reaction. Finally, an immune infiltration analysis was conducted. Results A total of 1,010 DEGs were identified, 423 upregulated and 587 downregulated. The biological process (BP) terms enriched in the upregulated genes included "skeletal system development", "sister chromatid cohesion", and "ossification". Pathways were enriched in "Wnt signaling pathway" and "proteoglycans in cancer". The BP terms enriched in the downregulated genes included "inflammatory response", "xenobiotic metabolic process", and "positive regulation of inflammatory response". The enriched pathways included "neuroactive ligand-receptor interaction" and "AMP-activated protein kinase signaling". JUN, tumor necrosis factor α, and interleukin-1β were the hub genes in the PPI network. Collagen XI A1 and leucine-rich repeat-containing 15 were screened from multiple datasets and experimentally validated. Immune infiltration analyses showed fewer infiltrating adipocytes and endothelial cells in the lesioned versus preserved samples. Conclusion Our findings provide valuable information for future studies on the pathogenic mechanism of OA and potential therapeutic and diagnostic targets.
Collapse
Affiliation(s)
- Gang Zhang
- The Second Affiliated Hospital of Harbin Medical University, Department of Orthopedics Surgery, Harbin Medical University, Harbin, China
- Department of Orthopedics, Harbin First Hospital, Harbin, China
- Future Medicine Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinwei Qin
- Department of Emergency, Harbin First Hospital, Harbin, China
| | - Wenbo Xu
- The Second Affiliated Hospital of Harbin Medical University, Department of Orthopedics Surgery, Harbin Medical University, Harbin, China
| | - Meina Liu
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Rilige Wu
- Medical Big Data Research Center, Medical Innovation Research Division of PLA General Hospital, Beijing, China
| | - Yong Qin
- The Second Affiliated Hospital of Harbin Medical University, Department of Orthopedics Surgery, Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Korthagen NM, Houtman E, Boone I, Coutinho de Almeida R, Sivasubramaniyan K, Mahdad R, Nelissen RGHH, Ramos YFM, Tessari MA, Meulenbelt I. Thyroid hormone induces ossification and terminal maturation in a preserved OA cartilage biomimetic model. Arthritis Res Ther 2024; 26:91. [PMID: 38664820 PMCID: PMC11044551 DOI: 10.1186/s13075-024-03326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/21/2024] [Indexed: 04/29/2024] Open
Abstract
OBJECTIVE To characterize aspects of triiodothyronine (T3) induced chondrocyte terminal maturation within the molecular osteoarthritis pathophysiology using the previously established T3 human ex vivo osteochondral explant model. DESIGNS RNA-sequencing was performed on explant cartilage obtained from OA patients (n = 8), that was cultured ex vivo with or without T3 (10 ng/ml), and main findings were validated using RT-qPCR in an independent sample set (n = 22). Enrichment analysis was used for functional clustering and comparisons with available OA patient RNA-sequencing and GWAS datasets were used to establish relevance for OA pathophysiology by linking to OA patient genomic profiles. RESULTS Besides the upregulation of known hypertrophic genes EPAS1 and ANKH, T3 treatment resulted in differential expression of 247 genes with main pathways linked to extracellular matrix and ossification. CCDC80, CDON, ANKH and ATOH8 were among the genes found to consistently mark early, ongoing and terminal maturational OA processes in patients. Furthermore, among the 37 OA risk genes that were significantly affected in cartilage by T3 were COL12A1, TNC, SPARC and PAPPA. CONCLUSIONS RNA-sequencing results show that metabolic activation and recuperation of growth plate morphology are induced by T3 in OA chondrocytes, indicating terminal maturation is accelerated. The molecular mechanisms involved in hypertrophy were linked to all stages of OA pathophysiology and will be used to validate disease models for drug testing.
Collapse
Affiliation(s)
- N M Korthagen
- Department Biomedical Data Sciences, Section of Molecular Epidemiology, LUMC, Einthovenweg 20, Postzone S05-P, 2333 ZC, Leiden, The Netherlands
| | - E Houtman
- Department Biomedical Data Sciences, Section of Molecular Epidemiology, LUMC, Einthovenweg 20, Postzone S05-P, 2333 ZC, Leiden, The Netherlands
| | - I Boone
- Department Biomedical Data Sciences, Section of Molecular Epidemiology, LUMC, Einthovenweg 20, Postzone S05-P, 2333 ZC, Leiden, The Netherlands
| | - R Coutinho de Almeida
- Department Biomedical Data Sciences, Section of Molecular Epidemiology, LUMC, Einthovenweg 20, Postzone S05-P, 2333 ZC, Leiden, The Netherlands
| | - K Sivasubramaniyan
- Galapagos BV, Willem Einthovenstraat 13, Oegstgeest, 2342 BH, The Netherlands
| | - R Mahdad
- Alrijne hospital, Simon Smitweg 1, Leiderdorp, 2353 GA, The Netherlands
| | - R G H H Nelissen
- Department Biomedical Data Sciences, Section of Molecular Epidemiology, LUMC, Einthovenweg 20, Postzone S05-P, 2333 ZC, Leiden, The Netherlands
| | - Y F M Ramos
- Department Biomedical Data Sciences, Section of Molecular Epidemiology, LUMC, Einthovenweg 20, Postzone S05-P, 2333 ZC, Leiden, The Netherlands
| | - M A Tessari
- Galapagos BV, Willem Einthovenstraat 13, Oegstgeest, 2342 BH, The Netherlands
| | - I Meulenbelt
- Department Biomedical Data Sciences, Section of Molecular Epidemiology, LUMC, Einthovenweg 20, Postzone S05-P, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
18
|
Roberts JB, Boldvig OLG, Aubourg G, Kanchenapally ST, Deehan DJ, Rice SJ, Loughlin J. Specific isoforms of the ubiquitin ligase gene WWP2 are targets of osteoarthritis genetic risk via a differentially methylated DNA sequence. Arthritis Res Ther 2024; 26:78. [PMID: 38570801 PMCID: PMC10988806 DOI: 10.1186/s13075-024-03315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Transitioning from a genetic association signal to an effector gene and a targetable molecular mechanism requires the application of functional fine-mapping tools such as reporter assays and genome editing. In this report, we undertook such studies on the osteoarthritis (OA) risk that is marked by single nucleotide polymorphism (SNP) rs34195470 (A > G). The OA risk-conferring G allele of this SNP associates with increased DNA methylation (DNAm) at two CpG dinucleotides within WWP2. This gene encodes a ubiquitin ligase and is the host gene of microRNA-140 (miR-140). WWP2 and miR-140 are both regulators of TGFβ signaling. METHODS Nucleic acids were extracted from adult OA (arthroplasty) and foetal cartilage. Samples were genotyped and DNAm quantified by pyrosequencing at the two CpGs plus 14 flanking CpGs. CpGs were tested for transcriptional regulatory effects using a chondrocyte cell line and reporter gene assay. DNAm was altered using epigenetic editing, with the impact on gene expression determined using RT-qPCR. In silico analysis complemented laboratory experiments. RESULTS rs34195470 genotype associates with differential methylation at 14 of the 16 CpGs in OA cartilage, forming a methylation quantitative trait locus (mQTL). The mQTL is less pronounced in foetal cartilage (5/16 CpGs). The reporter assay revealed that the CpGs reside within a transcriptional regulator. Epigenetic editing to increase their DNAm resulted in altered expression of the full-length and N-terminal transcript isoforms of WWP2. No changes in expression were observed for the C-terminal isoform of WWP2 or for miR-140. CONCLUSIONS As far as we are aware, this is the first experimental demonstration of an OA association signal targeting specific transcript isoforms of a gene. The WWP2 isoforms encode proteins with varying substrate specificities for the components of the TGFβ signaling pathway. Future analysis should focus on the substrates regulated by the two WWP2 isoforms that are the targets of this genetic risk.
Collapse
Affiliation(s)
- Jack B Roberts
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK.
| | - Olivia L G Boldvig
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| | - Guillaume Aubourg
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| | - S Tanishq Kanchenapally
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| | - David J Deehan
- Freeman Hospital, Newcastle University Teaching Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Sarah J Rice
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| | - John Loughlin
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
19
|
Jacobsen KK, Børte S, Laborie LB, Kristiansen H, Schäfer A, Gundersen T, Zayats T, Slagsvold Winsvold BK, Rosendahl K. COL11A1 is associated with developmental dysplasia of the hip and secondary osteoarthritis in the HUNT study. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100424. [PMID: 38283578 PMCID: PMC10820335 DOI: 10.1016/j.ocarto.2023.100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 01/30/2024] Open
Abstract
Objective Developmental dysplasia of the hip (DDH) is a congenital condition affecting 2-3% of all infants. DDH increases the risk of osteoarthritis, is the cause of 30 % of all total hip arthroplasties (THAs) in adults <40 years of age and can result in loss of life quality. Our aim was to explore the genetic background of DDH in order to improve diagnosis, management and longterm outcome. Design We used the large, ongoing, longitudinal Trøndelag Health Study (HUNT) database. Case definition was based on ICD-9/-10 diagnoses of DDH, or osteoarthritis secondary to DDH. Analyses were performed using SAIGE software, with covariates including sex, batch, birth year and principal components. We included only single nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) ≥ 0.01, R2≥ 0.8 and Hardy-Weinberg equilibrium (HWE) P-value ≥ 0.0001. Significance level was set at p < 5 × 10-8. Meta-analysis using data from DDH and primary osteoarthritis genome-wide association studies (GWASs) was done using METAL software. The study was approved by the regional ethical committee. Results Analysis included 69,500 individuals, of which 408 cases, and 8,531,386 SNPs. Two SNPs near COL11A1 were significantly associated with DDH; rs713162 (β = -0.43, SE = 0.07, p = 8.4 × 10-9) and rs6577334 (β = -0.43, SE = 0.08, p = 8.9 × 10-9). COL11A1 has previously been associated with acetabular dysplasia and osteoarthritis. Meta-analysis supported previous GWAS findings of both DDH and primary osteoarthritis. Conclusions This large, genome-wide case-control study indicates an association between COL11A1 and DDH and is an important contribution to investigating the etiology of DDH, with further research needed.
Collapse
Affiliation(s)
- Kaya Kvarme Jacobsen
- Department of Orthopedic Surgery, District General Hospital of Førde, Førde, Norway
| | - Sigrid Børte
- Research and Communication Unit for Musculoskeletal Health, Division of Clinical Neuroscience, Oslo University Hospital, Ullevaal, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lene Bjerke Laborie
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Section for Pediatric Radiology, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Hege Kristiansen
- Department of Paediatrics, District General Hospital of Førde, Førde, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Annette Schäfer
- Department of Paediatrics, District General Hospital of Førde, Førde, Norway
| | - Trude Gundersen
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Orthopaedic Surgery, Haukeland University Hospital, Bergen, Norway
| | - Tetyana Zayats
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- PROMENTA, Department of Psychology, University of Oslo, Oslo, Norway
| | - Bendik Kristoffer Slagsvold Winsvold
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Karen Rosendahl
- Department of Radiology, University Hospital of North-Norway, Tromsø, Norway
- Department of Clinical Medicine, UiT, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
20
|
Novakov V, Novakova O, Churnosova M, Aristova I, Ponomarenko M, Reshetnikova Y, Churnosov V, Sorokina I, Ponomarenko I, Efremova O, Orlova V, Batlutskaya I, Polonikov A, Reshetnikov E, Churnosov M. Polymorphism rs143384 GDF5 reduces the risk of knee osteoarthritis development in obese individuals and increases the disease risk in non-obese population. ARTHROPLASTY 2024; 6:12. [PMID: 38424630 PMCID: PMC10905832 DOI: 10.1186/s42836-023-00229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/26/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND We investigated the effect of obesity on the association of genome-wide associative studies (GWAS)-significant genes with the risk of knee osteoarthritis (KOA). METHODS All study participants (n = 1,100) were divided into 2 groups in terms of body mass index (BMI): BMI ≥ 30 (255 KOA patients and 167 controls) and BMI < 30 (245 KOA and 433 controls). The eight GWAS-significant KOA single nucleotide polymorphisms (SNP) of six candidate genes, such as LYPLAL1 (rs2820436, rs2820443), SBNO1 (rs1060105, rs56116847), WWP2 (rs34195470), NFAT5 (rs6499244), TGFA (rs3771501), GDF5 (rs143384), were genotyped. Logistic regression analysis (gPLINK online program) was used for SNPs associations study with the risk of developing KOA into 2 groups (BMI ≥ 30 and BMI < 30) separately. The functional effects of KOA risk loci were evaluated using in silico bioinformatic analysis. RESULTS Multidirectional relationships of the rs143384 GDF5 with KOA in BMI-different groups were found: This SNP was KOA protective locus among individuals with BMI ≥ 30 (OR 0.41 [95%CI 0.20-0.94] recessive model) and was disorder risk locus among individuals with BMI < 30 (OR 1.32 [95%CI 1.05-1.65] allele model, OR 1.44 [95%CI 1.10-1.86] additive model, OR 1.67 [95%CI 1.10-2.52] dominant model). Polymorphism rs143384 GDF5 manifested its regulatory effects in relation to nine genes (GDF5, CPNE1, EDEM2, ERGIC3, GDF5OS, PROCR, RBM39, RPL36P4, UQCC1) in adipose tissue, which were involved in the regulation of pathways of apoptosis of striated muscle cells. CONCLUSIONS In summary, the effect of obesity on the association of the rs143384 GDF5 with KOA was shown: the "protective" value of this polymorphism in the BMI ≥ 30 group and the "risk" meaning in BMI < 30 cohort.
Collapse
Affiliation(s)
- Vitaly Novakov
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Olga Novakova
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Maria Churnosova
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Inna Aristova
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Marina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Yuliya Reshetnikova
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Vladimir Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Inna Sorokina
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Olga Efremova
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Valentina Orlova
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Irina Batlutskaya
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Alexey Polonikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
- Department of Biology, Medical Genetics and Ecology and Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, 305041, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia.
| |
Collapse
|
21
|
Caldo D, Massarini E, Rucci M, Deaglio S, Ferracini R. Epigenetics in Knee Osteoarthritis: A 2020-2023 Update Systematic Review. Life (Basel) 2024; 14:269. [PMID: 38398778 PMCID: PMC10890710 DOI: 10.3390/life14020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Osteoarthritis is a leading cause of disability in the world. The scientific literature highlights the critical importance of epigenetic regulatory effects, intertwined with biomechanical and biochemical peculiar conditions within each musculoskeletal district. While the contribution of genetic and epigenetic factors to knee OA is well-recognized, their precise role in disease management remains an area of active research. Such a field is particularly heterogeneous, calling for regular analysis and summarizing of the data that constantly emerge in the scientific literature, often sparse and scant of integration. The aim of this study was to systematically identify and synthesize all new evidence that emerged in human and animal model studies published between 2020 and 2023. This was necessary because, to the best of our knowledge, articles published before 2019 (and partly 2020) had already been included in systematic reviews that allowed to identify the ones concerning the knee joint. The review was carried out in accordance with Preferential Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Only peer-reviewed articles were considered for inclusion. A total of 40 studies were identified, showing promising results in terms either of biomarker identification, new insight in mechanism of action or potential therapeutic targets for knee OA. DNA methylation, histone modification and ncRNA were all mechanisms involved in epigenetic regulation of the knee. Most recent evidence suggests that epigenetics is a most promising field with the long-term goal of improving understanding and management of knee OA, but a variety of research approaches need greater consolidation.
Collapse
Affiliation(s)
- Davide Caldo
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Eugenia Massarini
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università di Genova, 16126 Genua, Italy
| | - Massimiliano Rucci
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università di Genova, 16126 Genua, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Riccardo Ferracini
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università di Genova, 16126 Genua, Italy
- Ospedale Koelliker, Corso Galileo Ferraris 247/255, 10134 Turin, Italy
| |
Collapse
|
22
|
Fox SC, Waskiewicz AJ. Transforming growth factor beta signaling and craniofacial development: modeling human diseases in zebrafish. Front Cell Dev Biol 2024; 12:1338070. [PMID: 38385025 PMCID: PMC10879340 DOI: 10.3389/fcell.2024.1338070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Humans and other jawed vertebrates rely heavily on their craniofacial skeleton for eating, breathing, and communicating. As such, it is vital that the elements of the craniofacial skeleton develop properly during embryogenesis to ensure a high quality of life and evolutionary fitness. Indeed, craniofacial abnormalities, including cleft palate and craniosynostosis, represent some of the most common congenital abnormalities in newborns. Like many other organ systems, the development of the craniofacial skeleton is complex, relying on specification and migration of the neural crest, patterning of the pharyngeal arches, and morphogenesis of each skeletal element into its final form. These processes must be carefully coordinated and integrated. One way this is achieved is through the spatial and temporal deployment of cell signaling pathways. Recent studies conducted using the zebrafish model underscore the importance of the Transforming Growth Factor Beta (TGF-β) and Bone Morphogenetic Protein (BMP) pathways in craniofacial development. Although both pathways contain similar components, each pathway results in unique outcomes on a cellular level. In this review, we will cover studies conducted using zebrafish that show the necessity of these pathways in each stage of craniofacial development, starting with the induction of the neural crest, and ending with the morphogenesis of craniofacial elements. We will also cover human skeletal and craniofacial diseases and malformations caused by mutations in the components of these pathways (e.g., cleft palate, craniosynostosis, etc.) and the potential utility of zebrafish in studying the etiology of these diseases. We will also briefly cover the utility of the zebrafish model in joint development and biology and discuss the role of TGF-β/BMP signaling in these processes and the diseases that result from aberrancies in these pathways, including osteoarthritis and multiple synostoses syndrome. Overall, this review will demonstrate the critical roles of TGF-β/BMP signaling in craniofacial development and show the utility of the zebrafish model in development and disease.
Collapse
|
23
|
Sun Y, You Y, Wu Q, Hu R, Dai K. Genetically inspired organoids prevent joint degeneration and alleviate chondrocyte senescence via Col11a1-HIF1α-mediated glycolysis-OXPHOS metabolism shift. Clin Transl Med 2024; 14:e1574. [PMID: 38314968 PMCID: PMC10840017 DOI: 10.1002/ctm2.1574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
INTRODUCTION Developmental dysplasia of hip (DDH) is a hip joint disorder leading to subsequent osteoarthritis. Previous studies suggested collagen XI alpha 1 (COL11A1) as a potential gene in hip dysplasia and chondrocyte degeneration. However, no genetic association has reported COL11A1-related cellular therapy as treatment of DDH and joint degeneration. METHODS AND RESULTS We report identified genetic association between COL11A1 locus and DDH with genome-wide association study (GWAS). Further exome sequencing for familial DDH patients was conducted in different populations to identify potential pathogenic Col11A1 variants for familiar DDH. Further studies demonstrated involvement of COL11A1 expression was down-regulated in femoral head cartilage of DDH patients and Col11a1-KO mice with induced DDH. Col11a1-KO mice demonstrated aggravated joint degeneration and severe OA phenotype. To explore the underlying mechanism of Col11a1 in cartilage and DDH development, we generated scRNA-seq profiles for DDH and Col11a1-KO cartilage, demonstrating disrupted chondrocyte homeostasis and cellular senescence caused by Col11a1-HIF1α-mediated glycolysis-OXPHOS shift in chondrocytes. Genetically and biologically inspired, we further fabricated an intra-articular injection therapy to preventing cartilage degeneration by generating a Col11a1-over-expressed (OE) SMSC mini-organoids. Col11a1-OE organoids demonstrated superior chondrogenesis and ameliorated cartilage degeneration in DDH mice via regulating cellular senescence by up-regulated Col11a1/HIF1α-mediated glycolysis in chondrocytes. CONCLUSION We reported association between COL11A1 loci and DDH with GWAS and exome sequencing. Further studies demonstrated involvement of COL11A1 in DDH patients and Col11a1-KO mice. ScRNA-seq for DDH and Col11a1-KO cartilage demonstrated disrupted chondrocyte homeostasis and cellular senescence caused by Col11a1-HIF1α-mediated glycolysis-OXPHOS shift in chondrocytes. Genetically and biologically inspired, an intra-articular injection therapy was fabricated to prevent cartilage degeneration with Col11a1-OE SMSC organoids. Col11a1-OE organoids ameliorated cartilage degeneration in DDH mice via regulating cellular senescence by up-regulated Col11a1/HIF1α-mediated glycolysis in chondrocytes.
Collapse
Affiliation(s)
- Ye Sun
- Department of OrthopaedicsThe First Affiliated Hospital of Nanjing Medical UniversityJiangsuChina
- Department of Orthopaedic SurgeryShanghai Key Laboratory of Orthopaedic ImplantsShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yongqing You
- Department of Renal DiseasesAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Qiang Wu
- Department of Orthopaedic SurgeryShanghai Key Laboratory of Orthopaedic ImplantsShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rui Hu
- Department of OrthopaedicsThe First Affiliated Hospital of Nanjing Medical UniversityJiangsuChina
| | - Kerong Dai
- Department of Orthopaedic SurgeryShanghai Key Laboratory of Orthopaedic ImplantsShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
24
|
Allen NE, Lacey B, Lawlor DA, Pell JP, Gallacher J, Smeeth L, Elliott P, Matthews PM, Lyons RA, Whetton AD, Lucassen A, Hurles ME, Chapman M, Roddam AW, Fitzpatrick NK, Hansell AL, Hardy R, Marioni RE, O’Donnell VB, Williams J, Lindgren CM, Effingham M, Sellors J, Danesh J, Collins R. Prospective study design and data analysis in UK Biobank. Sci Transl Med 2024; 16:eadf4428. [PMID: 38198570 PMCID: PMC11127744 DOI: 10.1126/scitranslmed.adf4428] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Population-based prospective studies, such as UK Biobank, are valuable for generating and testing hypotheses about the potential causes of human disease. We describe how UK Biobank's study design, data access policies, and approaches to statistical analysis can help to minimize error and improve the interpretability of research findings, with implications for other population-based prospective studies being established worldwide.
Collapse
Affiliation(s)
- Naomi E Allen
- UK Biobank Ltd, Stockport, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ben Lacey
- UK Biobank Ltd, Stockport, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Deborah A Lawlor
- Population Health Science, Bristol Medical School University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| | - Jill P Pell
- School of Health and Wellbeing, University of Glasgow, Scotland
| | - John Gallacher
- Department of Psychiatry, University of Oxford, Oxford, UK
- Dementias Platform UK, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Liam Smeeth
- London School of Hygiene and Tropical Medicine, London, UK
| | - Paul Elliott
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- NIHR Health Protection Research Unit in Chemical Radiation Threats and Hazards, Imperial College London, UK
| | - Paul M Matthews
- UK Dementia Research Centre Institute and Department of Brain Sciences, Imperial College London, London, UK
| | - Ronan A Lyons
- Population Data Science, Swansea University Medical School, Swansea, Wales
| | - Anthony D Whetton
- Veterinary Health Innovation Engine, University of Surrey, Guildford, UK
| | - Anneke Lucassen
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Faculty of Medicine, Southampton University, Southampton, UK
| | - Matthew E Hurles
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | | | | | - Anna L Hansell
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
| | - Rebecca Hardy
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, Scotland
| | | | - Julie Williams
- UK Dementia Research Institute, Cardiff University, Cardiff, Wales
| | - Cecilia M Lindgren
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | | | | | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - Rory Collins
- UK Biobank Ltd, Stockport, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Patnaik R, Riaz S, Sivani BM, Faisal S, Naidoo N, Rizzo M, Banerjee Y. Evaluating the potential of Vitamin D and curcumin to alleviate inflammation and mitigate the progression of osteoarthritis through their effects on human chondrocytes: A proof-of-concept investigation. PLoS One 2023; 18:e0290739. [PMID: 38157375 PMCID: PMC10756552 DOI: 10.1371/journal.pone.0290739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/14/2023] [Indexed: 01/03/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disorder primarily affecting the elderly, characterized by a prominent inflammatory component. The long-term side effects associated with current therapeutic approaches necessitate the development of safer and more efficacious alternatives. Nutraceuticals, such as Vitamin D and curcumin, present promising therapeutic potentials due to their safety, efficacy, and cost-effectiveness. In this study, we utilized a proinflammatory human chondrocyte model of OA to assess the anti-inflammatory properties of Vitamin D and curcumin, with a particular focus on the Protease-Activated Receptor-2 (PAR-2) mediated inflammatory pathway. Employing a robust siRNA approach, we effectively modulated the expression of PAR-2 to understand its role in the inflammatory process. Our results reveal that both Vitamin D and curcumin attenuate the expression of PAR-2, leading to a reduction in the downstream proinflammatory cytokines, such as Tumor Necrosis Factor-alpha (TNF-α), Interleukin 6 (IL-6), and Interleukin 8 (IL-8), implicated in the OA pathogenesis. Concurrently, these compounds suppressed the expression of Receptor Activator of Nuclear Factor kappa-Β Ligand (RANKL) and its receptor RANK, which are associated with PAR-2 mediated TNF-α stimulation. Additionally, Vitamin D and curcumin downregulated the expression of Interferon gamma (IFN-γ), known to elevate RANKL levels, underscoring their potential therapeutic implications in OA. This study, for the first time, provides evidence of the mitigating effect of Vitamin D and curcumin on PAR-2 mediated inflammation, employing an siRNA approach in OA. Thus, our findings pave the way for future research and the development of novel, safer, and more effective therapeutic strategies for managing OA.
Collapse
Affiliation(s)
- Rajashree Patnaik
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Sumbal Riaz
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Bala Mohan Sivani
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Shemima Faisal
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Nerissa Naidoo
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| | - Yajnavalka Banerjee
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
- Centre for Medical Education, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
26
|
Cook SA. Understanding interleukin 11 as a disease gene and therapeutic target. Biochem J 2023; 480:1987-2008. [PMID: 38054591 PMCID: PMC10754292 DOI: 10.1042/bcj20220160] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Interleukin 11 (IL11) is an elusive member of the IL6 family of cytokines. While initially thought to be a haematopoietic and cytoprotective factor, more recent data show instead that IL11 is redundant for haematopoiesis and toxic. In this review, the reasons that led to the original misunderstandings of IL11 biology, which are now understandable, are explained with particular attention on the use of recombinant human IL11 in mice and humans. Following tissue injury, as part of an evolutionary ancient homeostatic response, IL11 is secreted from damaged mammalian cells to signal via JAK/STAT3, ERK/P90RSK, LKB1/mTOR and GSK3β/SNAI1 in autocrine and paracrine. This activates a program of mesenchymal transition of epithelial, stromal, and endothelial cells to cause inflammation, fibrosis, and stalled endogenous tissue repair, leading to organ failure. The role of IL11 signalling in cell- and organ-specific pathobiology is described, the large unknowns about IL11 biology are discussed and the promise of targeting IL11 signalling as a therapeutic approach is reviewed.
Collapse
Affiliation(s)
- Stuart A. Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
27
|
Tan GJ, Kioh SH, Mat S, Tan MP, Chan SHL, Lee JMY, Tan YW. Psychosocial Determinants of Knee Osteoarthritis Progression: Results from the Promoting Independence in Our Seniors with Arthritis Study. Ann Geriatr Med Res 2023; 27:346-352. [PMID: 37899274 PMCID: PMC10772335 DOI: 10.4235/agmr.23.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/11/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Knee osteoarthritis (OA) is a common cause of physical disability among older adults. While established risk factors for knee OA include age and increased body weight, few studies have examined psychosocial risk factors or progression of knee OA. METHODS The Promoting Independence in our Seniors with Arthritis study recruited participants aged 65 years and over from orthopedic outpatients and community engagement events. Participants were invited to annual visits during which knee OA symptoms were assessed with the Knee Injury and Osteoarthritis Outcome Score (KOOS), social network using the 6-item Lubben Social Network Scale and anxiety and depression using the Hospital Anxiety and Depression scale. Knee OA worsening was defined by a 5% reduction in mean KOOS scores at the last visit compared to the first visit. RESULTS Data were available from 148 participants, mean age 66.2±6.5 years and 74.1% female, of whom 28 (18.9%) experienced OA worsening over a median follow-up period of 29 months. Univariate analyses revealed that age, sex, height, grip strength, and social network were associated with OA worsening. Social network remained statistically significantly associated with OA worsening after adjustment for age and sex difference (odds ratio=0.924; 95% confidence interval, 0.857-0.997). The relationship between social network and OA worsening were attenuated by both depression and handgrip strength at baseline. CONCLUSION Psychological status and muscle strength may be modifiable risk factors for social network which may in turn prevent knee OA worsening and should be targeted in future intervention studies.
Collapse
Affiliation(s)
- Guo Jeng Tan
- Department of General Medicine, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Sheng Hui Kioh
- Department of Chiropractic, Centre Of Complementary and Alternative Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Sumaiyah Mat
- Centre for Health Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Maw Pin Tan
- Department of General Medicine, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | | | | | - Yee Wen Tan
- Department of Anaesthesiology, Hospital Umum Sarawak, Kuching, Sarawak, Malaysia
| |
Collapse
|
28
|
Gan L, Deng Z, Wei Y, Li H, Zhao L. Decreased expression of GEM in osteoarthritis cartilage regulates chondrogenic differentiation via Wnt/β-catenin signaling. J Orthop Surg Res 2023; 18:751. [PMID: 37794464 PMCID: PMC10548561 DOI: 10.1186/s13018-023-04236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND GEM (GTP-binding protein overexpressed in skeletal muscle) is one of the atypical small GTPase subfamily members recently identified as a regulator of cell differentiation. Abnormal chondrogenesis coupled with an imbalance in the turnover of cartilaginous matrix formation is highly relevant to the onset and progression of osteoarthritis (OA). However, how GEM regulates chondrogenic differentiation remains unexplored. METHODS Cartilage tissues were obtained from OA patients and graded according to the ORASI and ICRS grading systems. The expression alteration of GEM was detected in the Grade 4 cartilage compared to Grade 0 and verified in OA mimic culture systems. Next, to investigate the specific function of GEM during these processes, we generated a Gem knockdown (Gem-Kd) system by transfecting siRNA targeting Gem into ATDC5 cells. Acan, Col2a1, Sox9, and Wnt target genes of Gem-Kd ATDC5 cells were detected during induction. The transcriptomic sequencing analysis was performed to investigate the mechanism of GEM regulation. Wnt signaling pathways were verified by real-time PCR and immunoblot analysis. Finally, a rescue model generated by treating Gem-KD ATDC5 cells with a Wnt signaling agonist was established to validate the mechanism identified by RNA sequencing analysis. RESULTS A decreased expression of GEM in OA patients' cartilage tissues and OA mimic chondrocytes was observed. While during chondrogenesis differentiation and cartilage matrix formation, the expression of GEM was increased. Gem silencing suppressed chondrogenic differentiation and the expressions of Acan, Col2a1, and Sox9. RNA sequencing analysis revealed that Wnt signaling was downregulated in Gem-Kd cells. Decreased expression of Wnt signaling associated genes and the total β-CATENIN in the nucleus and cytoplasm were observed. The exogenous Wnt activation exhibited reversed effect on Gem loss-of-function cells. CONCLUSION These findings collectively validated that GEM functions as a novel regulator mediating chondrogenic differentiation and cartilage matrix formation through Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Lu Gan
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhonghao Deng
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yiran Wei
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | | | - Liang Zhao
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
29
|
Kulm S, Kaidi AC, Kolin D, Langhans MT, Bostrom MP, Elemento O, Shen TS. Genetic Risk Factors for End-Stage Hip Osteoarthritis Treated With Total Hip Arthroplasty: A Genome-wide Association Study. J Arthroplasty 2023; 38:2149-2153.e1. [PMID: 37179025 DOI: 10.1016/j.arth.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Although a genetic component to hip osteoarthritis (OA) has been described, focused evaluation of the genetic components of end-stage disease is limited. We present a genomewide association study for patients undergoing total hip arthroplasty (THA) to characterize the genetic risk factors associated with end-stage hip osteoarthritis (ESHO), defined as utilization of the procedure. METHODS Patients who underwent primary THA for hip OA were identified in a national patient data repository using administrative codes. Fifteen thousand three hundred and fifty-five patients with ESHO and 374,193 control patients were identified. Whole genome regression of genotypic data for patients who underwent primary THA for hip OA corrected for age, sex, and body mass index (BMI) was performed. Multivariate logistic regression models were used to evaluate the composite genetic risk from the identified genetic variants. RESULTS There were 13 significant genes identified. Composite genetic factors resulted in an odds ratio 1.04 for ESHO (P < .001). The effect of genetics was lower than that of age (Odds Ratio (OR): 2.38; P < .001) and BMI (1.81; P < .001). CONCLUSION Multiple genetic variants, including 5 novel loci, were associated with end-stage hip OA treated with primary THA. Age and BMI were associated with greater odds of developing end-stage disease when compared to genetic factors.
Collapse
Affiliation(s)
- Scott Kulm
- Weill Cornell Medicine, New York, New York; Englander Institute for Precision Medicine, New York, New York
| | - Austin C Kaidi
- Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, New York
| | - David Kolin
- Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, New York
| | - Mark T Langhans
- Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, New York
| | - Mathias P Bostrom
- Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, New York
| | - Olivier Elemento
- Weill Cornell Medicine, New York, New York; Englander Institute for Precision Medicine, New York, New York
| | - Tony S Shen
- Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, New York
| |
Collapse
|
30
|
Mei L, Zhang Z, Chen R, Liu Z, Ren X, Li Z. Identification of candidate genes and chemicals associated with osteoarthritis by transcriptome-wide association study and chemical-gene interaction analysis. Arthritis Res Ther 2023; 25:179. [PMID: 37749624 PMCID: PMC10518935 DOI: 10.1186/s13075-023-03164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/10/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a common degenerative joint disease and causes chronic pain and disability to the elderly. Several risk factors are involved, such as aging, obesity, genetic susceptibility, and environmental factors. We conducted a transcriptome-wide association study (TWAS) and chemical-related gene set enrichment analysis (CGSEA) to investigate the susceptibility genes and environmental factors. METHODS TWAS analysis was conducted to identify the susceptibility genes by integrating the summary-level genome-wide association study data of knee OA (KOA) and hip OA (HOA) with the precomputed expression weights from the Genotype-Tissue Expression Project (Version 8). The FUSION software was used for both single-tissue and cross-tissue TWAS, which were combined using an aggregate Cauchy association test. The biological function and pathways of the TWAS genes were explored using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases, and the human cartilage mRNA expression profiles were utilized to validate the TWAS genes. CGSEA analysis was performed to scan the OA-associated chemicals by integrating the TWAS results with the chemical-related gene sets. RESULTS There were 44 and 93 unique TWAS genes identified in 7 and 11 chromosomes for KOA and HOA, respectively, fourteen and four of which showed significantly differential expression in the mRNA profiles, such as CRHR1, LTBP1, WWP2, LMX1B, and PTHLH. OA-related pathways were found in the KEGG and GO analysis, such as TGF-beta signaling pathway, MAPK signaling pathway, hyaluronan metabolic process, and chondrocyte differentiation. Forty-five OA-associated chemicals were identified, including quercetin, bisphenol A, and cadmium chloride. CONCLUSIONS Several candidate OA-associated genes and chemicals were identified through TWAS and CGSEA analysis, which expanded our understanding of the relationship between genes, chemicals, and their impact on OA.
Collapse
Affiliation(s)
- Lin Mei
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Zhiming Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Ruiqi Chen
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Zhongyue Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China.
| |
Collapse
|
31
|
Zhu L, Vincent TL. Genome-Wide Association Studies to Drug: Identifying Retinoic Acid Metabolism Blocking Agents to Suppress Mechanoflammation in Osteoarthritis. DNA Cell Biol 2023; 42:527-531. [PMID: 37418291 DOI: 10.1089/dna.2023.0197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
Osteoarthritis (OA) is a highly prevalent debilitating joint disease for which there are currently no licensed disease-modifying treatments. The pathogenesis of OA is complex, involving genetic, mechanical, biochemical, and environmental factors. Cartilage injury, arguably the most important driving factor in OA development, is able to activate both protective and inflammatory pathways within the tissue. Recently, >100 genetic risk variants for OA have been identified through Genome Wide Association Studies, which provide a powerful tool to validate existing putative disease pathways and discover new ones. Using such an approach, hypomorphic variants within the aldehyde dehydrogenase 1 family member A2 (ALDH1A2) gene were shown to be associated with increased risk of severe hand OA. ALDH1A2 encodes the enzyme that synthesizes all-trans retinoic acid (atRA), an intracellular signaling molecule. This review summarizes the influence of the genetic variants on expression and function of ALDH1A2 in OA cartilage, its role in the mechanical injury response of cartilage, and its potent anti-inflammatory effect after cartilage injury. In doing so it identifies atRA metabolism-blocking agents as potential treatments for suppressing mechanoflammation in OA.
Collapse
Affiliation(s)
- Linyi Zhu
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Tonia L Vincent
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
Muratovic D, Findlay DM, Quinn MJ, Quarrington RD, Solomon LB, Atkins GJ. Microstructural and cellular characterisation of the subchondral trabecular bone in human knee and hip osteoarthritis using synchrotron tomography. Osteoarthritis Cartilage 2023; 31:1224-1233. [PMID: 37178862 DOI: 10.1016/j.joca.2023.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE It is unclear if different factors influence osteoarthritis (OA) progression and degenerative changes characterising OA disease in hip and knee. We investigated the difference between hip OA and knee OA at the subchondral bone (SCB) tissue and cellular level, relative to the degree of cartilage degeneration. DESIGN Bone samples were collected from 11 patients (aged 70.4 ± 10.7years) undergoing knee arthroplasty and 8 patients (aged 62.3 ± 13.4years) undergoing hip arthroplasty surgery. Trabecular bone microstructure, osteocyte-lacunar network, and bone matrix vascularity were evaluated using synchrotron micro-CT imaging. Additionally, osteocyte density, viability, and connectivity were determined histologically. RESULTS The associations between severe cartilage degeneration and increase of bone volume fraction (%) [- 8.7, 95% CI (-14.1, -3.4)], trabecular number (#/mm) [- 1.5, 95% CI (-0.8, -2.3)], osteocyte lacunar density (#/mm3) [4714.9; 95% CI (2079.1, 7350.6)] and decrease of trabecular separation (mm) [- 0.07, 95% CI (0.02, 0.1)] were found in both knee and hip OA. When compared to knee OA, hip OA was characterised by larger (µm3) but less spheric osteocyte lacunae [47.3; 95% CI (11.2, 83.4), - 0.04; 95% CI (-0.06, -0.02), respectively], lower vascular canal density (#/mm3) [- 22.8; 95% CI (-35.4, -10.3)], lower osteocyte cell density (#/mm2) [- 84.2; 95% CI (-102.5, -67.4)], and less senescent (#/mm2) but more apoptotic osteocytes (%) [- 2.4; 95% CI (-3.6, -1.2), 24.9; 95% CI (17.7, 32.1)], respectively. CONCLUSION SCB from hip OA and knee OA exhibits different characteristics at the tissue and cellular levels, suggesting different mechanisms of OA progression in different joints.
Collapse
Affiliation(s)
- Dzenita Muratovic
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia; Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia.
| | - David M Findlay
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia
| | - Micaela J Quinn
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia; Bone and Joint Osteoimmunology Laboratory, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ryan D Quarrington
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lucian B Solomon
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia; Orthopaedic and Trauma Service, the Royal Adelaide Hospital and the Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Gerald J Atkins
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
33
|
Zeng M, Wang X, Chen T, Ruan G, Li J, Xue S, Zhao Y, Hu Z, Xie Y, Fan T, Chen S, Li Y, Wang Q, Zhang Y, Zhang R, Lin L, Ding C, Zhu Z. Comprehensive analysis on subchondral bone marrow lesions of human osteoarthritis by integrating bulk and single-cell transcriptomes. BMC Musculoskelet Disord 2023; 24:677. [PMID: 37626330 PMCID: PMC10463447 DOI: 10.1186/s12891-023-06676-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 06/29/2023] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE This study aims to demonstrate the cellular composition and underlying mechanisms in subchondral bone marrow lesions (BMLs) of knee osteoarthritis (OA). METHODS BMLs were assessed by MRI Osteoarthritis Knee Score (MOAKS)≥2. Bulk RNA-sequencing (bulk-seq) and BML-specific differentially expressed genes (DEGs) analysis were performed among subchondral bone samples (including OA-BML=3, paired OA-NBML=3; non-OA=3). The hub genes of BMLs were identified by verifying in independent datasets and multiple bioinformatic analyses. To further estimate cell-type composition of subchondral bone, we utilized two newly developed deconvolution algorithms (MuSiC, MCP-counter) in transcriptomic datasets, based on signatures from open-accessed single-cell RNA sequencing (scRNA-seq). Finally, competing endogenous RNA (ceRNA) and transcription factor (TF) networks were constructed through multiple predictive databases, and validated by public non-coding RNA profiles. RESULTS A total of 86 BML-specific DEGs (up 79, down 7) were identified. IL11 and VCAN were identified as core hub genes. The "has-miR-424-5p/lncRNA PVT1" was determined as crucial network, targeting IL11 and VCAN, respectively. More importantly, two deconvolution algorithms produced approximate estimations of cell-type composition, and the cluster of heterotopic-chondrocyte was discovered abundant in BMLs, and positively correlated with the expression of hub genes. CONCLUSION IL11 and VCAN were identified as the core hub genes of BMLs, and their molecular networks were determined as well. We profiled the characteristics of subchondral bone at single-cell level and determined that the heterotopic-chondrocyte was abundant in BMLs and was closely linked to IL11 and VCAN. Our study may provide new insights into the microenvironment and pathological molecular mechanism of BMLs, and could lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Muhui Zeng
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
- Department of Orthopedics, General Hospital of Southern Theater Command of PLA, Guangzhou, Guangdong, China
| | - Xiaoshuai Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tianyu Chen
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guangfeng Ruan
- Clinical Research Centre, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jia Li
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Song Xue
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Zhao
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zhiyang Hu
- Sun Yat-sen University School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Ye Xie
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tianxiang Fan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Shibo Chen
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yang Li
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Qianyi Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yue Zhang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rongkai Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Lijun Lin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| | - Zhaohua Zhu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
34
|
Kaya S, Bailey KN, Schurman CA, Evans DS, Alliston T. Bone-cartilage crosstalk informed by aging mouse bone transcriptomics and human osteoarthritis genome-wide association studies. Bone Rep 2023; 18:101647. [PMID: 36636109 PMCID: PMC9830153 DOI: 10.1016/j.bonr.2022.101647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Subchondral bone participates in crosstalk with articular cartilage to maintain joint homeostasis, and disruption of either tissue results in overall joint degeneration. Among the subchondral bone changes observed in osteoarthritis (OA), subchondral bone plate (SBP) thickening has a time-dependent relationship with cartilage degeneration and has recently been shown to be regulated by osteocytes. Here, we evaluate the effect of age on SBP thickness and cartilage degeneration in aging mice. We find that SBP thickness significantly increases by 18-months of age, corresponding temporally with increased cartilage degeneration. To identify factors in subchondral bone that may participate in bone cartilage crosstalk or OA, we leveraged mouse transcriptomic data from one joint tissue compartment - osteocyte-enriched bone - to search for enrichment with human OA in UK Biobank and Arthritis Research UK Osteoarthritis Genetics (arcOGEN) GWAS using the mouse2human (M2H, www.mouse2human.org) strategy. Genes differentially expressed in aging mouse bone are significantly enriched for human OA, showing joint site-specific (knee vs. hip) relationships, exhibit temporal associations with age, and unique gene clusters are implicated in each type of OA. Application of M2H identifies genes with known and unknown functions in osteocytes and OA development that are clinically associated with human OA. Altogether, this work prioritizes genes with a potential role in bone/cartilage crosstalk for further mechanistic study based on their association with human OA in GWAS.
Collapse
Affiliation(s)
- Serra Kaya
- Department of Orthopaedic Surgery, University of California San Francisco, CA, United States of America
| | - Karsyn N. Bailey
- Department of Orthopaedic Surgery, University of California San Francisco, CA, United States of America
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States of America
| | - Charles A. Schurman
- Department of Orthopaedic Surgery, University of California San Francisco, CA, United States of America
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States of America
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, United States of America
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, CA, United States of America
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States of America
| |
Collapse
|
35
|
Kehayova YS, Wilkinson JM, Rice SJ, Loughlin J. Mediation of the Same Epigenetic and Transcriptional Effect by Independent Osteoarthritis Risk-Conferring Alleles on a Shared Target Gene, COLGALT2. Arthritis Rheumatol 2023; 75:910-922. [PMID: 36538011 PMCID: PMC10952352 DOI: 10.1002/art.42427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Over 100 DNA variants have been associated with osteoarthritis (OA), including rs1046934, located within a linkage disequilibrium block encompassing part of COLGALT2 and TSEN15. The present study was undertaken to determine the target gene(s) and the mechanism of action of the OA locus using human fetal cartilage, cartilage from OA and femoral neck fracture arthroplasty patients, and a chondrocyte cell model. METHODS Genotyping and methylation array data of DNA from human OA cartilage samples (n = 87) were used to determine whether the rs1046934 genotype is associated with differential DNA methylation at proximal CpGs. Results were replicated in DNA from human arthroplasty (n = 132) and fetal (n = 77) cartilage samples using pyrosequencing. Allelic expression imbalance (AEI) measured the effects of genotype on COLGALT2 and TSEN15 expression. Reporter gene assays and epigenetic editing determined the functional role of regions harboring differentially methylated CpGs. In silico analyses complemented these experiments. RESULTS Three differentially methylated CpGs residing within regulatory regions were detected in the human OA cartilage array data, and 2 of these were replicated in human arthroplasty and fetal cartilage. AEI was detected for COLGALT2 and TSEN15, with associations between expression and methylation for COLGALT2. Reporter gene assays confirmed that the CpGs are in chondrocyte enhancers, with epigenetic editing results directly linking methylation with COLGALT2 expression. CONCLUSION COLGALT2 is a target of this OA locus. We previously characterized another OA locus, marked by rs11583641, that independently targets COLGALT2. The genotype of rs1046934, like rs11583641, mediates its effect by modulating expression of COLGALT2 via methylation changes to CpGs located in enhancers. Although the single-nucleotide polymorphisms, CpGs, and enhancers are distinct between the 2 independent OA risk loci, their effect on COLGALT2 is the same. COLGALT2 is the target of independent OA risk loci sharing a common mechanism of action.
Collapse
Affiliation(s)
| | - J. Mark Wilkinson
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Sarah J. Rice
- Biosciences Institute, Newcastle UniversityNewcastle upon TyneUK
| | - John Loughlin
- Biosciences Institute, Newcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
36
|
Shkhyan R, Flynn C, Lamoure E, Sarkar A, Van Handel B, Li J, York J, Banks N, Van der Horst R, Liu NQ, Lee S, Bajaj P, Vadivel K, Harn HIC, Tassey J, Lozito T, Lieberman JR, Chuong CM, Hurtig MS, Evseenko D. Inhibition of a signaling modality within the gp130 receptor enhances tissue regeneration and mitigates osteoarthritis. Sci Transl Med 2023; 15:eabq2395. [PMID: 36947594 PMCID: PMC10792550 DOI: 10.1126/scitranslmed.abq2395] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 01/17/2023] [Indexed: 03/24/2023]
Abstract
Adult mammals are incapable of multitissue regeneration, and augmentation of this potential may shift current therapeutic paradigms. We found that a common co-receptor of interleukin 6 (IL-6) cytokines, glycoprotein 130 (gp130), serves as a major nexus integrating various context-specific signaling inputs to either promote regenerative outcomes or aggravate disease progression. Via genetic and pharmacological experiments in vitro and in vivo, we demonstrated that a signaling tyrosine 814 (Y814) within gp130 serves as a major cellular stress sensor. Mice with constitutively inactivated Y814 (F814) were resistant to surgically induced osteoarthritis as reflected by reduced loss of proteoglycans, reduced synovitis, and synovial fibrosis. The F814 mice also exhibited enhanced regenerative, not reparative, responses after wounding in the skin. In addition, pharmacological modulation of gp130 Y814 upstream of the SRC and MAPK circuit by a small molecule, R805, elicited a protective effect on tissues after injury. Topical administration of R805 on mouse skin wounds resulted in enhanced hair follicle neogenesis and dermal regeneration. Intra-articular administration of R805 to rats after medial meniscal tear and to canines after arthroscopic meniscal release markedly mitigated the appearance of osteoarthritis. Single-cell sequencing data demonstrated that genetic and pharmacological modulation of Y814 resulted in attenuation of inflammatory gene signature as visualized by the anti-inflammatory macrophage and nonpathological fibroblast subpopulations in the skin and joint tissue after injury. Together, our study characterized a molecular mechanism that, if manipulated, enhances the intrinsic regenerative capacity of tissues through suppression of a proinflammatory milieu and prevents pathological outcomes in injury and disease.
Collapse
Affiliation(s)
- Ruzanna Shkhyan
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Candace Flynn
- Ontario Veterinary College, Department of Clinical Studies, University of Guelph, ON N1G 2W1, Canada
| | - Emma Lamoure
- Ontario Veterinary College, Department of Clinical Studies, University of Guelph, ON N1G 2W1, Canada
| | - Arijita Sarkar
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Benjamin Van Handel
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Jinxiu Li
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Jesse York
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Nicholas Banks
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Robert Van der Horst
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Nancy Q. Liu
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Siyoung Lee
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Paul Bajaj
- UCLA Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
| | - Kanagasabai Vadivel
- UCLA Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
| | - Hans I.-Chen Harn
- Department of Pathology, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan 701401 Taiwan
| | - Jade Tassey
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Thomas Lozito
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Jay R. Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Mark S. Hurtig
- Ontario Veterinary College, Department of Clinical Studies, University of Guelph, ON N1G 2W1, Canada
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
- Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| |
Collapse
|
37
|
Kim M, Rubab A, Chan WC, Chan D. Osteoarthritis year in review: genetics, genomics and epigenetics. Osteoarthritis Cartilage 2023:S1063-4584(23)00725-2. [PMID: 36924918 DOI: 10.1016/j.joca.2023.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
This "year in review" provides a summary of the research findings on the topic of genetics, genomics and epigenetics for osteoarthritis (OA) between Mar 2021-Apr 2022. A search routine of the literature in PubMed for the keyword, osteoarthritis, together with topics on genetics, genomics, epigenetics, polymorphism, DNA methylation, noncoding RNA, lncRNA, proteomics, and single cell RNA sequencing, returned key research articles and relevant reviews. Following filtering of duplicates across search routines, 695 unique research articles and 112 reviews were identified. We manually curated these articles and selected 90 as references for this review. However, we were unable to refer to all these articles, and only used selected articles to highlight key outcomes and trends. The trend in genetics is on the meta-analysis of existing cohorts with comparable genetic and phenotype characterisation of OA; in particular, clear definition of endophenotypes to enhance the genetic power. Further, many researchers are realizing the power of big data and multi-omics approaches to gain molecular insights for OA, and this has opened innovative approaches to include transcriptomics and epigenetics data as quantitative trait loci (QTLs). Given that most of the genetic loci for OA are not located within coding regions of genes, implying the impact is likely to be on gene regulation, epigenetics is a hot topic, and there is a surge in studies relating to the role of miRNA and long non-coding RNA on cartilage biology and pathology. The findings are exciting and new insights are provided in this review to summarize a year of research and the road map to capture all new innovations to achieve the desired goal in OA prevention and treatment.
Collapse
Affiliation(s)
- Minyeong Kim
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Aqsa Rubab
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wilson Cw Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
38
|
Novakov V, Novakova O, Churnosova M, Sorokina I, Aristova I, Polonikov A, Reshetnikov E, Churnosov M. Intergenic Interactions of SBNO1, NFAT5 and GLT8D1 Determine the Susceptibility to Knee Osteoarthritis among Europeans of Russia. Life (Basel) 2023; 13:life13020405. [PMID: 36836762 PMCID: PMC9960278 DOI: 10.3390/life13020405] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
This study was conducted to examine the associations between genome-wide association studies (GWAS)-important single nucleotide polymorphisms (SNPs) and knee osteoarthritis (KOA) among Europeans of Russia. The present replicative study ("patient-control" design has been used) was carried out on 1000 DNA samples from KOA (n = 500) and KOA-free (n = 500) participants. Ten GWAS-important for KOA SNPs of eight candidate genes (LYPLAL1, GNL3, GLT8D1, SBNO1, WWP2, NFAT5, TGFA, GDF5) were studied. To assess the link between SNPs and KOA susceptibility, logistic regression (to establish independent SNP effects) and MB-MDR (to identify SNP-SNP interactions) were used. As a result of this genetic analysis, the associations of individual SNPs with KOA have not been proven. Eight loci out of ten tested SNPs interacted with each other (within twelve genetic models) and determined susceptibility to KOA. The greatest contribution to the disease development were made by three polymorphisms/genes such as rs6976 (C>T) GLT8D1, rs56116847 (G>A) SBNO1, rs6499244 (T>A) NFAT5 (each was included in 2/3 [8 out 12] KOA-responsible genetic interaction models). A two-locus epistatic interaction of rs56116847 (G >A) SBNO1 × rs6499244 (T>A) NFAT5 determined the maximum percentage (0.86%) of KOA entropy. KOA-associated SNPs are regulatory polymorphisms that affect the expression/splicing level, epigenetic modification of 72 genes in KOA-pathogenetically significant organs such as skeletal muscles, tibial arteries/nerves, thyroid, adipose tissue, etc. These putative KOA-effector genes are mainly involved in the organization/activity of the exoribonuclease complex and antigen processing/presentation pathways. In conclusion, KOA susceptibility among Europeans of Russia is mediated by intergenic interactions (but not the main effects) of GWAS-important SNPs.
Collapse
Affiliation(s)
- Vitaly Novakov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Olga Novakova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Maria Churnosova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Inna Sorokina
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Inna Aristova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Alexey Polonikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
- Department of Biology, Medical Genetics and Ecology and Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
- Correspondence:
| |
Collapse
|
39
|
Tuerlings M, Janssen GMC, Boone I, van Hoolwerff M, Rodriguez Ruiz A, Houtman E, Suchiman HED, van der Wal RJP, Nelissen RGHH, Coutinho de Almeida R, van Veelen PA, Ramos YFM, Meulenbelt I. WWP2 confers risk to osteoarthritis by affecting cartilage matrix deposition via hypoxia associated genes. Osteoarthritis Cartilage 2023; 31:39-48. [PMID: 36208715 DOI: 10.1016/j.joca.2022.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To explore the co-expression network of the osteoarthritis (OA) risk gene WWP2 in articular cartilage and study cartilage characteristics when mimicking the effect of OA risk allele rs1052429-A on WWP2 expression in a human 3D in vitro model of cartilage. METHOD Co-expression behavior of WWP2 with genes expressed in lesioned OA articular cartilage (N = 35 samples) was explored. By applying lentiviral particle mediated WWP2 upregulation in 3D in vitro pellet cultures of human primary chondrocytes (N = 8 donors) the effects of upregulation on cartilage matrix deposition was evaluated. Finally, we transfected primary chondrocytes with miR-140 mimics to evaluate whether miR-140 and WWP2 are involved in similar pathways. RESULTS Upon performing Spearman correlations in lesioned OA cartilage, 98 highly correlating genes (|ρ| > 0.7) were identified. Among these genes, we identified GJA1, GDF10, STC2, WDR1, and WNK4. Subsequent upregulation of WWP2 on 3D chondrocyte pellet cultures resulted in a decreased expression of COL2A1 and ACAN and an increase in EPAS1 expression. Additionally, we observed a decreased expression of GDF10, STC2, and GJA1. Proteomics analysis identified 42 proteins being differentially expressed with WWP2 upregulation, which were enriched for ubiquitin conjugating enzyme activity. Finally, upregulation of miR-140 in 2D chondrocytes resulted in significant upregulation of WWP2 and WDR1. CONCLUSIONS Mimicking the effect of OA risk allele rs1052429-A on WWP2 expression initiates detrimental processes in the cartilage shown by a response in hypoxia associated genes EPAS1, GDF10, and GJA1 and a decrease in anabolic markers, COL2A1 and ACAN.
Collapse
Affiliation(s)
- M Tuerlings
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - G M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands.
| | - I Boone
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - M van Hoolwerff
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - A Rodriguez Ruiz
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - E Houtman
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - H E D Suchiman
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - R J P van der Wal
- Dept. Orthopaedics, Leiden University Medical Center, Leiden, the Netherlands.
| | - R G H H Nelissen
- Dept. Orthopaedics, Leiden University Medical Center, Leiden, the Netherlands.
| | - R Coutinho de Almeida
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - P A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands.
| | - Y F M Ramos
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - I Meulenbelt
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
40
|
Polymorphism of LYPLAL1 and TGFA Genes Associated With Progression of Knee Osteoarthritis in Residents Central Chernozem Region of Russia. TRAUMATOLOGY AND ORTHOPEDICS OF RUSSIA 2022. [DOI: 10.17816/2311-2905-1979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background. Кnee osteoarthritis (OA) is a multifactorial disease in which genetic factors play an important role. The share of the hereditary component in the development of OA, according to various literature sources, ranges from 40 to 65%. Кnee OA is a progressive disease that leads to a decrease in the quality of life and disability.
The study aimed to evaluate the role of polymorphic markers of candidate genes rs2820436 and rs2820443 LYPLAL1, rs3771501 TGFA, rs11177 GNL3, rs6976 GLT8D1 in the progression of knee OA in the population of the Central Chernozem Region of Russia.
Methods. The study was performed in a case-control design on a sample of 500 patients with knee OA. Case patients with III-IV stages of the disease according to KellgrenLawrence (n = 325), control (individuals who do not have the analyzed sign III-IV stages of the disease) patients with stage II (n = 175). Genotyping of five single nucleotide polymorphisms (SNPs) of candidate genes was performed using the polymerase chain reaction method for DNA synthesis. The study of the associations of the studied polymorphic loci, the calculation of haplotype frequencies and the analysis of their relationship with the progression of knee OA was carried out by the method of logistic regression in the program PLINK v 2.050.
Results. Significant associations with the progression of OA of the knee were established for allelic variant A rs2820436 of LYPLAL1 gene according to allelic (OR = 1.48, p = 0.010, pperm = 0.012), additive (OR = 1.58, p = 0.009, pperm = 0.010), dominant (OR = 1.61, p = 0.024, pperm = 0.030) genetic models and A/A genotype of the same polymorphism (OR = 2.53, p = 0.041). The genotypes C/C rs2820436 LYPLAL1 (OR = 0.67, p = 0.043), A/G rs3771501 TGFA (OR = 0.67, p = 0.042) have a protective role in the progression of the disease. It was found that the frequency of the AC haplotype of haploblock rs2820436-rs2820443 in the group of patients with III-IV stages of the disease was significantly higher than in patients with stage II (OR = 1.83, p = 0.002, pperm = 0.002). The identified molecular genetic markers rs2820436 and rs2820443 of LYPLAL1 gene, rs3771501 of TGFA gene are associated both with the risk of developing OA according to previous genome-wide studies and, according to our data, are associated with the progression of knee OA.
Conclusions. Genetic risk factors for the development of knee OA of III-IV radiological stages are allelic variant A and genotype A/A rs2820436 of LYPLAL1 gene, haplotype AC of haploblock rs2820436-rs2820443 in the population of the Central Chernozem Region of Russia. Genotypes C/C rs2820436 of LYPLAL1 gene and A/G rs3771501 of TGFA gene have a protective value in the progression of this disease.
Collapse
|
41
|
McDonald MLN, Lakshman Kumar P, Srinivasasainagendra V, Nair A, Rocco AP, Wilson AC, Chiles JW, Richman JS, Pinson SA, Dennis RA, Jagadale V, Brown CJ, Pyarajan S, Tiwari HK, Bamman MM, Singh JA. Novel genetic loci associated with osteoarthritis in multi-ancestry analyses in the Million Veteran Program and UK Biobank. Nat Genet 2022; 54:1816-1826. [PMID: 36411363 DOI: 10.1038/s41588-022-01221-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/05/2022] [Indexed: 11/22/2022]
Abstract
Osteoarthritis is a common progressive joint disease. As no effective medical interventions are available, osteoarthritis often progresses to the end stage, in which only surgical options such as total joint replacement are available. A more thorough understanding of genetic influences of osteoarthritis is essential to develop targeted personalized approaches to treatment, ideally long before the end stage is reached. To date, there have been no large multiancestry genetic studies of osteoarthritis. Here, we leveraged the unique resources of 484,374 participants in the Million Veteran Program and UK Biobank to address this gap. Analyses included participants of European, African, Asian and Hispanic descent. We discovered osteoarthritis-associated genetic variation at 10 loci and replicated findings from previous osteoarthritis studies. We also present evidence that some osteoarthritis-associated regions are robust to population ancestry. Drug repurposing analyses revealed enrichment of targets of several medication classes and provide potential insight into the etiology of beneficial effects of antiepileptics on osteoarthritis pain.
Collapse
Affiliation(s)
- Merry-Lynn N McDonald
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA.
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Preeti Lakshman Kumar
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Vinodh Srinivasasainagendra
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashwathy Nair
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Alison P Rocco
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Ava C Wilson
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joe W Chiles
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Joshua S Richman
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarah A Pinson
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Richard A Dennis
- Central Arkansas Veterans Healthcare System (CAVHS), Little Rock, AR, USA
| | - Vivek Jagadale
- Central Arkansas Veterans Healthcare System (CAVHS), Little Rock, AR, USA
| | - Cynthia J Brown
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), Veterans Affairs Boston Healthcare System (VABHS), Boston, MA, USA
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marcas M Bamman
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Florida Institute for Human & Machine Cognition, Pensacola, FL, USA
| | - Jasvinder A Singh
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Rheumatology and Clinical Immunology, Department of Medicine at the School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
42
|
Kulm S, Kolin DA, Langhans MT, Kaidi AC, Elemento O, Bostrom MP, Shen TS. Characterization of Genetic Risk of End-Stage Knee Osteoarthritis Treated with Total Knee Arthroplasty: A Genome-Wide Association Study. J Bone Joint Surg Am 2022; 104:1814-1820. [PMID: 36000784 DOI: 10.2106/jbjs.22.00364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND End-stage knee osteoarthritis (OA) is a highly debilitating disease for which total knee arthroplasty (TKA) serves as an effective treatment option. Although a genetic component to OA in general has been described, evaluation of the genetic contribution to end-stage OA of the knee is limited. To this end, we present a genome-wide association study involving patients undergoing TKA for primary knee OA to characterize the genetic features of severe disease on a population level. METHODS Individuals with the diagnosis of knee OA who underwent primary TKA were identified in the U.K. Biobank using administrative codes. The U.K. Biobank is a data repository containing prospectively collected clinical and genomic data for >500,000 patients. A genome-wide association analysis was performed using the REGENIE software package. Logistic regression was also used to compare the total genetic risk between subgroups stratified by age and body mass index (BMI). RESULTS A total of 16,032 patients with end-stage knee OA who underwent primary TKA were identified. Seven genetic loci were found to be significantly associated with end-stage knee OA. The odds ratio (OR) for developing end-stage knee OA attributable to genetics was 1.12 (95% confidence interval [CI], 1.10 to 1.14), which was lower than the OR associated with BMI (OR = 1.81; 95% CI, 1.78 to 1.83) and age (OR = 2.38; 95% CI, 2.32 to 2.45). The magnitude of the OR for developing end-stage knee OA attributable to genetics was greater in patients <60 years old than in patients ≥60 years old (p = 0.002). CONCLUSIONS This population-level genome-wide association study of end-stage knee OA treated with primary TKA was notable for identifying multiple significant genetic variants. These loci involve genes responsible for cartilage development, cartilage homeostasis, cell signaling, and metabolism. Age and BMI appear to have a greater impact on the risk of developing end-stage disease compared with genetic factors. The genetic contribution to the development of severe disease is greater in younger patients. LEVEL OF EVIDENCE Prognostic Level III . See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Scott Kulm
- Weill Cornell Medicine, Cornell University, New York, NY.,Englander Institute for Precision Medicine, Weill Cornell Medicine, Cornell University, New York, NY
| | - David A Kolin
- Weill Cornell Medicine, Cornell University, New York, NY
| | | | | | - Olivier Elemento
- Weill Cornell Medicine, Cornell University, New York, NY.,Englander Institute for Precision Medicine, Weill Cornell Medicine, Cornell University, New York, NY
| | | | | |
Collapse
|
43
|
Wang W, Niu Y, Jia Q. Physical therapy as a promising treatment for osteoarthritis: A narrative review. Front Physiol 2022; 13:1011407. [PMID: 36311234 PMCID: PMC9614272 DOI: 10.3389/fphys.2022.1011407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease and a leading cause of disability in older adults. With an increasing population ageing and obesity, OA is becoming even more prevalent than it was in previous decades. Evidence indicates that OA is caused by the breakdown of joint tissues from mechanical loading and inflammation, but the deeper underlying mechanism of OA pathogenesis remains unclear, hindering efforts to prevent and treat this disease. Pharmacological treatments are mostly related to relieving symptoms, and there is no drug for radical cure. However, compelling evidence suggests that regular practice of resistance exercise may prevent and control the development of several musculoskeletal chronic diseases including OA, which may result in improved quality of life of the patients. In this review, we introduced the current understanding of the mechanism and clinical treatments of OA pathogenesis. We also reviewed the recent study of physical therapy in the treatment of skeletal system disorders, especially in OA. Finally, we discuss the present challenges and promising advantages of physical therapy in OA treatment.
Collapse
Affiliation(s)
- Wei Wang
- School of Physical Education, Anyang Normal University, Anyang, China
- Anyang Key Laboratory of Fitness Training and Assessment, Anyang Normal University, Anyang, China
| | - Yonggang Niu
- School of Physical Education, Anyang Normal University, Anyang, China
- Anyang Key Laboratory of Fitness Training and Assessment, Anyang Normal University, Anyang, China
| | - Qingxiu Jia
- School of Physical Education, Anyang Normal University, Anyang, China
- Anyang Key Laboratory of Fitness Training and Assessment, Anyang Normal University, Anyang, China
- *Correspondence: Qingxiu Jia,
| |
Collapse
|
44
|
Coaccioli S, Sarzi-Puttini P, Zis P, Rinonapoli G, Varrassi G. Osteoarthritis: New Insight on Its Pathophysiology. J Clin Med 2022; 11:6013. [PMID: 36294334 PMCID: PMC9604603 DOI: 10.3390/jcm11206013] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
Understanding of the basis of osteoarthritis (OA) has seen some interesting advancements in recent years. It has been observed that cartilage degeneration is preceded by subchondral bone lesions, suggesting a key role of this mechanism within the pathogenesis and progression of OA, as well as the formation of ectopic bone and osteophytes. Moreover, low-grade, chronic inflammation of the synovial lining has gained a central role in the definition of OA physiopathology, and central immunological mechanisms, innate but also adaptive, are now considered crucial in driving inflammation and tissue destruction. In addition, the role of neuroinflammation and central sensitization mechanisms as underlying causes of pain chronicity has been characterized. This has led to a renewed definition of OA, which is now intended as a complex multifactorial joint pathology caused by inflammatory and metabolic factors underlying joint damage. Since this evidence can directly affect the definition of the correct therapeutic approach to OA, an improved understanding of these pathophysiological mechanisms is fundamental. To this aim, this review provides an overview of the most updated evidence on OA pathogenesis; it presents the most recent insights on the pathophysiology of OA, describing the interplay between immunological and biochemical mechanisms proposed to drive inflammation and tissue destruction, as well as central sensitization mechanisms. Moreover, although the therapeutic implications consequent to the renewed definition of OA are beyond this review scope, some suggestions for intervention have been addressed.
Collapse
Affiliation(s)
| | | | - Panagiotis Zis
- Attikon University Hospital, National & Kapodistrian University, 157 72 Athens, Greece
- Medical School, University of Cyprus, Nicosia 1678, Cyprus
| | | | | |
Collapse
|
45
|
Wang X, Xiao L, Wang Z, Zhi L, Li Q. Common variants in GNL3 gene contributed the susceptibility of hand osteoarthritis in Han Chinese population. Sci Rep 2022; 12:16110. [PMID: 36167888 PMCID: PMC9515075 DOI: 10.1038/s41598-022-20287-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Osteoarthritis (OA) is one of the most popular degenerative joint diseases. The nucleolar GTP binding protein 3 (GNL3) gene encodes guanine nucleotide binding protein-like 3, which is related in cell proliferation, differentiation, and cell cycle regulation. Our study aimed to examine the contribution of GNL3 gene polymorphisms to the risk of hand OA and its related clinical features. A total of 3387 study participants including 1160 patients with hand OA and 2227 controls were recruited in this study. Eleven SNPs in GNL3 gene were selected for genotyping. Genetic association signals were examined using Plink. Relationships between significant SNPs and clinical features of hand OA were also explored. SNP rs11177 was found to be strongly associated with susceptibility of hand OA (P = 4.32 × 10-5). The minor allele of rs11177 was associated with increased susceptibility of hand OA. In addition, significant associations were also identified between genotypes of rs11177 and clinical features of hand OA patients including K-L grade (P < 0.01) and categorized pain scores (P < 0.01). Significant eQTL signals for rs11177 on GNL3 in multiple types of human tissues were also identified in GTEx database. Our results have established the link between GNL3 gene and susceptibility of hand OA.
Collapse
Affiliation(s)
- Xi Wang
- Department of Knee Joint Surgery, Xi'an Honghui Hospital, Xi'an, Shaanxi, China
| | - Lin Xiao
- Department of Knee Joint Surgery, Xi'an Honghui Hospital, Xi'an, Shaanxi, China
| | - Zhiyuan Wang
- Department of Knee Joint Surgery, Xi'an Honghui Hospital, Xi'an, Shaanxi, China
| | - Liqiang Zhi
- Department of Knee Joint Surgery, Xi'an Honghui Hospital, Xi'an, Shaanxi, China
| | - Qiang Li
- Department of Hand Surgery, Xi'an Honghui Hospital, No. 555 Youyi East Road, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
46
|
Xu WB, Kotheeranurak V, Zhang HL, Feng JY, Liu JW, Chen CM, Lin GX, Rui G. Identification of the circRNA–miRNA–mRNA regulatory network in osteoarthritis using bioinformatics analysis. Front Genet 2022; 13:994163. [PMID: 36186471 PMCID: PMC9523487 DOI: 10.3389/fgene.2022.994163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Osteoarthritis (OA) is a degenerative joint disease that seriously affects the quality of people. Unfortunately, the pathogenesis of OA has not been fully known. Therefore, this study aimed to construct a ceRNA regulatory network related to OA to explore the pathogenesis of OA.Methods: Differentially expressed circRNAs (DEcircRNAs), microRNAs (DEmiRNAs), and mRNAs (DEmRNAs) were obtained from the Gene Expression Omnibus microarray data (GSE175959, GSE105027, and GSE169077). The miRNA response elements and target mRNAs were identified using bioinformatics approaches. Additionally, a circRNA–miRNA–mRNA network was established using Cytoscape version 3.8.0. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of mRNAs in the network were conducted to explore the possible mechanisms underlying OA development. Protein–protein interaction (PPI) analysis was performed to determine the hub genes. Based on the hub genes, a sub network was constructed using Cytoscape 3.8.0 version. Finally, connectivity map (CMap) and drug–gene interaction database (DGIdb) analyses were performed to identify the potential therapeutic targets for OA.Results: Altogether, five DEcircRNAs, 89 DEmiRNAs, and 345 DEmRNAs were identified. Moreover, a circRNA–miRNA–mRNA network was established using three circRNAs, seven miRNAs, and 37 mRNAs. GO and KEGG analyses demonstrated that the mRNAs in the network could be related to the occurrence and development of OA. PPI analysis was performed and six key genes, namely serpin family H member 1 [SERPINH1], collagen type VIII alpha 2 chain [COL8A2], collagen type XV alpha 1 chain [COL15A1], collagen type VI alpha 3 chain [COL6A3], collagen type V alpha 1 chain [COL5A1], and collagen type XI alpha 1 chain [COL11A1], were identified. Furthermore, a circRNA–miRNA–hub gene subnetwork was established in accordance with two circRNAs (hsa_circ_0075320 and hsa_circ_0051428), two miRNAs (hsa-miR-6124 and hsa-miR-1207-5p), and six hub genes (COL11A1, SERPINH1, COL6A3, COL5A1, COL8A2, and COL15A1). Finally, three chemicals (noscapine, diazepam, and TG100-115) based on CMap analysis and two drugs (collagenase Clostridium histolyticum and ocriplasmin) based on DGIdb were discovered as potential treatment options for OA.Conclusion: This study presents novel perspectives on the pathogenesis and treatment of OA based on circRNA-related competitive endogenous RNA regulatory networks.
Collapse
Affiliation(s)
- Wen-Bin Xu
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Vit Kotheeranurak
- Department of Orthopedics, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Biomechanics and Innovative Spine Surgery, Chulalongkorn University, Bangkok, Thailand
| | - Huang-Lin Zhang
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Jin-Yi Feng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jing-Wei Liu
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Chien-Min Chen
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
- Department of Leisure Industry Management, National Chin-Yi University of Technology, Taichung, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Chien-Min Chen, ; Guang-Xun Lin, ; Gang Rui,
| | - Guang-Xun Lin
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- *Correspondence: Chien-Min Chen, ; Guang-Xun Lin, ; Gang Rui,
| | - Gang Rui
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- *Correspondence: Chien-Min Chen, ; Guang-Xun Lin, ; Gang Rui,
| |
Collapse
|
47
|
Su Y, Xing H, Kang J, Bai L, Zhang L. Role of the hedgehog signaling pathway in rheumatic diseases: An overview. Front Immunol 2022; 13:940455. [PMID: 36105801 PMCID: PMC9466598 DOI: 10.3389/fimmu.2022.940455] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Hedgehog (Hh) signaling pathway is an evolutionarily conserved signal transduction pathway that plays an important regulatory role during embryonic development, cell proliferation, and differentiation of vertebrates, and it is often inhibited in adult tissues. Recent evidence has shown that Hh signaling also plays a key role in rheumatic diseases, as alterations in their number or function have been identified in rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, systemic sclerosis, and Sjogren's Syndrome. As a result, emerging studies have focused on the blockade of this pathogenic axis as a promising therapeutic target in several autoimmune disorders; nevertheless, a greater understanding of its contribution still requires further investigation. This review aims to elucidate the most recent studies and literature data on the pathogenetic role of Hh signaling in rheumatic diseases.
Collapse
Affiliation(s)
| | | | | | | | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
48
|
Zhu J, Chen W, Hu Y, Qu Y, Yang H, Zeng Y, Hou C, Ge F, Zhou Z, Song H. Physical activity patterns, genetic susceptibility, and risk of hip/knee osteoarthritis: a prospective cohort study based on the UK Biobank. Osteoarthritis Cartilage 2022; 30:1079-1090. [PMID: 35504554 DOI: 10.1016/j.joca.2022.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/04/2022] [Accepted: 04/25/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The effect of physical activity on hip/knee osteoarthritis (OA) and how it varies by genetic susceptibility to OA remains inconclusive. METHODS In a cohort study of UK Biobank, 436,166 OA-free participants were recruited in 2006-2010 and followed for knee/hip OA until the end of 2020. 28 physical activity-related items were collected at baseline. Cox regression was used to estimate associations between physical activity behaviors, as well as major activity patterns (i.e., significant principal components[PCs] identified by principal component analysis), and risk of OA, adjusting for multiple confounders. We further stratified the analyses by polygenic risk score (PRS) for OA to examine the impact of genetic susceptibility to OA on the studied association. RESULTS During a mean follow-up of 11.15 years, 13,227 hip and 21,119 knee OA cases were identified. 19, out of 28, studied items showed associations with increased OA risk. Compared with low adherence group(<1st tertile of PC score for each pattern), individuals with high adherence to five identified patterns were associated with increased risk of OA. The moderate adherence to "strenuous sports"(HR = 0.93, 95%CI: 0.89-0.97) and "walking for pleasure"(HR = 0.93, 95%CI: 0.89-0.98) patterns was associated with reduced OA. Similar risk patterns were obtained in the stratified analysis by PRS levels for OA. CONCLUSION High intensity of most activity patterns were associated with increased OA. However, a protective effect was suggested for moderate adherence to patterns of "strenuous sports" and "walking for pleasure" that consistent across different genetic susceptibilities, underscoring the potential benefits of moderate-intensity physical activity on OA.
Collapse
Affiliation(s)
- J Zhu
- Department of Orthopedics, Orthopedic Research Institute, and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - W Chen
- Division of Nephrology, Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China; Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Y Hu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China; Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Y Qu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China; Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - H Yang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China; Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Y Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China; Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - C Hou
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China; Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - F Ge
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China; Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Z Zhou
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - H Song
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China; Med-X Center for Informatics, Sichuan University, Chengdu, China; Center of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
49
|
Abstract
While most tissues exhibit their greatest growth during development, adipose tissue is capable of additional massive expansion in adults. Adipose tissue expandability is advantageous when temporarily storing fuel for use during fasting, but becomes pathological upon continuous food intake, leading to obesity and its many comorbidities. The dense vasculature of adipose tissue provides necessary oxygen and nutrients, and supports delivery of fuel to and from adipocytes under fed or fasting conditions. Moreover, the vasculature of adipose tissue comprises a major niche for multipotent progenitor cells, which give rise to new adipocytes and are necessary for tissue repair. Given the multiple, pivotal roles of the adipose tissue vasculature, impairments in angiogenic capacity may underlie obesity-associated diseases such as diabetes and cardiometabolic disease. Exciting new studies on the single-cell and single-nuclei composition of adipose tissues in mouse and humans are providing new insights into mechanisms of adipose tissue angiogenesis. Moreover, new modes of intercellular communication involving micro vesicle and exosome transfer of proteins, nucleic acids and organelles are also being recognized to play key roles. This review focuses on new insights on the cellular and signaling mechanisms underlying adipose tissue angiogenesis, and on their impact on obesity and its pathophysiological consequences.
Collapse
|
50
|
Cai Z, Long T, Zhao Y, Lin R, Wang Y. Epigenetic Regulation in Knee Osteoarthritis. Front Genet 2022; 13:942982. [PMID: 35873487 PMCID: PMC9304589 DOI: 10.3389/fgene.2022.942982] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Osteoarthritis (OA) is a complicated disease with both hereditary and environmental causes. Despite an increase in reports of possible OA risk loci, it has become clear that genetics is not the sole cause of osteoarthritis. Epigenetics, which can be triggered by environmental influences and result in transcriptional alterations, may have a role in OA pathogenesis. The majority of recent research on the epigenetics of OA has been focused on DNA methylation, histone modification, and non-coding RNAs. However, this study will explore epigenetic regulation in OA at the present stage. How genetics, environmental variables, and epigenetics interact will be researched, shedding light for future studies. Their possible interaction and control processes open up new avenues for the development of innovative osteoarthritis treatment and diagnostic techniques.
Collapse
Affiliation(s)
| | - Teng Long
- *Correspondence: Teng Long, ; You Wang,
| | | | | | - You Wang
- *Correspondence: Teng Long, ; You Wang,
| |
Collapse
|