1
|
Maurino VG. Next generation technologies for protein structure determination: challenges and breakthroughs in plant biology applications. JOURNAL OF PLANT PHYSIOLOGY 2025; 310:154522. [PMID: 40382917 DOI: 10.1016/j.jplph.2025.154522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Advancements in structural biology have significantly deepened our understanding of plant proteins, which are central to critical biological functions such as photosynthesis, metabolism, signal transduction, and structural architechture. Gaining insights into their structures is crucial for unraveling their functions and mechanisms, which in turn has profound implications for agriculture, biotechnology, and environmental sustainability. Traditional methods in protein structural biology often fall short in addressing large protein assemblies and membrane proteins, and, in particular the dynamics and structural features of proteins in the native cellular context. This paper explores how next-generation technologies are transforming the field of plant protein structural biology, offering powerful tools to overcome longstanding obstacles and enabling remarkable scientific breakthroughs. Key technologies discussed include advanced X-ray crystallography, Cryo-Electron microscopy, Nuclear Magnetic Resonance spectroscopy, Cross-linking mass spectrometry, and Artificial Intelligence-driven approaches. These technologies are examined in terms of their challenges, innovations, and application with particular emphasis on their relevance to plant systems. Future directions in plant protein structural biology are also discussed. Although technical details are not covered in depth, readers are referred to the primary literature for more comprehensive information.
Collapse
Affiliation(s)
- Veronica G Maurino
- Molecular Plant Physiology, Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
2
|
Indergaard JA, Mahmood K, Gabriel L, Zhong G, Lastovka A, McLeod MJ, Thorne RE. Instrumentation and methods for efficient time-resolved X-ray crystallography of biomolecular systems with sub-10 ms time resolution. IUCRJ 2025; 12:372-383. [PMID: 40277177 PMCID: PMC12044851 DOI: 10.1107/s205225252500288x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025]
Abstract
Time-resolved X-ray crystallography has great promise to illuminate structure-function relations and key steps of enzymatic reactions with atomic resolution. The dominant methods for chemically-initiated reactions require complex instrumentation at the X-ray beamline, significant effort to operate and maintain this instrumentation, and enormous numbers (∼105-109) of crystals per time point. We describe instrumentation and methods that enable high-throughput time-resolved study of biomolecular systems using standard crystallography sample supports and mail-in X-ray data collection at standard high-throughput cryocrystallography synchrotron beamlines. The instrumentation allows rapid reaction initiation by mixing of crystals and substrate/ligand solution, rapid capture of structural states via thermal quenching with no pre-cooling perturbations, and yields time resolutions in the single-millisecond range, comparable to the best achieved by any non-photo-initiated method in both crystallography and cryo-electron microscopy. Our approach to reaction initiation has the advantages of simplicity, robustness, low cost, adaptability to diverse ligand solutions and small minimum volume requirements, making it well suited to routine laboratory use and to high-throughput screening. We report the detailed characterization of instrument performance, present structures of binding of N-acetylglucosamine to lysozyme at time points from 8 ms to 2 s determined using only one crystal per time point, and discuss additional improvements that will push time resolution toward 1 ms.
Collapse
Affiliation(s)
| | - Kashfia Mahmood
- Physics DepartmentCornell University142 Sciences DriveIthacaNY14850USA
- Mechanical and Mechatronics EngineeringUniversity of Waterloo200 University Avenue WestWaterlooOntarioN2L 3G1Canada
| | - Leo Gabriel
- Physics DepartmentCornell University142 Sciences DriveIthacaNY14850USA
- Mechanical and Mechatronics EngineeringUniversity of Waterloo200 University Avenue WestWaterlooOntarioN2L 3G1Canada
| | - Gary Zhong
- Physics DepartmentCornell University142 Sciences DriveIthacaNY14850USA
- Mechanical and Mechatronics EngineeringUniversity of Waterloo200 University Avenue WestWaterlooOntarioN2L 3G1Canada
| | - Adam Lastovka
- Physics DepartmentCornell University142 Sciences DriveIthacaNY14850USA
- Mechanical and Mechatronics EngineeringUniversity of Waterloo200 University Avenue WestWaterlooOntarioN2L 3G1Canada
| | - Matthew J. McLeod
- Physics DepartmentCornell University142 Sciences DriveIthacaNY14850USA
| | - Robert E. Thorne
- Physics DepartmentCornell University142 Sciences DriveIthacaNY14850USA
| |
Collapse
|
3
|
Nicolas WJ, Gillman C, Weaver SJ, Clabbers MTB, Shiriaeva A, Her AS, Martynowycz MW, Gonen T. Comprehensive microcrystal electron diffraction sample preparation for cryo-EM. Nat Protoc 2025; 20:1275-1309. [PMID: 39706914 DOI: 10.1038/s41596-024-01088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/09/2024] [Indexed: 12/23/2024]
Abstract
Microcrystal electron diffraction (MicroED) has advanced structural methods across a range of sample types, from small molecules to proteins. This cryogenic electron microscopy (cryo-EM) technique involves the continuous rotation of small 3D crystals in the electron beam, while a high-speed camera captures diffraction data in the form of a movie. The crystal structure is subsequently determined by using established X-ray crystallographic software. MicroED is a technique still under development, and hands-on expertise in sample preparation, data acquisition and processing is not always readily accessible. This comprehensive guide on MicroED sample preparation addresses commonly used methods for various sample categories, including room temperature solid-state small molecules and soluble and membrane protein crystals. Beyond detailing the steps of sample preparation for new users, and because every crystal requires unique growth and sample-preparation conditions, this resource provides instructions and optimization strategies for MicroED sample preparation. The protocol is suitable for users with expertise in biochemistry, crystallography, general cryo-EM and crystallography data processing. MicroED experiments, from sample vitrification to final structure, can take anywhere from one workday to multiple weeks, especially when cryogenic focused ion beam milling is involved.
Collapse
Affiliation(s)
- William J Nicolas
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Cody Gillman
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Sara J Weaver
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Max T B Clabbers
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Anna Shiriaeva
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Ampon Sae Her
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael W Martynowycz
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Tamir Gonen
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Department of Physiology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Mao Y. Dynamics-based drug discovery by time-resolved cryo-EM. Curr Opin Struct Biol 2025; 91:103001. [PMID: 39985947 DOI: 10.1016/j.sbi.2025.103001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/24/2025]
Abstract
Rational structure-based drug design (SBDD) depends on high-resolution structural models of target macromolecules or their complexes. However, the lack of atomic-level functional molecular dynamics hinders the applications of SBDD and limits their effective translation into clinically successful therapeutics. Time-resolved cryo-electron microscopy (cryo-EM) has emerged as a powerful tool in structural biology, capable of capturing high-resolution snapshots of biomolecular machines in action. Unlike molecular dynamics (MD) simulations, time-resolved cryo-EM can visualize rare intermediate states across a broader range of timescales, providing invaluable insights into drug-binding kinetics, dynamic protein-ligand interactions, and allosteric regulation. Integration of time-resolved cryo-EM with machine learning (ML) and artificial intelligence (AI) expands SBDD into a dynamics-based approach, allowing for more accurate pharmacological modeling of challenging drug targets that are beyond the reach of MD simulations. Time-resolved cryo-EM can help researchers to identify novel druggable conformations, overcome drug resistance, and reduce the time and cost of clinical translations. Despite current challenges, the future development of time-resolved cryo-EM with AI and in situ imaging strategy, such as cryo-electron tomography, holds the potential to revolutionize drug discovery by revealing in vivo molecular dynamics of drug actions at an unprecedented spatiotemporal scale.
Collapse
Affiliation(s)
- Youdong Mao
- School of Physics, Peking-Tsinghua Joint Center for Life Sciences, Center for Quantitative Biology, National Biomedical Imaging Center, Peking University, Beijing 100871, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
5
|
Feng X, Frank J. A PDMS-based Microfluidic Chip Assembly for Time-Resolved Cryo-EM (TRCEM) Sample Preparation. Bio Protoc 2025; 15:e5193. [PMID: 40040794 PMCID: PMC11877145 DOI: 10.21769/bioprotoc.5193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 03/06/2025] Open
Abstract
Time-resolved cryo-EM (TRCEM) makes it possible to provide structural and kinetic information on a reaction of biomolecules before the equilibrium is reached. Several TRCEM methods have been developed in the past to obtain key insights into the mechanism of action of molecules and molecular machines on the time scale of tens to hundreds of milliseconds, which is unattainable by the normal blotting method. Here, we present our TRCEM setup utilizing a polydimethylsiloxane (PDMS)-based microfluidics chip assembly, comprising three components: a PDMS-based, internally SiO2-coated micromixer, a glass-capillary microreactor, and a PDMS-based microsprayer for depositing the reaction product onto the EM grid. As we have demonstrated in recent experiments, this setup is capable of addressing problems of severe sample adsorption and ineffective mixing of fluids and leads to highly reproducible results in applications to the study of translation. As an example, we used our TRCEM sample preparation method to investigate the molecular mechanism of ribosome recycling mediated by High frequency of lysogenization X (HflX), which demonstrated the efficacy of the TRCEM device and its capability to yield biologically significant, reproducible information. This protocol has the promise to provide structural and kinetic information on pre-equilibrium intermediates in the 10-1,000 ms time range in applications to many other biological systems. Key features • Design and fabrication of high-performance splitting-and-recombination-based micromixer and planar microsprayer. • Protocol for SiO2 coating on the PDMS surface and fabrication of the microfluidic chip assembly. • Preparation of time-resolved cryo-EM sample in the time range of 10-1,000 ms. • Data collection on EM grid covered with droplets from the microsprayer.
Collapse
Affiliation(s)
- Xiangsong Feng
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
6
|
Montserrat-Canals M, Cordara G, Krengel U. Allostery. Q Rev Biophys 2025; 58:e5. [PMID: 39849666 DOI: 10.1017/s0033583524000209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Allostery describes the ability of biological macromolecules to transmit signals spatially through the molecule from an allosteric site – a site that is distinct from orthosteric binding sites of primary, endogenous ligands – to the functional or active site. This review starts with a historical overview and a description of the classical example of allostery – hemoglobin – and other well-known examples (aspartate transcarbamoylase, Lac repressor, kinases, G-protein-coupled receptors, adenosine triphosphate synthase, and chaperonin). We then discuss fringe examples of allostery, including intrinsically disordered proteins and inter-enzyme allostery, and the influence of dynamics, entropy, and conformational ensembles and landscapes on allosteric mechanisms, to capture the essence of the field. Thereafter, we give an overview over central methods for investigating molecular mechanisms, covering experimental techniques as well as simulations and artificial intelligence (AI)-based methods. We conclude with a review of allostery-based drug discovery, with its challenges and opportunities: with the recent advent of AI-based methods, allosteric compounds are set to revolutionize drug discovery and medical treatments.
Collapse
Affiliation(s)
- Mateu Montserrat-Canals
- Department of Chemistry, University of Oslo, Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Gabriele Cordara
- Department of Chemistry, University of Oslo, Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Liu YT, Fan H, Hu JJ, Zhou ZH. Overcoming the preferred-orientation problem in cryo-EM with self-supervised deep learning. Nat Methods 2025; 22:113-123. [PMID: 39558095 DOI: 10.1038/s41592-024-02505-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/10/2024] [Indexed: 11/20/2024]
Abstract
While advances in single-particle cryo-EM have enabled the structural determination of macromolecular complexes at atomic resolution, particle orientation bias (the 'preferred' orientation problem) remains a complication for most specimens. Existing solutions have relied on biochemical and physical strategies applied to the specimen and are often complex and challenging. Here, we develop spIsoNet, an end-to-end self-supervised deep learning-based software to address map anisotropy and particle misalignment caused by the preferred-orientation problem. Using preferred-orientation views to recover molecular information in under-sampled views, spIsoNet improves both angular isotropy and particle alignment accuracy during 3D reconstruction. We demonstrate spIsoNet's ability to generate near-isotropic reconstructions from representative biological systems with limited views, including ribosomes, β-galactosidases and a previously intractable hemagglutinin trimer dataset. spIsoNet can also be generalized to improve map isotropy and particle alignment of preferentially oriented molecules in subtomogram averaging. Therefore, without additional specimen-preparation procedures, spIsoNet provides a general computational solution to the preferred-orientation problem.
Collapse
Affiliation(s)
- Yun-Tao Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Hongcheng Fan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Jason J Hu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Feng X, Frank J. Time-resolved cryo-EM (TRCEM) sample preparation using a PDMS-based microfluidic chip assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.08.627437. [PMID: 39713383 PMCID: PMC11661195 DOI: 10.1101/2024.12.08.627437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Time-resolved cryo-EM (TRCEM) makes it possible to provide structural and kinetic information on a reaction of biomolecules before the equilibrium is reached. Several TRCEM methods have been developed in the past to obtain key insights into the mechanism of action of molecules and molecular machines on the time scale of tens to hundreds of milliseconds, which is unattainable by the normal blotting method. Here we present our TRCEM setup utilizing a polydimethylsiloxane (PDMS)-based microfluidics chip assembly, comprising three components: a PDMS-based, internally SiO2-coated micromixer, a glass-capillary microreactor, and a PDMS-based microsprayer for depositing the reaction product onto the EM grid. As we have demonstrated in recent experiments, this setup is capable of addressing problems of severe sample adsorption and ineffective mixing of fluids, and leads to highly reproducible results in applications to the study of translation. As an example, we used our TRCEM sample preparation method to investigate the molecular mechanism of ribosome recycling mediated by High frequency of lysogenization X (HflX), which demonstrated the efficacy of the TRCEM device and its capability to yield biologically significant, reproducible information. This protocol has promise to provide structural and kinetic information on pre-equilibrium intermediates in the 10 -1000 ms time range in applications to many other biological systems.
Collapse
Affiliation(s)
- Xiangsong Feng
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
9
|
Chauvier A, Walter NG. Beyond ligand binding: Single molecule observation reveals how riboswitches integrate multiple signals to balance bacterial gene regulation. Curr Opin Struct Biol 2024; 88:102893. [PMID: 39067113 DOI: 10.1016/j.sbi.2024.102893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Riboswitches are specialized RNA structures that orchestrate gene expression in response to sensing specific metabolite or ion ligands, mostly in bacteria. Upon ligand binding, these conformationally dynamic RNA motifs undergo structural changes that control critical gene expression processes such as transcription termination and translation initiation, thereby enabling cellular homeostasis and adaptation. Because RNA folds rapidly and co-transcriptionally, riboswitches make use of the low complexity of RNA sequences to adopt alternative, transient conformations on the heels of the transcribing RNA polymerase (RNAP), resulting in kinetic partitioning that defines the regulatory outcome. This review summarizes single molecule microscopy evidence that has begun to unveil a sophisticated network of dynamic, kinetically balanced interactions between riboswitch architecture and the gene expression machinery that, together, integrate diverse cellular signals.
Collapse
Affiliation(s)
- Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA. https://twitter.com/adrienchauvier
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Dou J, Yang Z, Singh B, Ma B, Lu Z, Xu J, He Y. Discussion: Embracing microfluidics to advance environmental science and technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173597. [PMID: 38810741 DOI: 10.1016/j.scitotenv.2024.173597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Microfluidics, also called lab-on-a-chip, represents an emerging research platform that permits more precise and manipulation of samples at the microscale or even down to the nanoscale (nanofluidic) including picoliter droplets, microparticles, and microbes within miniaturized and highly integrated devices. This groundbreaking technology has made significant strides across multiple disciplines by providing an unprecedented view of physical, chemical, and biological events, fostering a holistic and an in-depth understanding of complex systems. The application of microfluidics to address the challenges in environmental science is likely to contribute to our better understanding, however, it's not yet fully developed. To raise researchers' interest, this discussion first delineates the valuable and underutilized environmental applications of microfluidic technology, ranging from environmental surveillance to acting as microreactors for investigating interfacial dynamic processes, and facilitating high-throughput bioassays. We highlight, with examples, how rationally designed microfluidic devices lead to new insights into the advancement of environmental science and technology. We then critically review the key challenges that hinder the practical adoption of microfluidic technologies. Specifically, we discuss the extent to which microfluidics accurately reflect realistic environmental scenarios, outline the areas to be improved, and propose strategies to overcome bottlenecks that impede the broad application of microfluidics. We also envision new opportunities and future research directions, aiming to provide guidelines for the broader utilization of microfluidics in environmental studies.
Collapse
Affiliation(s)
- Jibo Dou
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Baljit Singh
- MiCRA Biodiagnostics Technology Gateway and Health, Engineering & Materials Science (HEMS) Research Hub, Technological University Dublin (TU Dublin), Dublin D24 FKT9, Ireland
| | - Bin Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhijiang Lu
- Department of Environmental Science and Geology, Wayne State University, Detroit, MI 48201, United States
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China.
| |
Collapse
|
11
|
Malla TN, Hernandez C, Muniyappan S, Menendez D, Bizhga D, Mendez JH, Schwander P, Stojković EA, Schmidt M. Photoreception and signaling in bacterial phytochrome revealed by single-particle cryo-EM. SCIENCE ADVANCES 2024; 10:eadq0653. [PMID: 39121216 PMCID: PMC11313861 DOI: 10.1126/sciadv.adq0653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/08/2024] [Indexed: 08/11/2024]
Abstract
Phytochromes are red-light photoreceptors discovered in plants with homologs in bacteria and fungi that regulate a variety of physiological responses. They display a reversible photocycle between two distinct states: a red-light-absorbing Pr state and a far-red light-absorbing Pfr state. The photoconversion regulates the activity of an enzymatic domain, usually a histidine kinase (HK). The molecular mechanism that explains how light controls the HK activity is not understood because structures of unmodified bacterial phytochromes with HK activity are missing. Here, we report three cryo-electron microscopy structures of a wild-type bacterial phytochrome with HK activity determined as Pr and Pfr homodimers and as a Pr/Pfr heterodimer with individual subunits in distinct states. We propose that the Pr/Pfr heterodimer is a physiologically relevant signal transduction intermediate. Our results offer insight into the molecular mechanism that controls the enzymatic activity of the HK as part of a bacterial two-component system that perceives and transduces light signals.
Collapse
Affiliation(s)
- Tek Narsingh Malla
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | | | | - David Menendez
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA
| | - Dorina Bizhga
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA
| | - Joshua H. Mendez
- New York Structural Biology Center (NYSBC), New York, NY 10027, USA
| | - Peter Schwander
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Emina A. Stojković
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA
| | - Marius Schmidt
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
12
|
Ando T, Fukuda S, Ngo KX, Flechsig H. High-Speed Atomic Force Microscopy for Filming Protein Molecules in Dynamic Action. Annu Rev Biophys 2024; 53:19-39. [PMID: 38060998 DOI: 10.1146/annurev-biophys-030722-113353] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Structural biology is currently undergoing a transformation into dynamic structural biology, which reveals the dynamic structure of proteins during their functional activity to better elucidate how they function. Among the various approaches in dynamic structural biology, high-speed atomic force microscopy (HS-AFM) is unique in the ability to film individual molecules in dynamic action, although only topographical information is acquirable. This review provides a guide to the use of HS-AFM for biomolecular imaging and showcases several examples, as well as providing information on up-to-date progress in HS-AFM technology. Finally, we discuss the future prospects of HS-AFM in the context of dynamic structural biology in the upcoming era.
Collapse
Affiliation(s)
- Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Shingo Fukuda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Kien X Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Holger Flechsig
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| |
Collapse
|
13
|
Liao Z, Gopalasingam CC, Kameya M, Gerle C, Shigematsu H, Ishii M, Arakawa T, Fushinobu S. Structural insights into thermophilic chaperonin complexes. Structure 2024; 32:679-689.e4. [PMID: 38492570 DOI: 10.1016/j.str.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/18/2024]
Abstract
Group I chaperonins are dual heptamer protein complexes that play significant roles in protein homeostasis. The structure and function of the Escherichia coli chaperonin are well characterized. However, the dynamic properties of chaperonins, such as large ATPase-dependent conformational changes by binding of lid-like co-chaperonin GroES, have made structural analyses challenging, and our understanding of these changes during the turnover of chaperonin complex formation is limited. In this study, we used single-particle cryogenic electron microscopy to investigate the structures of GroES-bound chaperonin complexes from the thermophilic hydrogen-oxidizing bacteria Hydrogenophilus thermoluteolus and Hydrogenobacter thermophilus in the presence of ATP and AMP-PNP. We captured the structure of an intermediate state chaperonin complex, designated as an asymmetric football-shaped complex, and performed analyses to decipher the dynamic structural variations. Our structural analyses of inter- and intra-subunit communications revealed a unique mechanism of complex formation through the binding of a second GroES to a bullet-shaped complex.
Collapse
Affiliation(s)
- Zengwei Liao
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan
| | - Chai C Gopalasingam
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Kouto, Sayo, Hyogo 1-1-1, Japan
| | - Masafumi Kameya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan
| | - Christoph Gerle
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Kouto, Sayo, Hyogo 1-1-1, Japan
| | - Hideki Shigematsu
- Structural Biology Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo, Japan
| | - Masaharu Ishii
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan
| | - Takatoshi Arakawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan.
| | - Shinya Fushinobu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan.
| |
Collapse
|
14
|
Liu YT, Fan H, Hu JJ, Zhou ZH. Overcoming the preferred orientation problem in cryoEM with self-supervised deep-learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.588921. [PMID: 38645074 PMCID: PMC11030451 DOI: 10.1101/2024.04.11.588921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
While advances in single-particle cryoEM have enabled the structural determination of macromolecular complexes at atomic resolution, particle orientation bias (the so-called "preferred" orientation problem) remains a complication for most specimens. Existing solutions have relied on biochemical and physical strategies applied to the specimen and are often complex and challenging. Here, we develop spIsoNet, an end-to-end self-supervised deep-learning-based software to address the preferred orientation problem. Using preferred-orientation views to recover molecular information in under-sampled views, spIsoNet improves both angular isotropy and particle alignment accuracy during 3D reconstruction. We demonstrate spIsoNet's capability of generating near-isotropic reconstructions from representative biological systems with limited views, including ribosomes, β-galactosidases, and a previously intractable hemagglutinin trimer dataset. spIsoNet can also be generalized to improve map isotropy and particle alignment of preferentially oriented molecules in subtomogram averaging. Therefore, without additional specimen-preparation procedures, spIsoNet provides a general computational solution to the preferred orientation problem.
Collapse
Affiliation(s)
- Yun-Tao Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Hongcheng Fan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Jason J. Hu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Current address: Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
15
|
Elghobashi-Meinhardt N. ATP hydrolysis captured in atomic detail. Nat Chem 2024; 16:306-307. [PMID: 38429342 DOI: 10.1038/s41557-024-01466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
|
16
|
Burke SM, Avstrikova M, Noviello CM, Mukhtasimova N, Changeux JP, Thakur GA, Sine SM, Cecchini M, Hibbs RE. Structural mechanisms of α7 nicotinic receptor allosteric modulation and activation. Cell 2024; 187:1160-1176.e21. [PMID: 38382524 PMCID: PMC10950261 DOI: 10.1016/j.cell.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
The α7 nicotinic acetylcholine receptor is a pentameric ligand-gated ion channel that plays an important role in cholinergic signaling throughout the nervous system. Its unique physiological characteristics and implications in neurological disorders and inflammation make it a promising but challenging therapeutic target. Positive allosteric modulators overcome limitations of traditional α7 agonists, but their potentiation mechanisms remain unclear. Here, we present high-resolution structures of α7-modulator complexes, revealing partially overlapping binding sites but varying conformational states. Structure-guided functional and computational tests suggest that differences in modulator activity arise from the stable rotation of a channel gating residue out of the pore. We extend the study using a time-resolved cryoelectron microscopy (cryo-EM) approach to reveal asymmetric state transitions for this homomeric channel and also find that a modulator with allosteric agonist activity exploits a distinct channel-gating mechanism. These results define mechanisms of α7 allosteric modulation and activation with implications across the pentameric receptor superfamily.
Collapse
Affiliation(s)
- Sean M Burke
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mariia Avstrikova
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, 67081 Strasbourg Cedex, France
| | - Colleen M Noviello
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nuriya Mukhtasimova
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Jean-Pierre Changeux
- Neuroscience Department, Institut Pasteur, Collège de France, 75015 Paris, France
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Steven M Sine
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA.
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, 67081 Strasbourg Cedex, France.
| | - Ryan E Hibbs
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
17
|
Palao L, Murakami K, Chang YW. Combining per-particle cryo-ET and cryo-EM single particle analysis to elucidate heterogeneous DNA-protein organization. Curr Opin Struct Biol 2024; 84:102765. [PMID: 38181688 PMCID: PMC10922635 DOI: 10.1016/j.sbi.2023.102765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
Cryo-electron microscopy single particle analysis (cryo-EM SPA) and cryo-electron tomography (cryo-ET) have historically been employed as distinct approaches for investigating molecular structures of disparate sample types, focusing on highly purified biological macromolecules and in situ cellular contexts, respectively. However, these techniques offer inherently complementary structural insights that, when combined, provide a more comprehensive understanding of complex biological systems. For example, if both techniques are applied to the same purified biological macromolecules, cryo-ET has the ability to resolve highly flexible yet strong signal features on an individual target molecule which will not be preserved in the high-resolution cryo-EM SPA results. In this review, we highlight recent achievements utilizing such applications to unveil new insights into the chromatin assembly and activities of DNA-protein assemblies. This convergence of cryo-EM SPA and cryo-ET holds great promise for elucidating new structural aspects of these essential molecular processes.
Collapse
Affiliation(s)
- Leon Palao
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, PA, USA; Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, PA, USA; Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Bhattacharjee S, Feng X, Maji S, Dadhwal P, Zhang Z, Brown ZP, Frank J. Time resolution in cryo-EM using a PDMS-based microfluidic chip assembly and its application to the study of HflX-mediated ribosome recycling. Cell 2024; 187:782-796.e23. [PMID: 38244547 PMCID: PMC10872292 DOI: 10.1016/j.cell.2023.12.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024]
Abstract
The rapid kinetics of biological processes and associated short-lived conformational changes pose a significant challenge in attempts to structurally visualize biomolecules during a reaction in real time. Conventionally, on-pathway intermediates have been trapped using chemical modifications or reduced temperature, giving limited insights. Here, we introduce a time-resolved cryo-EM method using a reusable PDMS-based microfluidic chip assembly with high reactant mixing efficiency. Coating of PDMS walls with SiO2 virtually eliminates non-specific sample adsorption and ensures maintenance of the stoichiometry of the reaction, rendering it highly reproducible. In an operating range from 10 to 1,000 ms, the device allows us to follow in vitro reactions of biological molecules at resolution levels in the range of 3 Å. By employing this method, we show the mechanism of progressive HflX-mediated splitting of the 70S E. coli ribosome in the presence of the GTP via capture of three high-resolution reaction intermediates within 140 ms.
Collapse
Affiliation(s)
- Sayan Bhattacharjee
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10027, USA
| | - Xiangsong Feng
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10027, USA.
| | - Suvrajit Maji
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10027, USA
| | - Prikshat Dadhwal
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Zhening Zhang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10027, USA
| | - Zuben P Brown
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10027, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
19
|
Chauvier A, Walter NG. Regulation of bacterial gene expression by non-coding RNA: It is all about time! Cell Chem Biol 2024; 31:71-85. [PMID: 38211587 DOI: 10.1016/j.chembiol.2023.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Commensal and pathogenic bacteria continuously evolve to survive in diverse ecological niches by efficiently coordinating gene expression levels in their ever-changing environments. Regulation through the RNA transcript itself offers a faster and more cost-effective way to adapt than protein-based mechanisms and can be leveraged for diagnostic or antimicrobial purposes. However, RNA can fold into numerous intricate, not always functional structures that both expand and obscure the plethora of roles that regulatory RNAs serve within the cell. Here, we review the current knowledge of bacterial non-coding RNAs in relation to their folding pathways and interactions. We posit that co-transcriptional folding of these transcripts ultimately dictates their downstream functions. Elucidating the spatiotemporal folding of non-coding RNAs during transcription therefore provides invaluable insights into bacterial pathogeneses and predictive disease diagnostics. Finally, we discuss the implications of co-transcriptional folding andapplications of RNAs for therapeutics and drug targets.
Collapse
Affiliation(s)
- Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Schmidt M, Stojković EA. Blue and red in the protein world: Photoactive yellow protein and phytochromes as revealed by time-resolved crystallography. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:014701. [PMID: 38304445 PMCID: PMC10834066 DOI: 10.1063/4.0000233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
Time-resolved crystallography (TRX) is a method designed to investigate functional motions of biological macromolecules on all time scales. Originally a synchrotron-based method, TRX is enabled by the development of TR Laue crystallography (TRLX). TR serial crystallography (TR-SX) is an extension of TRLX. As the foundations of TRLX were evolving from the late 1980s to the turn of the millennium, TR-SX has been inspired by the development of Free Electron Lasers for hard X-rays. Extremely intense, ultrashort x-ray pulses could probe micro and nanocrystals, but at the same time, they inflicted radiation damage that necessitated the replacement by a new crystal. Consequently, a large number of microcrystals are exposed to X-rays one by one in a serial fashion. With TR-SX methods, one of the largest obstacles of previous approaches, namely, the unsurmountable challenges associated with the investigation of non-cyclic (irreversible) reactions, can be overcome. This article describes successes and transformative contributions to the TRX field by Keith Moffat and his collaborators, highlighting two major projects on protein photoreceptors initiated in the Moffat lab at the turn of the millennium.
Collapse
Affiliation(s)
- Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave., Milwaukee, Wisconsin 53211, USA
| | - Emina A. Stojković
- Department of Biology, Northeastern Illinois University, 5500 N. St. Louis Ave., Chicago, Illinois 60625, USA
| |
Collapse
|
21
|
Ching C, Maufront J, di Cicco A, Lévy D, Dezi M. C ool-contacts: Cryo-Electron Microscopy of Membrane Contact Sites and Their Components. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241231364. [PMID: 38410695 PMCID: PMC10895918 DOI: 10.1177/25152564241231364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Electron microscopy has played a pivotal role in elucidating the ultrastructure of membrane contact sites between cellular organelles. The advent of cryo-electron microscopy has ushered in the ability to determine atomic models of constituent proteins or protein complexes within sites of membrane contact through single particle analysis. Furthermore, it enables the visualization of the three-dimensional architecture of membrane contact sites, encompassing numerous copies of proteins, whether in vitro reconstituted or directly observed in situ using cryo-electron tomography. Nevertheless, there exists a scarcity of cryo-electron microscopy studies focused on the site of membrane contact and their constitutive proteins. This review provides an overview of the contributions made by cryo-electron microscopy to our understanding of membrane contact sites, outlines the associated limitations, and explores prospects in this field.
Collapse
Affiliation(s)
- Cyan Ching
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris, France
| | - Julien Maufront
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris, France
| | - Aurélie di Cicco
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris, France
| | - Daniel Lévy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris, France
| | - Manuela Dezi
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris, France
| |
Collapse
|
22
|
Klebl DP, Aspinall L, Muench SP. Time resolved applications for Cryo-EM; approaches, challenges and future directions. Curr Opin Struct Biol 2023; 83:102696. [PMID: 37716094 DOI: 10.1016/j.sbi.2023.102696] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/14/2023] [Accepted: 08/14/2023] [Indexed: 09/18/2023]
Abstract
Developments within the cryo-EM field have allowed us to generate higher-resolution "static" structures and pull out different conformational states which exist at equilibrium within the sample. Moreover, to trap non-equilibrium states and determine conformations that are present after a defined period of time (typically in the ms time frame) new approaches have been developed for the application of time-resolved cryo-EM. Here we give an overview of these different approaches and the limitations and strengths of each whilst identifying some of the current challenges to achieve higher resolutions and trap states within faster time frames. Time-resolved applications may play an important role in the ever-expanding toolkit of cryo-EM and open up new possibilities in both single particle and tomographic studies.
Collapse
Affiliation(s)
- David P Klebl
- School of Biomedical Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | - Louie Aspinall
- School of Molecular and Cellular Biology, University of Leeds, UK
| | - Stephen P Muench
- School of Biomedical Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, UK.
| |
Collapse
|
23
|
Malla TN, Hernandez C, Menendez D, Bizhga D, Mendez JH, Muniyappan S, Schwander P, Stojković EA, Schmidt M. Signal Transduction in an Enzymatic Photoreceptor Revealed by Cryo-Electron Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566274. [PMID: 37986774 PMCID: PMC10659365 DOI: 10.1101/2023.11.08.566274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Phytochromes are essential photoreceptor proteins in plants with homologs in bacteria and fungi that regulate a variety of important environmental responses. They display a reversible photocycle between two distinct states, the red-light absorbing Pr and the far-red light absorbing Pfr, each with its own structure. The reversible Pr to Pfr photoconversion requires covalently bound bilin chromophore and regulates the activity of a C-terminal enzymatic domain, which is usually a histidine kinase (HK). In plants, phytochromes translocate to nucleus where the C-terminal effector domain interacts with protein interaction factors (PIFs) to induce gene expression. In bacteria, the HK phosphorylates a response-regulator (RR) protein triggering downstream gene expression through a two-component signaling pathway. Although plant and bacterial phytochromes share similar structural composition, they have contrasting activity in the presence of light with most BphPs being active in the dark. The molecular mechanism that explains bacterial and plant phytochrome signaling has not been well understood due to limited structures of full-length phytochromes with enzymatic domain resolved at or near atomic resolution in both Pr and Pfr states. Here, we report the first Cryo-EM structures of a wild-type bacterial phytochrome with a HK enzymatic domain, determined in both Pr and Pfr states, between 3.75 and 4.13 Å resolution, respectively. Furthermore, we capture a distinct Pr/Pfr heterodimer of the same protein as potential signal transduction intermediate at 3.75 Å resolution. Our three Cryo-EM structures of the distinct signaling states of BphPs are further reinforced by Cryo-EM structures of the truncated PCM of the same protein determined for the Pr/Pfr heterodimer as well as Pfr state. These structures provide insight into the different light-signaling mechanisms that could explain how bacteria and plants see the light.
Collapse
|
24
|
Yang Q, Chen D. Na + Binding and Transport: Insights from Light-Driven Na +-Pumping Rhodopsin. Molecules 2023; 28:7135. [PMID: 37894614 PMCID: PMC10608830 DOI: 10.3390/molecules28207135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Na+ plays a vital role in numerous physiological processes across humans and animals, necessitating a comprehensive understanding of Na+ transmembrane transport. Among the various Na+ pumps and channels, light-driven Na+-pumping rhodopsin (NaR) has emerged as a noteworthy model in this field. This review offers a concise overview of the structural and functional studies conducted on NaR, encompassing ground/intermediate-state structures and photocycle kinetics. The primary focus lies in addressing key inquiries: (1) unraveling the translocation pathway of Na+; (2) examining the role of structural changes within the photocycle, particularly in the O state, in facilitating Na+ transport; and (3) investigating the timing of Na+ uptake/release. By delving into these unresolved issues and existing debates, this review aims to shed light on the future direction of Na+ pump research.
Collapse
Affiliation(s)
- Qifan Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Deliang Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|