1
|
Cohen LRZ, Meshorer E. The many faces of H3.3 in regulating chromatin in embryonic stem cells and beyond. Trends Cell Biol 2024; 34:1044-1055. [PMID: 38614918 DOI: 10.1016/j.tcb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/15/2024]
Abstract
H3.3 is a highly conserved nonreplicative histone variant. H3.3 is enriched in promoters and enhancers of active genes, but it is also found within suppressed heterochromatin, mostly around telomeres. Accordingly, H3.3 is associated with seemingly contradicting functions: It is involved in development, differentiation, reprogramming, and cell fate, as well as in heterochromatin formation and maintenance, and the silencing of developmental genes. The emerging view is that different cellular contexts and histone modifications can promote opposing functions for H3.3. Here, we aim to provide an update with a focus on H3.3 functions in early mammalian development, considering the context of embryonic stem cell maintenance and differentiation, to finally conclude with emerging roles in cancer development and cell fate transition and maintenance.
Collapse
Affiliation(s)
- Lea R Z Cohen
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Bao JY, Liu W, Chen C, Zhu HT, Wang AJ, Yuan PX, Feng JJ. Automated ECL Aptasensing Platform from an Intrarticular Radical Annihilation Route for Distinguishing Glioma Stages. Anal Chem 2024; 96:16063-16071. [PMID: 39311680 DOI: 10.1021/acs.analchem.4c03890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Nowadays, continuous efforts have been devoted to designing stable and high-efficiency electrochemiluminescence (ECL) emitters as alternatives for tris(2,2'-bipyridine)-ruthenium(II) (Ru(bpy)32+) in medical research. Herein, a novel ECL emitter was obtained by coordinating crystalline covalent triazinyl frameworks (cCTFs) with Ru2+ (termed Ru-cCTFs), which exhibited strong ECL emission by the ligand to metal charge transfer (LMCT) route. After its integration with 4-mercaptopyridine (SH-Py), the resultant SH-Py-Ru-cCTFs achieved 2.3-fold enhancement in the ECL efficiency by employing Ru(bpy)32+ as a standard, which involved a dynamic "intrarticular radical annihilation" ECL pathway. On such foundation, an automated ECL (A-ECL) aptasensor was constructed with an "on-off-on" model and magnetic separation upon linkage of the SH-Py-Ru-cCTFs with streptavidin (SA) magnetic beads (MBs). This automatic assay of miRNA-182 showed a wider linear range from 1.0 to 100.0 fM with a correlation coefficient (R2) of 0.994, a lower limit of detection (LOD) down to 0.28 fM, and faster operation within 41 min. Impressively, this bioassay facilely distinguished the stages of glioma disease from clinical blood samples with high accuracy. Hence, this research sheds light on how to develop advanced ECL luminophores and an automatic method, showing substantial insights into pathogenesis research of gliomas.
Collapse
Affiliation(s)
- Jing-Yi Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Wen Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, China
| | - Can Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hao-Tian Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
3
|
Qi L, Du Y, Huang Y, Kogiso M, Zhang H, Xiao S, Abdallah A, Suarez M, Niu L, Liu ZG, Lindsay H, Braun FK, Stephen C, Davies PJ, Teo WY, Adenkunle A, Baxter P, Su JM, Li XN. CD57 defines a novel cancer stem cell that drive invasion of diffuse pediatric-type high grade gliomas. Br J Cancer 2024; 131:258-270. [PMID: 38834745 PMCID: PMC11263392 DOI: 10.1038/s41416-024-02724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Diffuse invasion remains a primary cause of treatment failure in pediatric high-grade glioma (pHGG). Identifying cellular driver(s) of pHGG invasion is needed for anti-invasion therapies. METHODS Ten highly invasive patient-derived orthotopic xenograft (PDOX) models of pHGG were subjected to isolation of matching pairs of invasive (HGGINV) and tumor core (HGGTC) cells. RESULTS pHGGINV cells were intrinsically more invasive than their matching pHGGTC cells. CSC profiling revealed co-positivity of CD133 and CD57 and identified CD57+CD133- cells as the most abundant CSCs in the invasive front. In addition to discovering a new order of self-renewal capacities, i.e., CD57+CD133- > CD57+CD133+ > CD57-CD133+ > CD57-CD133- cells, we showed that CSC hierarchy was impacted by their spatial locations, and the highest self-renewal capacities were found in CD57+CD133- cells in the HGGINV front (HGGINV/CD57+CD133- cells) mediated by NANOG and SHH over-expression. Direct implantation of CD57+ (CD57+/CD133- and CD57+/CD133+) cells into mouse brains reconstituted diffusely invasion, while depleting CD57+ cells (i.e., CD57-CD133+) abrogated pHGG invasion. CONCLUSION We revealed significantly increased invasive capacities in HGGINV cells, confirmed CD57 as a novel glioma stem cell marker, identified CD57+CD133- and CD57+CD133+ cells as a new cellular driver of pHGG invasion and suggested a new dual-mode hierarchy of HGG stem cells.
Collapse
Affiliation(s)
- Lin Qi
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 510080, China
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuchen Du
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yulun Huang
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neurosurgery and Brain and Nerve Research Laboratory, the First Affiliated Hospital, and Dushu Lake Hospital, Soochow University Medical School, Suzhou, 215007, China
| | - Mari Kogiso
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sophie Xiao
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Aalaa Abdallah
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Milagros Suarez
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Long Niu
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Zhi-Gang Liu
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Cancer Center, Affiliated Dongguan Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Holly Lindsay
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Frank K Braun
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Clifford Stephen
- Center for Epigenetics & Disease Prevention, Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Peter J Davies
- Center for Epigenetics & Disease Prevention, Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Wan Yee Teo
- The Laboratory of Pediatric Brain Tumor Research Office, SingHealth Duke-NUS Academic Medical Center, Singapore, 169856, Singapore
| | - Adesina Adenkunle
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Patricia Baxter
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jack Mf Su
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiao-Nan Li
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.
- Robert H. Laurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
4
|
Sim Y, Choi SH, Lee N, Park YW, Ahn SS, Chang JH, Kim SH, Lee SK. Clinical, qualitative imaging biomarkers, and tumor oxygenation imaging biomarkers for differentiation of midline-located IDH wild-type glioblastomas and H3 K27-altered diffuse midline gliomas in adults. Eur J Radiol 2024; 173:111384. [PMID: 38422610 DOI: 10.1016/j.ejrad.2024.111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE To compare the clinical, qualitative and quantitative imaging phenotypes, including tumor oxygenation characteristics of midline-located IDH-wildtype glioblastomas (GBMs) and H3 K27-altered diffuse midline gliomas (DMGs) in adults. METHODS Preoperative MRI data of 55 adult patients with midline-located IDH-wildtype GBM or H3 K27-altered DMG (32 IDH-wildtype GBM and 23 H3 K27-altered DMG patients) were included. Qualitative imaging assessment was performed. Quantitative imaging assessment including the tumor volume, normalized cerebral blood volume, capillary transit time heterogeneity (CTH), oxygen extraction fraction (OEF), relative cerebral metabolic rate of oxygen values, and mean ADC value were performed from the tumor mask via automatic segmentation. Univariable and multivariable logistic analyses were performed. RESULTS On multivariable analysis, age (odds ratio [OR] = 0.92, P = 0.015), thalamus or medulla location (OR = 10.48, P = 0.013), presence of necrosis (OR = 0.15, P = 0.038), and OEF (OR = 0.01, P = 0.042) were independent predictors to differentiate H3 K27-altered DMG from midline-located IDH-wildtype GBM. The area under the curve, accuracy, sensitivity, and specificity of the multivariable model were 0.88 (95 % confidence interval: 0.77-0.95), 81.8 %, 82.6 %, and 81.3 %, respectively. CONCLUSIONS Along with younger age, tumor location, less frequent necrosis, and lower OEF may be useful imaging biomarkers to differentiate H3 K27-altered DMG from midline-located IDH-wildtype GBM. Tumor oxygenation imaging biomarkers may reflect the less hypoxic nature of H3 K27-altered DMG than IDH-wildtype GBM and may contribute to differentiation.
Collapse
Affiliation(s)
- Yongsik Sim
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Seo Hee Choi
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Narae Lee
- Department of Nuclear Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|