1
|
Kwon YW, Ahn DB, Park YG, Kim E, Lee DH, Kim SW, Lee KH, Kim WY, Hong YM, Koh CS, Jung HH, Chang JW, Lee SY, Park JU. Power-integrated, wireless neural recording systems on the cranium using a direct printing method for deep-brain analysis. SCIENCE ADVANCES 2024; 10:eadn3784. [PMID: 38569040 PMCID: PMC10990281 DOI: 10.1126/sciadv.adn3784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Conventional power-integrated wireless neural recording devices suffer from bulky, rigid batteries in head-mounted configurations, hindering the precise interpretation of the subject's natural behaviors. These power sources also pose risks of material leakage and overheating. We present the direct printing of a power-integrated wireless neural recording system that seamlessly conforms to the cranium. A quasi-solid-state Zn-ion microbattery was 3D-printed as a built-in power source geometrically synchronized to the shape of a mouse skull. Soft deep-brain neural probes, interconnections, and auxiliary electronics were also printed using liquid metals on the cranium with high resolutions. In vivo studies using mice demonstrated the reliability and biocompatibility of this wireless neural recording system, enabling the monitoring of neural activities across extensive brain regions without notable heat generation. This all-printed neural interface system revolutionizes brain research, providing bio-conformable, customizable configurations for improved data quality and naturalistic experimentation.
Collapse
Affiliation(s)
- Yong Won Kwon
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - David B. Ahn
- Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Young-Geun Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Enji Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Dong Ha Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Sang-Woo Kim
- Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kwon-Hyung Lee
- Ulsan Advanced Energy Technology R&D Center, Korea Institute of Energy Research (KIER), Ulsan 44776, Republic of Korea
| | - Won-Yeong Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03772, Republic of Korea
| | - Yeon-Mi Hong
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Chin Su Koh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyun Ho Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Sang-Young Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03772, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Gao X, Liu P, Yin Q, Wang H, Fu J, Hu F, Jiang Y, Zhu H, Wang Y. Wireless light energy harvesting and communication in a waterproof GaN optoelectronic system. COMMUNICATIONS ENGINEERING 2022; 1:16. [PMCID: PMC10956059 DOI: 10.1038/s44172-022-00016-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/27/2022] [Indexed: 10/20/2024]
Abstract
Wireless technologies can be used to track and observe freely moving animals. InGaN/GaN light-emitting diodes (LEDs) allow for underwater optical wireless communication due to the small water attenuation in the blue-green spectrum region. GaN-based quantum well diodes can also harvest and detect light. Here, we report a monolithic GaN optoelectronic system (MGOS) that integrates an energy harvester, LED and SiO2/TiO2 distributed Bragg reflector (DBR) into a single chip. The DBR serves as waterproof layer as well as optical filter. The waterproof MGOS can operate in boiling water and ice without external interconnect circuits. The units transform coded information from an external light source into electrical energy and directly activate the LEDs for illumination and relaying light information. We demonstrate that our MGOS chips, when attached to Carassius auratus fish freely swimming in a water tank, simultaneously conduct wireless energy harvesting and light communication. Our devices could be useful for tracking, observation and interacting with aquatic animals. Xumin Gao and colleagues report a robust and waterproof monolithic GaN optoelectronic chip that integrates an energy harvester, light emitting diode and Bragg reflector. The units transform external light into electrical energy and directly activate the integrated LEDs even when attached to freely swimming Carassius auratus fish.
Collapse
Affiliation(s)
- Xumin Gao
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Pengzhan Liu
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Qingxi Yin
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Hao Wang
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Jianwei Fu
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Fangren Hu
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Yuan Jiang
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Hongbo Zhu
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Yongjin Wang
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| |
Collapse
|
3
|
Beetz MJ, Hechavarría JC. Neural Processing of Naturalistic Echolocation Signals in Bats. Front Neural Circuits 2022; 16:899370. [PMID: 35664459 PMCID: PMC9157489 DOI: 10.3389/fncir.2022.899370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Echolocation behavior, a navigation strategy based on acoustic signals, allows scientists to explore neural processing of behaviorally relevant stimuli. For the purpose of orientation, bats broadcast echolocation calls and extract spatial information from the echoes. Because bats control call emission and thus the availability of spatial information, the behavioral relevance of these signals is undiscussable. While most neurophysiological studies, conducted in the past, used synthesized acoustic stimuli that mimic portions of the echolocation signals, recent progress has been made to understand how naturalistic echolocation signals are encoded in the bat brain. Here, we review how does stimulus history affect neural processing, how spatial information from multiple objects and how echolocation signals embedded in a naturalistic, noisy environment are processed in the bat brain. We end our review by discussing the huge potential that state-of-the-art recording techniques provide to gain a more complete picture on the neuroethology of echolocation behavior.
Collapse
Affiliation(s)
- M. Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
| | - Julio C. Hechavarría
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
4
|
Dwortz MF, Curley JP, Tye KM, Padilla-Coreano N. Neural systems that facilitate the representation of social rank. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200444. [PMID: 35000438 PMCID: PMC8743891 DOI: 10.1098/rstb.2020.0444] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Across species, animals organize into social dominance hierarchies that serve to decrease aggression and facilitate survival of the group. Neuroscientists have adopted several model organisms to study dominance hierarchies in the laboratory setting, including fish, reptiles, rodents and primates. We review recent literature across species that sheds light onto how the brain represents social rank to guide socially appropriate behaviour within a dominance hierarchy. First, we discuss how the brain responds to social status signals. Then, we discuss social approach and avoidance learning mechanisms that we propose could drive rank-appropriate behaviour. Lastly, we discuss how the brain represents memories of individuals (social memory) and how this may support the maintenance of unique individual relationships within a social group. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Madeleine F. Dwortz
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | - James P. Curley
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| | - Kay M. Tye
- Systems Neuroscience Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Nancy Padilla-Coreano
- Systems Neuroscience Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Neuroscience, University of Florida, Gainesville, FN 32611, USA
| |
Collapse
|
5
|
Li SW, Williams ZM, Báez-Mendoza R. Investigating the Neurobiology of Abnormal Social Behaviors. Front Neural Circuits 2021; 15:769314. [PMID: 34916912 PMCID: PMC8670406 DOI: 10.3389/fncir.2021.769314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- S William Li
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Ziv M Williams
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Harvard-MIT Division of Health Sciences and Technology, Boston, MA, United States.,Program in Neuroscience, Harvard Medical School, Boston, MA, United States
| | - Raymundo Báez-Mendoza
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|