1
|
Banerjee A, Mazumder A, Roy J, Das J, Majumdar A, Chatterjee A, Biswas NK, Chawla Sarkar M, Das S, Dutta S, Maitra A. Emergence of a unique SARS-CoV-2 Delta sub-cluster harboring a constellation of co-appearing non-Spike mutations. J Med Virol 2023; 95:e28413. [PMID: 36541745 PMCID: PMC9878222 DOI: 10.1002/jmv.28413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/21/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Accumulation of diverse mutations across the structural and nonstructural genes is leading to rapid evolution of SARS-CoV-2, altering its pathogenicity. We performed whole genome sequencing of 239 SARS-CoV-2 RNA samples collected from both adult and pediatric patients across eastern India (West Bengal), during the second pandemic wave in India (April-May 2021). In addition to several common spike mutations within the Delta variant, a unique constellation of eight co-appearing non-Spike mutations was identified, which revealed a high degree of positive mutual correlation. Our results also demonstrated the dynamics of SARS-CoV-2 variants among unvaccinated pediatric patients. 41.4% of our studied Delta strains harbored this signature set of eight co-appearing non-Spike mutations and phylogenetically out-clustered other Delta sub-lineages like 21J, 21A, or 21I. This is the first report from eastern India that portrayed a landscape of co-appearing mutations in the non-Spike proteins, which might have led to the evolution of a distinct Delta subcluster. Accumulation of such mutations in SARS-CoV-2 may lead to the emergence of "vaccine-evading variants." Hence, monitoring of such non-Spike mutations will be significant in the formulation of any future vaccines against those SARS-CoV-2 variants that might evade the current vaccine-induced immunity, among both the pediatric and adult populations.
Collapse
Affiliation(s)
| | - Anup Mazumder
- National Institute of Biomedical GenomicsKalyaniIndia
| | - Jayita Roy
- National Institute of Biomedical GenomicsKalyaniIndia
| | | | - Agniva Majumdar
- ICMR‐National Institute of Cholera and Enteric DiseasesKolkataIndia
| | | | | | | | - Saumitra Das
- National Institute of Biomedical GenomicsKalyaniIndia,Department of Microbiology and Cell BiologyIndian Institute of ScienceBengaluruIndia
| | - Shanta Dutta
- ICMR‐National Institute of Cholera and Enteric DiseasesKolkataIndia
| | | |
Collapse
|
2
|
Vere G, Alam MR, Farrar S, Kealy R, Kessler BM, O’Brien DP, Pinto-Fernández A. Targeting the Ubiquitylation and ISGylation Machinery for the Treatment of COVID-19. Biomolecules 2022; 12:biom12020300. [PMID: 35204803 PMCID: PMC8869442 DOI: 10.3390/biom12020300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Ubiquitylation and ISGylation are protein post-translational modifications (PTMs) and two of the main events involved in the activation of pattern recognition receptor (PRRs) signals allowing the host defense response to viruses. As with similar viruses, SARS-CoV-2, the virus causing COVID-19, hijacks these pathways by removing ubiquitin and/or ISG15 from proteins using a protease called PLpro, but also by interacting with enzymes involved in ubiquitin/ISG15 machinery. These enable viral replication and avoidance of the host immune system. In this review, we highlight potential points of therapeutic intervention in ubiquitin/ISG15 pathways involved in key host-pathogen interactions, such as PLpro, USP18, TRIM25, CYLD, A20, and others that could be targeted for the treatment of COVID-19, and which may prove effective in combatting current and future vaccine-resistant variants of the disease.
Collapse
Affiliation(s)
- George Vere
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Md Rashadul Alam
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
| | - Sam Farrar
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
| | - Rachel Kealy
- Environmental Futures & Big Data Impact Lab, University of Exeter, Stocker Rd., Exeter EX4 4PY, UK;
| | - Benedikt M. Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Darragh P. O’Brien
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
- Correspondence: (D.P.O.); (A.P.-F.)
| | - Adán Pinto-Fernández
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
- Correspondence: (D.P.O.); (A.P.-F.)
| |
Collapse
|
3
|
Yang X, Ma L. Post‑treatment with propofol inhibits inflammatory response in LPS‑induced alveolar type II epithelial cells. Exp Ther Med 2022; 23:249. [PMID: 35261621 PMCID: PMC8855515 DOI: 10.3892/etm.2022.11174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/12/2022] [Indexed: 11/21/2022] Open
Abstract
Over-inflammation and severe lung injury are major causes of morbidity and mortality in patients with coronavirus disease 2019 (COVID-19). With the COVID-19 pandemic, an increasing number of patients with preexisting lung injury and inflammation are undergoing surgery or artificial ventilation under sedation in intensive care units, where 2,6-diisopropylphenol (propofol) is a commonly used drug for sedation. The aim of the present study was to investigate whether post-inflammation treatment with propofol protects epithelial type II cells against inflammation in an in vitro model of inflammation. The A549 cell line, characterised as epithelial type II cells, were exposed to lipopolysaccharide (LPS) for 2 h and subsequently treated with different concentrations of propofol (0, 10, 25 or 50 µM) for 3 h. Western blot and reverse transcription-quantitative PCR analyses were used to detect the protein and mRNA expression levels, respectively, of CD14 and Toll-like receptor 4 (TLR4). Immunofluorescence staining was used to detect the in situ CD14 and TLR4 expression in epithelial type II cells. Tumor necrosis factor (TNF)-α production was also examined using ELISA. LPS significantly increased the expression of CD14 and TLR4, as well as the secretion of TNF-α. Post-treatment with 25 and 50 µM propofol of the LPS-treated cells significantly decreased CD14 and TLR4 expression, as well as TNF-α secretion, compared with the cells treated with LPS only, indicating that post-treatment with propofol alleviated inflammation and this effect was dose-dependent. The present study suggested that treatment with propofol after LPS administration has a protective effect on epithelial type II cells.
Collapse
Affiliation(s)
- Xilun Yang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ling Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
4
|
Luedemann M, Stadler D, Cheng CC, Protzer U, Knolle PA, Donakonda S. Montelukast is a dual-purpose inhibitor of SARS-CoV-2 infection and virus-induced IL-6 expression identified by structure-based drug repurposing. Comput Struct Biotechnol J 2022; 20:799-811. [PMID: 35126884 PMCID: PMC8800171 DOI: 10.1016/j.csbj.2022.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 12/13/2022] Open
Abstract
Drug-repurposing has been instrumental to identify drugs preventing SARS-CoV-2 replication or attenuating the disease course of COVID-19. Here, we identify through structure-based drug-repurposing a dual-purpose inhibitor of SARS-CoV-2 infection and of IL-6 production by immune cells. We created a computational structure model of the receptor binding domain (RBD) of the SARS-CoV-2 spike 1 protein, and used this model for insilico screening against a library of 6171 molecularly defined binding-sites from drug molecules. Molecular dynamics simulation of candidate molecules with high RBD binding-scores in docking analysis predicted montelukast, an antagonist of the cysteinyl-leukotriene-receptor, to disturb the RBD structure, and infection experiments demonstrated inhibition of SARS-CoV-2 infection, although montelukast binding was outside the ACE2-binding site. Molecular dynamics simulation of SARS-CoV-2 variant RBDs correctly predicted interference of montelukast with infection by the beta but not the more infectious alpha variant. With distinct binding sites for RBD and the leukotriene receptor, montelukast also prevented SARS-CoV-2-induced IL-6 release from immune cells. The inhibition of SARS-CoV-2 infection through a molecule binding distal to the ACE-binding site of the RBD points towards an allosteric mechanism that is not conserved in the more infectious alpha and delta SARS-CoV-2 variants.
Collapse
|