1
|
Li Y, Cheng Z, Wang C, Lin J, Jiang H, Cui M. Geometric transformation adaptive optics (GTAO) for volumetric deep brain imaging through gradient-index lenses. Nat Commun 2024; 15:1031. [PMID: 38310087 PMCID: PMC10838304 DOI: 10.1038/s41467-024-45434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
The advance of genetic function indicators has enabled the observation of neuronal activities at single-cell resolutions. A major challenge for the applications on mammalian brains is the limited optical access depth. Currently, the method of choice to access deep brain structures is to insert miniature optical components. Among these validated miniature optics, the gradient-index (GRIN) lens has been widely employed for its compactness and simplicity. However, due to strong fourth-order astigmatism, GRIN lenses suffer from a small imaging field of view, which severely limits the measurement throughput and success rate. To overcome these challenges, we developed geometric transformation adaptive optics (GTAO), which enables adaptable achromatic large-volume correction through GRIN lenses. We demonstrate its major advances through in vivo structural and functional imaging of mouse brains. The results suggest that GTAO can serve as a versatile solution to enable large-volume recording of deep brain structures and activities through GRIN lenses.
Collapse
Affiliation(s)
- Yuting Li
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Zongyue Cheng
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Chenmao Wang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Jianian Lin
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Hehai Jiang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Meng Cui
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Chen K, Gupta R, Martín‐Ávila A, Cui M, Xie Z, Yang G. Anesthesia-induced hippocampal-cortical hyperactivity and tau hyperphosphorylation impair remote memory retrieval in Alzheimer's disease. Alzheimers Dement 2024; 20:494-510. [PMID: 37695022 PMCID: PMC10843666 DOI: 10.1002/alz.13464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/25/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Anesthesia often exacerbates memory recall difficulties in individuals with Alzheimer's disease (AD), but the underlying mechanisms remain unclear. METHODS We used in vivo Ca2+ imaging, viral-based circuit tracing, and chemogenetic approaches to investigate anesthesia-induced remote memory impairment in mouse models of presymptomatic AD. RESULTS Our study identified pyramidal neuron hyperactivity in the anterior cingulate cortex (ACC) as a significant contributor to anesthesia-induced remote memory impairment. This ACC hyperactivation arises from the disinhibition of local inhibitory circuits and increased excitatory inputs from the hippocampal CA1 region. Inhibiting hyperactivity in the CA1-ACC circuit improved memory recall after anesthesia. Moreover, anesthesia led to increased tau phosphorylation in the hippocampus, and inhibiting this hyperphosphorylation prevented ACC hyperactivity and subsequent memory impairment. DISCUSSION Hippocampal-cortical hyperactivity plays a role in anesthesia-induced remote memory impairment. Targeting tau hyperphosphorylation shows promise as a therapeutic strategy to mitigate anesthesia-induced neural network dysfunction and retrograde amnesia in AD.
Collapse
Affiliation(s)
- Kai Chen
- Department of AnesthesiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Riya Gupta
- Barnard College of Columbia UniversityNew YorkNew YorkUSA
| | | | - Meng Cui
- Department of BiologyPurdue UniversityWest LafayetteIndianaUSA
| | - Zhongcong Xie
- Geriatric Anesthesia Research UnitDepartment of AnesthesiaCritical Care and Pain MedicineMassachusetts General Hospital and Harvard Medical SchoolCharlestownMassachusettsUSA
| | - Guang Yang
- Department of AnesthesiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
3
|
Beacher NJ, Washington KA, Zhang Y, Li Y, Lin DT. GRIN lens applications for studying neurobiology of substance use disorder. ADDICTION NEUROSCIENCE 2022; 4:100049. [PMID: 36531187 PMCID: PMC9757736 DOI: 10.1016/j.addicn.2022.100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Substance use disorder (SUD) is associated with severe health and social consequences. Continued drug use results in alterations of circuits within the mesolimbic dopamine system. It is critical to observe longitudinal impacts of SUD on neural activity in vivo to identify SUD predispositions, develop pharmaceuticals to prevent overdose, and help people suffering from SUD. However, implicated SUD associated areas are buried in deep brain which makes in vivo observation of neural activity challenging. The gradient index (GRIN) lens can probe these regions in mice and rats. In this short communications review, we will discuss how the GRIN lens can be coupled with other technologies such as miniaturized microscopes, fiberscopes, fMRI, and optogenetics to fully explore in vivo SUD research. Particularly, GRIN lens allows in vivo observation of deep brain regions implicated in SUD, differentiation of genetically distinct neurons, examination of individual cells longitudinally, correlation of neuronal patters with SUD behavior, and manipulation of neural circuits.
Collapse
Affiliation(s)
- Nicholas James Beacher
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Kayden Alecsandre Washington
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Yan Zhang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Yun Li
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
4
|
Large-volume and deep brain imaging in rabbits and monkeys using COMPACT two-photon microscopy. Sci Rep 2022; 12:17736. [PMID: 36273090 PMCID: PMC9588025 DOI: 10.1038/s41598-022-20842-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/19/2022] [Indexed: 01/18/2023] Open
Abstract
In vivo imaging has been widely used for investigating the structure and function of neurons typically located within ~ 800 μm below the cortical surface. Due to light scattering and absorption, it has been difficult to perform in-vivo imaging of neurons in deep cortical and subcortical regions of large animals with two-photon microscopy. Here, we combined a thin-wall quartz capillary with a GRIN lens attached to a prism for large-volume structural and calcium imaging of neurons located 2 mm below the surface of rabbit and monkey brains. The field of view was greatly expanded by rotating and changing the depth of the imaging probe inside a quartz capillary. Calcium imaging of layer 5/6 neurons in the rabbit motor cortex revealed differential activity of these neurons between quiet wakefulness and slow wave sleep. The method described here provides an important tool for studying the structure and function of neurons located deep in the brains of large animals.
Collapse
|
5
|
Schmidt CC, Turcotte R, Booth MJ, Emptage NJ. Repeated imaging through a multimode optical fiber using adaptive optics. BIOMEDICAL OPTICS EXPRESS 2022; 13:662-675. [PMID: 35284159 PMCID: PMC8884233 DOI: 10.1364/boe.448277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Multimode optical fibers (MMF) have shown considerable potential for minimally invasive diffraction-limited fluorescence imaging of deep brain regions owing to their small size. They also look to be suitable for imaging across long time periods, with repeated measurements performed within the same brain region, which is useful to assess the role of synapses in normal brain function and neurological disease. However, the approach is not without challenge. Prior to imaging, light propagation through a MMF must be characterized in a calibration procedure. Manual repositioning, as required for repeated imaging, renders this calibration invalid. In this study, we provide a two-step solution to the problem consisting of (1) a custom headplate enabling precise reinsertion of the MMF implant achieving low-quality focusing and (2) sensorless adaptive optics to correct translational shifts in the MMF position enabling generation of high-quality imaging foci. We show that this approach achieves fluorescence imaging after repeated removal and reinsertion of a MMF.
Collapse
Affiliation(s)
- Carla C. Schmidt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
- These authors contributed equally
| | - Raphaël Turcotte
- Tech4Health Institute, NYU Langone Health, New York, NY 10010, USA
- These authors contributed equally
| | - Martin J. Booth
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Nigel J. Emptage
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| |
Collapse
|