1
|
Shatskiy D, Sivan A, Wedlich-Söldner R, Belyy A. Structure of the F-tractin-F-actin complex. J Cell Biol 2025; 224:e202409192. [PMID: 39928047 PMCID: PMC11809415 DOI: 10.1083/jcb.202409192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/19/2024] [Accepted: 01/28/2025] [Indexed: 02/11/2025] Open
Abstract
F-tractin is a peptide widely used to visualize the actin cytoskeleton in live eukaryotic cells but has been reported to impair cell migration and induce actin bundling at high expression levels. To elucidate these effects, we determined the cryo-EM structure of the F-tractin-F-actin complex, revealing that F-tractin consists of a flexible N-terminal region and an amphipathic C-terminal helix. The N-terminal part is dispensable for F-actin binding but responsible for the bundling effect. Based on these insights, we developed an optimized F-tractin, which eliminates the N-terminal region and minimizes bundling while retaining strong actin labeling. The C-terminal helix interacts with a hydrophobic pocket formed by two neighboring actin subunits, an interaction region shared by many actin-binding polypeptides, including the popular actin-binding probe Lifeact. Thus, rather than contrasting F-tractin and Lifeact, our data indicate that these peptides have analogous modes of interaction with F-actin. Our study dissects the structural elements of F-tractin and provides a foundation for developing future actin probes.
Collapse
Affiliation(s)
- Dmitry Shatskiy
- Membrane Enzymology Group, Groningen Institute of Biomolecular Sciences and Biotechnology (GBB), Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Athul Sivan
- Institute of Cell Dynamics and Imaging, and Cells-in-Motion Interfaculty Center (CiMIC), University of Münster, Münster, Germany
| | - Roland Wedlich-Söldner
- Institute of Cell Dynamics and Imaging, and Cells-in-Motion Interfaculty Center (CiMIC), University of Münster, Münster, Germany
| | - Alexander Belyy
- Membrane Enzymology Group, Groningen Institute of Biomolecular Sciences and Biotechnology (GBB), Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Kroll KL, Sosnick TR, Rock RS. Design and Use of AsLOV2-Based Optogenetic Tools for Actin Imaging. Methods Mol Biol 2025; 2840:89-100. [PMID: 39724346 DOI: 10.1007/978-1-0716-4047-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
We present protocols for using an optogenetic tool called LILAC for actin imaging. LILAC is a light-controlled version of Lifeact that uses the Avena sativa LOV2 (AsLOV2) domain. By significantly reducing Lifeact's affinity for the cytoskeleton in the dark, LILAC reduces concentration-dependent negative side effects while enabling new image processing methods. We discuss the considerations for using this probe of live-cell actin dynamics, including fluorescent protein selection, cell maintenance, microscopy protocols, and image processing. Our work highlights the potential of AsLOV2-based optogenetics for novel imaging and control tools in cell biology.
Collapse
Affiliation(s)
- Kourtney L Kroll
- Department of Biochemistry and Molecular Biology & The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Tobin R Sosnick
- Department of Biochemistry and Molecular Biology & The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| | - Ronald S Rock
- Department of Biochemistry and Molecular Biology & The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Effiong UM, Khairandish H, Ramirez-Velez I, Wang Y, Belardi B. Turn-on protein switches for controlling actin binding in cells. Nat Commun 2024; 15:5840. [PMID: 38992021 PMCID: PMC11239668 DOI: 10.1038/s41467-024-49934-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Within a shared cytoplasm, filamentous actin (F-actin) plays numerous and critical roles across the cell body. Cells rely on actin-binding proteins (ABPs) to organize F-actin and to integrate its polymeric characteristics into diverse cellular processes. Yet, the multitude of ABPs that engage with and shape F-actin make studying a single ABP's influence on cellular activities a significant challenge. Moreover, without a means of manipulating actin-binding subcellularly, harnessing the F-actin cytoskeleton for synthetic biology purposes remains elusive. Here, we describe a suite of designed proteins, Controllable Actin-binding Switch Tools (CASTs), whose actin-binding behavior can be controlled with external stimuli. CASTs were developed that respond to different external inputs, providing options for turn-on kinetics and enabling orthogonality and multiplexing. Being genetically encoded, we show that CASTs can be inserted into native protein sequences to control F-actin association locally and engineered into structures to control cell and tissue shape and behavior.
Collapse
Affiliation(s)
- Unyime M Effiong
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hannah Khairandish
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Isabela Ramirez-Velez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yanran Wang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Brian Belardi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
4
|
Li XL, Tei R, Uematsu M, Baskin JM. Ultralow Background Membrane Editors for Spatiotemporal Control of Phosphatidic Acid Metabolism and Signaling. ACS CENTRAL SCIENCE 2024; 10:543-554. [PMID: 38559292 PMCID: PMC10979500 DOI: 10.1021/acscentsci.3c01105] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 04/04/2024]
Abstract
Phosphatidic acid (PA) is a multifunctional lipid with important metabolic and signaling functions, and efforts to dissect its pleiotropy demand strategies for perturbing its levels with spatiotemporal precision. Previous membrane editing approaches for generating local PA pools used light-mediated induced proximity to recruit a PA-synthesizing enzyme, phospholipase D (PLD), from the cytosol to the target organelle membrane. Whereas these optogenetic PLDs exhibited high activity, their residual activity in the dark led to undesired chronic lipid production. Here, we report ultralow background membrane editors for PA wherein light directly controls PLD catalytic activity, as opposed to localization and access to substrates, exploiting a light-oxygen-voltage (LOV) domain-based conformational photoswitch inserted into the PLD sequence and enabling their stable and nonperturbative targeting to multiple organelle membranes. By coupling organelle-targeted LOVPLD activation to lipidomics analysis, we discovered different rates of metabolism for PA and its downstream products depending on the subcellular location of PA production. We also elucidated signaling roles for PA pools on different membranes in conferring local activation of AMP-activated protein kinase signaling. This work illustrates how membrane editors featuring acute, optogenetic conformational switches can provide new insights into organelle-selective lipid metabolic and signaling pathways.
Collapse
Affiliation(s)
- Xiang-Ling Li
- Weill
Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Reika Tei
- Weill
Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Masaaki Uematsu
- Weill
Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Jeremy M. Baskin
- Weill
Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| |
Collapse
|
5
|
Effiong UM, Khairandish H, Ramirez-Velez I, Wang Y, Belardi B. Turn-On Protein Switches for Controlling Actin Binding in Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.561921. [PMID: 37961502 PMCID: PMC10634840 DOI: 10.1101/2023.10.26.561921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Within a shared cytoplasm, filamentous actin (F-actin) plays numerous and critical roles across the cell body. Cells rely on actin-binding proteins (ABPs) to organize F-actin and to integrate its polymeric characteristics into diverse cellular processes. Yet, the multitude of ABPs that engage with and shape F-actin make studying a single ABP's influence on cellular activities a significant challenge. Moreover, without a means of manipulating actin-binding subcellularly, harnessing the F-actin cytoskeleton for synthetic biology purposes remains elusive. Here, we describe a suite of designed proteins, Controllable Actin-binding Switch Tools (CASTs), whose actin-binding behavior can be controlled with external stimuli. CASTs were developed that respond to different external inputs, providing options for turn-on kinetics and enabling orthogonality. Being genetically encoded, we show that CASTs can be inserted into native protein sequences to control F-actin association locally and engineered into new structures to control cell and tissue shape and behavior.
Collapse
Affiliation(s)
- Unyime M. Effiong
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Hannah Khairandish
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Isabela Ramirez-Velez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Yanran Wang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Brian Belardi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
6
|
Li XL, Tei R, Uematsu M, Baskin JM. Ultralow background membrane editors for spatiotemporal control of lipid metabolism and signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555787. [PMID: 37693485 PMCID: PMC10491157 DOI: 10.1101/2023.08.31.555787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Phosphatidic acid (PA) is a multifunctional lipid with important metabolic and signaling functions, and efforts to dissect its pleiotropy demand strategies for perturbing its levels with spatiotemporal precision. Previous membrane editing approaches for generating local PA pools used light-mediated induced proximity to recruit a PA-synthesizing enzyme, phospholipase D (PLD), from the cytosol to the target organelle membrane. Whereas these optogenetic PLDs exhibited high activity, their residual activity in the dark led to undesired chronic lipid production. Here, we report ultralow background membrane editors for PA wherein light directly controls PLD catalytic activity, as opposed to localization and access to substrates, exploiting a LOV domain-based conformational photoswitch inserted into the PLD sequence and enabling their stable and non-perturbative targeting to multiple organelle membranes. By coupling organelle-targeted LOVPLD activation to lipidomics analysis, we discovered different rates of metabolism for PA and its downstream products depending on the subcellular location of PA production. We also elucidated signaling roles for PA pools on different membranes in conferring local activation of AMP-activated protein kinase signaling. This work illustrates how membrane editors featuring acute, optogenetic conformational switches can provide new insights into organelle-selective lipid metabolic and signaling pathways.
Collapse
Affiliation(s)
- Xiang-Ling Li
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Reika Tei
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Masaaki Uematsu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy M. Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|