1
|
Dobric A, Tape CJ. High-dimensional signalling analysis of organoids. Curr Opin Cell Biol 2025; 94:102488. [PMID: 40069984 DOI: 10.1016/j.ceb.2025.102488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/10/2025] [Indexed: 05/28/2025]
Abstract
Cellular phenotypes are regulated by dynamic signalling processes that involve proteins, post-translational modifications, epigenetic events, and transcriptional responses. Functional perturbation studies are required to understand cell signalling mechanisms and organoids have recently emerged as scalable biomimetic models amenable to large-scale perturbation. Here, we review the recent advances in high-dimensional analysis of cell signalling in organoids. Single-cell technologies provide cell-type specific analysis of multiple biochemical modalities, enabling a deeper understanding of the signalling mechanisms driving cell-fate dynamics. Emerging multimodal techniques are further revealing coordination between signalling layers and are poised to increase our mechanistic understanding of cell signalling.
Collapse
Affiliation(s)
- Aurélie Dobric
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK.
| |
Collapse
|
2
|
Madsen RR, Le Marois A, Mruk ON, Voliotis M, Yin S, Sufi J, Qin X, Zhao SJ, Gorczynska J, Morelli D, Davidson L, Sahai E, Korolchuk VI, Tape CJ, Vanhaesebroeck B. Oncogenic PIK3CA corrupts growth factor signaling specificity. Mol Syst Biol 2025; 21:126-157. [PMID: 39706867 PMCID: PMC11791070 DOI: 10.1038/s44320-024-00078-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 12/23/2024] Open
Abstract
Technical limitations have prevented understanding of how growth factor signals are encoded in distinct activity patterns of the phosphoinositide 3-kinase (PI3K)/AKT pathway, and how this is altered by oncogenic pathway mutations. We introduce a kinetic, single-cell framework for precise calculations of PI3K-specific information transfer for different growth factors. This features live-cell imaging of PI3K/AKT activity reporters and multiplexed CyTOF measurements of PI3K/AKT and RAS/ERK signaling markers over time. Using this framework, we found that the PIK3CAH1047R oncogene was not a simple, constitutive activator of the pathway as often presented. Dose-dependent expression of PIK3CAH1047R in human cervical cancer and induced pluripotent stem cells corrupted the fidelity of growth factor-induced information transfer, with preferential amplification of epidermal growth factor receptor (EGFR) signaling responses compared to insulin-like growth factor 1 (IGF1) and insulin receptor signaling. PIK3CAH1047R did not only shift these responses to a higher mean but also enhanced signaling heterogeneity. We conclude that oncogenic PIK3CAH1047R corrupts information transfer in a growth factor-dependent manner and suggest new opportunities for tuning of receptor-specific PI3K pathway outputs for therapeutic benefit.
Collapse
Affiliation(s)
- Ralitsa R Madsen
- Cell Signaling Laboratory, Department of Oncology, University College London Cancer Institute Paul O'Gorman Building, University College London, London, WC1E 6BT, UK.
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| | - Alix Le Marois
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Oliwia N Mruk
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Margaritis Voliotis
- Department of Mathematics and Statistics and Living Systems Institute; University of Exeter, Exeter, EX4 4QD, UK
| | - Shaozhen Yin
- Cell Signaling Laboratory, Department of Oncology, University College London Cancer Institute Paul O'Gorman Building, University College London, London, WC1E 6BT, UK
| | - Jahangir Sufi
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London, WC1E 6BT, UK
| | - Xiao Qin
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London, WC1E 6BT, UK
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Oxford, OX3 9DS, UK
| | - Salome J Zhao
- Cell Signaling Laboratory, Department of Oncology, University College London Cancer Institute Paul O'Gorman Building, University College London, London, WC1E 6BT, UK
| | - Julia Gorczynska
- Cell Signaling Laboratory, Department of Oncology, University College London Cancer Institute Paul O'Gorman Building, University College London, London, WC1E 6BT, UK
| | - Daniele Morelli
- Cell Signaling Laboratory, Department of Oncology, University College London Cancer Institute Paul O'Gorman Building, University College London, London, WC1E 6BT, UK
| | - Lindsay Davidson
- Human Pluripotent Stem Cell Facility, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London, WC1E 6BT, UK
| | - Bart Vanhaesebroeck
- Cell Signaling Laboratory, Department of Oncology, University College London Cancer Institute Paul O'Gorman Building, University College London, London, WC1E 6BT, UK
| |
Collapse
|
3
|
Kalla J, Pfneissl J, Mair T, Tran L, Egger G. A systematic review on the culture methods and applications of 3D tumoroids for cancer research and personalized medicine. Cell Oncol (Dordr) 2025; 48:1-26. [PMID: 38806997 PMCID: PMC11850459 DOI: 10.1007/s13402-024-00960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 05/30/2024] Open
Abstract
Cancer is a highly heterogeneous disease, and thus treatment responses vary greatly between patients. To improve therapy efficacy and outcome for cancer patients, more representative and patient-specific preclinical models are needed. Organoids and tumoroids are 3D cell culture models that typically retain the genetic and epigenetic characteristics, as well as the morphology, of their tissue of origin. Thus, they can be used to understand the underlying mechanisms of cancer initiation, progression, and metastasis in a more physiological setting. Additionally, co-culture methods of tumoroids and cancer-associated cells can help to understand the interplay between a tumor and its tumor microenvironment. In recent years, tumoroids have already helped to refine treatments and to identify new targets for cancer therapy. Advanced culturing systems such as chip-based fluidic devices and bioprinting methods in combination with tumoroids have been used for high-throughput applications for personalized medicine. Even though organoid and tumoroid models are complex in vitro systems, validation of results in vivo is still the common practice. Here, we describe how both animal- and human-derived tumoroids have helped to identify novel vulnerabilities for cancer treatment in recent years, and how they are currently used for precision medicine.
Collapse
Affiliation(s)
- Jessica Kalla
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Janette Pfneissl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Theresia Mair
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Loan Tran
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Seo Y, Fowler K, Flick LM, Withers TA, Savoldo B, McKinnon K, Iannone MA. Barcoding of viable peripheral blood mononuclear cells with selenium and tellurium isotopes for mass cytometry experiments. Cytometry A 2024; 105:899-908. [PMID: 39582135 DOI: 10.1002/cyto.a.24907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/28/2024] [Accepted: 11/09/2024] [Indexed: 11/26/2024]
Abstract
Barcoding viable cells combined with pooled sample staining is an effective technique that eliminates batch effects from serial cell staining and facilitates uninterrupted data acquisition. We describe three novel and isotopically pure selenium-containing compounds (SeMals) that are useful cellular labeling tools. The maleimide-functionalized selenophenes (76SeMal, 77SeMal, and 78SeMal) covalently react with cellular sulfhydryl groups and uniquely label cell samples. The SeMal reagents label viable and paraformaldehyde-fixed peripheral blood mononuclear cells (PBMC), are well resolved by the mass cytometer, and have little spill into adjacent channels. They appear non-toxic to viable cells at working concentrations. We used SeMal reagents in combination with four isotopically pure tellurium maleimide reagents (124TeMal, 126TeMal, 128TeMal, and 130TeMal) to label 21 individual PBMC samples with unique combinations of selenium and tellurium isotopes (seven donors with three replicates using a 7 isotope pick 2 combinatorial schema). The individually barcoded samples were pooled, stained with an antibody cocktail as a pool, and acquired on the mass cytometer as a single suspension. The single-cell data were de-barcoded into separate sample-specific files after data acquisition, enabling an uninterrupted instrument run. Each donor sample retained its unique phenotypic profile with excellent replicate reproducibility. Unlike current live cell barcoding methods, this approach does not require antibodies to surface markers, allowing for the labeling of all cells regardless of surface antigen expression. Additionally, since selenium and tellurium isotopes are not currently utilized in CyTOF antibody panels, this method expands barcoding options and frees up commonly used isotopes for more detailed cell profiling.
Collapse
Affiliation(s)
- Youngran Seo
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea
| | - Ken Fowler
- Immune Monitoring and Genomics Facility (IMGF), Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Leah M Flick
- Immune Monitoring and Genomics Facility (IMGF), Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tracy A Withers
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Immunology and Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Karen McKinnon
- Immune Monitoring and Genomics Facility (IMGF), Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Marie A Iannone
- Mass Cytometry Core, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Astaburuaga-García R, Sell T, Mutlu S, Sieber A, Lauber K, Blüthgen N. RUCova: Removal of Unwanted Covariance in mass cytometry data. Bioinformatics 2024; 40:btae669. [PMID: 39579088 PMCID: PMC11601163 DOI: 10.1093/bioinformatics/btae669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/23/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024] Open
Abstract
MOTIVATION High dimensional single-cell mass cytometry data are confounded by unwanted covariance due to variations in cell size and staining efficiency, making analysis, and interpretation challenging. RESULTS We present RUCova, a novel method designed to address confounding factors in mass cytometry data. RUCova removes unwanted covariance from measured markers applying multivariate linear regression based on surrogates of sources of unwanted covariance (SUCs) and principal component analysis (PCA). We exemplify the use of RUCova and show that it effectively removes unwanted covariance while preserving genuine biological signals. Our results demonstrate the efficacy of RUCova in elucidating complex data patterns, facilitating the identification of activated signalling pathways, and improving the classification of important cell populations such as apoptotic cells. By providing a robust framework for data normalization and interpretation, RUCova enhances the accuracy and reliability of mass cytometry analyses, contributing to advances in our understanding of cellular biology and disease mechanisms. AVAILABILITY AND IMPLEMENTATION The R package is available on https://github.com/molsysbio/RUCova. Detailed documentation, data, and the code required to reproduce the results are available on https://doi.org/10.5281/zenodo.10913464.
Collapse
Affiliation(s)
- Rosario Astaburuaga-García
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
- Institute of Biology, Humboldt Universität zu Berlin, Berlin, 10117, Germany
| | - Thomas Sell
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
- Institute of Biology, Humboldt Universität zu Berlin, Berlin, 10117, Germany
| | - Samet Mutlu
- Department of Radiation Oncology, University Hospital, LMU München, Munich, 81377, Germany
- German Cancer Consortium (DKTK), Munich, 81377, Germany
- German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Anja Sieber
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
- Institute of Biology, Humboldt Universität zu Berlin, Berlin, 10117, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU München, Munich, 81377, Germany
- German Cancer Consortium (DKTK), Munich, 81377, Germany
- Clinical Cooperation Group ‘Personalized Radiotherapy in Head and Neck Cancer’ Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, 85764, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
- Institute of Biology, Humboldt Universität zu Berlin, Berlin, 10117, Germany
- German Cancer Consortium (DKTK), Berlin, 10117, Germany
| |
Collapse
|
6
|
Bu YJ, Tijaro-Bulla S, Cui H, Nitz M. Oxidation-Controlled, Strain-Promoted Tellurophene-Alkyne Cycloaddition (OSTAC): A Bioorthogonal Tellurophene-Dependent Conjugation Reaction. J Am Chem Soc 2024; 146:26161-26177. [PMID: 39259935 DOI: 10.1021/jacs.4c07275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Tellurophene-bearing small molecules have emerged as valuable tools for localizing cellular activities in vivo using mass cytometry. To broaden the utility of tellurophenes in chemical biology, we have developed a bioorthogonal reaction to facilitate tagging of tellurophene-bearing conjugates for downstream applications. Using TePhe, a tellurophene-based phenylalanine analogue, labeled recombinant proteins were generated for reaction development. Using these proteins, we demonstrate an oxidation-controlled, strain-promoted tellurophene-alkyne cycloaddition (OSTAC) reaction. Mild oxidation of the tellurophene ring with N-chlorosuccinimide produces a reactive Te(IV) species which undergoes rapid (k > 100 M-1 s-1) cycloaddition with bicyclo[6.1.0]nonyne (BCN) yielding a benzo-fused cyclooctane. Selective labeling of TePhe-containing proteins can be achieved in complex protein mixtures and on fixed cells. OSTAC reactions can be combined with strain-promoted azide alkyne cycloaddition (SPAAC) and copper-catalyzed azide alkyne click (CuAAC) reactions. Demonstrating the versatility of this approach, we observe the expected staining patterns for 5-ethynyl-2'-deoxyuridine (DNA synthesis-CuAAC) and immunohistochemistry targets in combination with TePhe (protein synthesis-OSTAC) in fixed cells. The favorable properties of the OSTAC reaction suggest its broad applicability in chemical biology.
Collapse
Affiliation(s)
- Yong Jia Bu
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | | | - Haissi Cui
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
7
|
Polak R, Zhang ET, Kuo CJ. Cancer organoids 2.0: modelling the complexity of the tumour immune microenvironment. Nat Rev Cancer 2024; 24:523-539. [PMID: 38977835 DOI: 10.1038/s41568-024-00706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 07/10/2024]
Abstract
The development of neoplasia involves a complex and continuous interplay between malignantly transformed cells and the tumour microenvironment (TME). Cancer immunotherapies targeting the immune TME have been increasingly validated in clinical trials but response rates vary substantially between tumour histologies and are often transient, idiosyncratic and confounded by resistance. Faithful experimental models of the patient-specific tumour immune microenvironment, capable of recapitulating tumour biology and immunotherapy effects, would greatly improve patient selection, target identification and definition of resistance mechanisms for immuno-oncology therapeutics. In this Review, we discuss currently available and rapidly evolving 3D tumour organoid models that capture important immune features of the TME. We highlight diverse opportunities for organoid-based investigations of tumour immunity, drug development and precision medicine.
Collapse
Affiliation(s)
- Roel Polak
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Elisa T Zhang
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
8
|
Tape CJ. Plastic persisters: revival stem cells in colorectal cancer. Trends Cancer 2024; 10:185-195. [PMID: 38071119 DOI: 10.1016/j.trecan.2023.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 03/16/2024]
Abstract
Colorectal cancer (CRC) is traditionally considered to be a genetically driven disease. However, nongenetic plasticity has recently emerged as a major driver of tumour initiation, metastasis, and therapy response in CRC. Central to these processes is a recently discovered cell type, the revival colonic stem cell (revCSC). In contrast to traditional proliferative CSCs (proCSCs), revCSCs prioritise survival over propagation. revCSCs play an essential role in primary tumour formation, metastatic dissemination, and nongenetic chemoresistance. Current evidence suggests that CRC tumours leverage intestinal stem cell plasticity to both proliferate (via proCSCs) when unchallenged and survive (via revCSCs) in response to cell-extrinsic pressures. Although revCSCs likely represent a major source of therapeutic failure in CRC, our increasing knowledge of this important stem cell fate provides novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK.
| |
Collapse
|
9
|
Ramos Zapatero M, Tong A, Opzoomer JW, O'Sullivan R, Cardoso Rodriguez F, Sufi J, Vlckova P, Nattress C, Qin X, Claus J, Hochhauser D, Krishnaswamy S, Tape CJ. Trellis tree-based analysis reveals stromal regulation of patient-derived organoid drug responses. Cell 2023; 186:5606-5619.e24. [PMID: 38065081 DOI: 10.1016/j.cell.2023.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/27/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Patient-derived organoids (PDOs) can model personalized therapy responses; however, current screening technologies cannot reveal drug response mechanisms or how tumor microenvironment cells alter therapeutic performance. To address this, we developed a highly multiplexed mass cytometry platform to measure post-translational modification (PTM) signaling, DNA damage, cell-cycle activity, and apoptosis in >2,500 colorectal cancer (CRC) PDOs and cancer-associated fibroblasts (CAFs) in response to clinical therapies at single-cell resolution. To compare patient- and microenvironment-specific drug responses in thousands of single-cell datasets, we developed "Trellis"-a highly scalable, tree-based treatment effect analysis method. Trellis single-cell screening revealed that on-target cell-cycle blockage and DNA-damage drug effects are common, even in chemorefractory PDOs. However, drug-induced apoptosis is rarer, patient-specific, and aligns with cancer cell PTM signaling. We find that CAFs can regulate PDO plasticity-shifting proliferative colonic stem cells (proCSCs) to slow-cycling revival colonic stem cells (revCSCs) to protect cancer cells from chemotherapy.
Collapse
Affiliation(s)
- María Ramos Zapatero
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Alexander Tong
- Department of Computer Science, Yale University, New Haven, CT, USA; Department of Computer Science and Operations Research, Université de Montréal, Montreal, QC, Canada; Mila - Quebec AI Institute, Montréal, QC, Canada
| | - James W Opzoomer
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Rhianna O'Sullivan
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Ferran Cardoso Rodriguez
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Jahangir Sufi
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Petra Vlckova
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Callum Nattress
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Xiao Qin
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Jeroen Claus
- Phospho Biomedical Animation, The Greenhouse Studio 6, London N17 9QU, UK
| | - Daniel Hochhauser
- Drug-DNA Interactions Group, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Smita Krishnaswamy
- Department of Computer Science, Yale University, New Haven, CT, USA; Department of Genetics, Yale University, New Haven, CT, USA; Program for Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA; Program for Applied Math, Yale University, New Haven, CT, USA; Wu-Tsai Institute, Yale University, New Haven, CT, USA.
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK.
| |
Collapse
|
10
|
Qin X, Cardoso Rodriguez F, Sufi J, Vlckova P, Claus J, Tape CJ. An oncogenic phenoscape of colonic stem cell polarization. Cell 2023; 186:5554-5568.e18. [PMID: 38065080 DOI: 10.1016/j.cell.2023.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/14/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Cancer cells are regulated by oncogenic mutations and microenvironmental signals, yet these processes are often studied separately. To functionally map how cell-intrinsic and cell-extrinsic cues co-regulate cell fate, we performed a systematic single-cell analysis of 1,107 colonic organoid cultures regulated by (1) colorectal cancer (CRC) oncogenic mutations, (2) microenvironmental fibroblasts and macrophages, (3) stromal ligands, and (4) signaling inhibitors. Multiplexed single-cell analysis revealed a stepwise epithelial differentiation phenoscape dictated by combinations of oncogenes and stromal ligands, spanning from fibroblast-induced Clusterin (CLU)+ revival colonic stem cells (revCSCs) to oncogene-driven LRIG1+ hyper-proliferative CSCs (proCSCs). The transition from revCSCs to proCSCs is regulated by decreasing WNT3A and TGF-β-driven YAP signaling and increasing KRASG12D or stromal EGF/Epiregulin-activated MAPK/PI3K flux. We find that APC loss and KRASG12D collaboratively limit access to revCSCs and disrupt stromal-epithelial communication-trapping epithelia in the proCSC fate. These results reveal that oncogenic mutations dominate homeostatic differentiation by obstructing cell-extrinsic regulation of cell-fate plasticity.
Collapse
Affiliation(s)
- Xiao Qin
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Ferran Cardoso Rodriguez
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Jahangir Sufi
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Petra Vlckova
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Jeroen Claus
- Phospho Biomedical Animation, The Greenhouse Studio 6, London N17 9QU, UK
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK.
| |
Collapse
|
11
|
Cao R, Li NT, Latour S, Cadavid JL, Tan CM, Forman A, Jackson HW, McGuigan AP. An Automation Workflow for High-Throughput Manufacturing and Analysis of Scaffold-Supported 3D Tissue Arrays. Adv Healthc Mater 2023; 12:e2202422. [PMID: 37086259 PMCID: PMC11468893 DOI: 10.1002/adhm.202202422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/28/2023] [Indexed: 04/23/2023]
Abstract
Patient-derived organoids have emerged as a useful tool to model tumour heterogeneity. Scaling these complex culture models while enabling stratified analysis of different cellular sub-populations, however, remains a challenge. One strategy to enable higher throughput organoid cultures is the scaffold-supported platform for organoid-based tissues (SPOT). SPOT allows the generation of flat, thin, and dimensionally-defined microtissues in both 96- and 384-well plate footprints that are compatible with longitudinal image-based readouts. SPOT is currently manufactured manually, however, limiting scalability. In this study, an automation approach to engineer tumour-mimetic 3D microtissues in SPOT using a liquid handler is optimized and comparable within- and between-sample variation to standard manual manufacturing is shown. Further, a liquid handler-supported cell extraction protocol to support single-cell-based end-point analysis using high-throughput flow cytometry and multiplexed cytometry by time of flight is developed. As a proof-of-value demonstration, 3D complex tissues containing different proportions of tumour and stromal cells are generated to probe the reciprocal impact of co-culture. It is also demonstrated that primary patient-derived organoids can be incorporated into the pipeline to capture patient-level tumour heterogeneity. It is envisioned that this automated 96/384-SPOT workflow will provide opportunities for future applications in high-throughput screening for novel personalized therapeutic targets.
Collapse
Affiliation(s)
- Ruonan Cao
- Institute of Biomedical EngineeringUniversity of Toronto164 College StreetTorontoONM5S 3G9Canada
| | - Nancy T. Li
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5R 3S5Canada
| | - Simon Latour
- Institute of Biomedical EngineeringUniversity of Toronto164 College StreetTorontoONM5S 3G9Canada
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5R 3S5Canada
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai Hospital600 University AveTorontoONM5G 1X5Canada
| | - Jose L. Cadavid
- Institute of Biomedical EngineeringUniversity of Toronto164 College StreetTorontoONM5S 3G9Canada
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5R 3S5Canada
| | - Cassidy M. Tan
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5R 3S5Canada
| | - Ari Forman
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai Hospital600 University AveTorontoONM5G 1X5Canada
- Department of Molecular GeneticsUniversity of Toronto1 King's College CirTorontoONM5S 1A8Canada
| | - Hartland W. Jackson
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai Hospital600 University AveTorontoONM5G 1X5Canada
- Department of Molecular GeneticsUniversity of Toronto1 King's College CirTorontoONM5S 1A8Canada
- Ontario Institute of Cancer Research661 University AveTorontoONM5G 0A3Canada
| | - Alison P. McGuigan
- Institute of Biomedical EngineeringUniversity of Toronto164 College StreetTorontoONM5S 3G9Canada
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5R 3S5Canada
| |
Collapse
|
12
|
Sell T, Klotz C, Fischer MM, Astaburuaga-García R, Krug S, Drost J, Clevers H, Sers C, Morkel M, Blüthgen N. Oncogenic signaling is coupled to colorectal cancer cell differentiation state. J Cell Biol 2023; 222:e202204001. [PMID: 37017636 PMCID: PMC10082329 DOI: 10.1083/jcb.202204001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/23/2022] [Accepted: 03/17/2023] [Indexed: 04/06/2023] Open
Abstract
Colorectal cancer progression is intrinsically linked to stepwise deregulation of the intestinal differentiation trajectory. In this process, sequential mutations of APC, KRAS, TP53, and SMAD4 enable oncogenic signaling and establish the hallmarks of cancer. Here, we use mass cytometry of isogenic human colon organoids and patient-derived cancer organoids to capture oncogenic signaling, cell phenotypes, and differentiation states in a high-dimensional single-cell map. We define a differentiation axis in all tumor progression states from normal to cancer. Our data show that colorectal cancer driver mutations shape the distribution of cells along the differentiation axis. In this regard, subsequent mutations can have stem cell promoting or restricting effects. Individual nodes of the cancer cell signaling network remain coupled to the differentiation state, regardless of the presence of driver mutations. We use single-cell RNA sequencing to link the (phospho-)protein signaling network to transcriptomic states with biological and clinical relevance. Our work highlights how oncogenes gradually shape signaling and transcriptomes during tumor progression.
Collapse
Affiliation(s)
- Thomas Sell
- Institute of Pathology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Christian Klotz
- Department of Infectious Diseases, Robert Koch-Institute, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Berlin, Germany
| | - Matthias M. Fischer
- Institute of Pathology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Rosario Astaburuaga-García
- Institute of Pathology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Susanne Krug
- Department of Gastroenterology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Rheumatology and Infectious Diseases, Clinical Physiology/Nutritional Medicine, Berlin, Germany
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Hans Clevers
- Oncode Institute, Utrecht, Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, Netherlands
| | - Christine Sers
- Institute of Pathology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
- German Cancer Consortium Partner Site Berlin, German Cancer Research Center, Heidelberg, Germany
| | - Markus Morkel
- Institute of Pathology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium Partner Site Berlin, German Cancer Research Center, Heidelberg, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Bioportal Single Cells, Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
- German Cancer Consortium Partner Site Berlin, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
13
|
Arnett LP, Rana R, Chung WWY, Li X, Abtahi M, Majonis D, Bassan J, Nitz M, Winnik MA. Reagents for Mass Cytometry. Chem Rev 2023; 123:1166-1205. [PMID: 36696538 DOI: 10.1021/acs.chemrev.2c00350] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mass cytometry (cytometry by time-of-flight detection [CyTOF]) is a bioanalytical technique that enables the identification and quantification of diverse features of cellular systems with single-cell resolution. In suspension mass cytometry, cells are stained with stable heavy-atom isotope-tagged reagents, and then the cells are nebulized into an inductively coupled plasma time-of-flight mass spectrometry (ICP-TOF-MS) instrument. In imaging mass cytometry, a pulsed laser is used to ablate ca. 1 μm2 spots of a tissue section. The plume is then transferred to the CyTOF, generating an image of biomarker expression. Similar measurements are possible with multiplexed ion bean imaging (MIBI). The unit mass resolution of the ICP-TOF-MS detector allows for multiparametric analysis of (in principle) up to 130 different parameters. Currently available reagents, however, allow simultaneous measurement of up to 50 biomarkers. As new reagents are developed, the scope of information that can be obtained by mass cytometry continues to increase, particularly due to the development of new small molecule reagents which enable monitoring of active biochemistry at the cellular level. This review summarizes the history and current state of mass cytometry reagent development and elaborates on areas where there is a need for new reagents. Additionally, this review provides guidelines on how new reagents should be tested and how the data should be presented to make them most meaningful to the mass cytometry user community.
Collapse
Affiliation(s)
- Loryn P Arnett
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Rahul Rana
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Wilson Wai-Yip Chung
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Xiaochong Li
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Mahtab Abtahi
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Daniel Majonis
- Standard BioTools Canada Inc. (formerly Fluidigm Canada Inc.), 1380 Rodick Road, Suite 400, Markham, OntarioL3R 4G5, Canada
| | - Jay Bassan
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| |
Collapse
|
14
|
Mazzaglia C, Sheng Y, Rodrigues LN, Lei IM, Shields JD, Huang YYS. Deployable extrusion bioprinting of compartmental tumoroids with cancer associated fibroblasts for immune cell interactions. Biofabrication 2023; 15:025005. [PMID: 36626838 DOI: 10.1088/1758-5090/acb1db] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
Realizing the translational impacts of three-dimensional (3D) bioprinting for cancer research necessitates innovation in bioprinting workflows which integrate affordability, user-friendliness, and biological relevance. Herein, we demonstrate 'BioArm', a simple, yet highly effective extrusion bioprinting platform, which can be folded into a carry-on pack, and rapidly deployed between bio-facilities. BioArm enabled the reconstruction of compartmental tumoroids with cancer-associated fibroblasts (CAFs), forming the shell of each tumoroid. The 3D printed core-shell tumoroids showedde novosynthesized extracellular matrices, and enhanced cellular proliferation compared to the tumour alone 3D printed spheroid culture. Further, thein vivophenotypes of CAFs normally lost after conventional 2D co-culture re-emerged in the bioprinted model. Embedding the 3D printed tumoroids in an immune cell-laden collagen matrix permitted tracking of the interaction between immune cells and tumoroids, and subsequent simulated immunotherapy treatments. Our deployable extrusion bioprinting workflow could significantly widen the accessibility of 3D bioprinting for replicating multi-compartmental architectures of tumour microenvironment, and for developing strategies in cancer drug testing in the future.
Collapse
Affiliation(s)
| | - Yaqi Sheng
- The Nanoscience Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | | | - Iek Man Lei
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Jacqueline D Shields
- MRC Cancer Unit, University of Cambridge, Cambridge, United Kingdom
- Comprehensive Cancer Centre, King's College London, Great Maze Pond, London, United Kingdom
| | - Yan Yan Shery Huang
- The Nanoscience Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Farshbaf A, Lotfi M, Zare R, Mohtasham N. The organoid as reliable cancer modeling in personalized medicine, does applicable in precision medicine of head and neck squamous cell carcinoma? THE PHARMACOGENOMICS JOURNAL 2022; 23:37-44. [PMID: 36347937 DOI: 10.1038/s41397-022-00296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are introduced as the sixth most common cancer in the world. Detection of predictive biomarkers improve early diagnosis and prognosis. Recent cancer researches provide a new avenue for organoids, known as "mini-organs" in a dish, such as patient-derived organoids (PDOs), for cancer modeling. HNSCC burden, heterogeneity, mutations, and organoid give opportunities for the evaluation of drug sensitivity/resistance response according to the unique genetic profile signature. The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) nucleases, as an efficient genome engineering technology, can be used for genetic manipulation in three-dimensional (3D) organoids for cancer modeling by targeting oncogenes/tumor suppressor genes. Moreover, single-cell analysis of circulating tumor cells (CTCs) improved understanding of molecular angiogenesis, distance metastasis, and drug screening without the need for tissue biopsy. Organoids allow us to investigate the biopathogenesis of cancer, tumor cell behavior, and drug screening in a living biobank according to the specific genetic profile of patients.
Collapse
|
16
|
Feng Y, Ma F, Wu E, Cheng Z, Wang Z, Yang L, Zhang J. Ginsenosides: Allies of gastrointestinal tumor immunotherapy. Front Pharmacol 2022; 13:922029. [PMID: 36386161 PMCID: PMC9659574 DOI: 10.3389/fphar.2022.922029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/26/2022] [Indexed: 09/25/2023] Open
Abstract
In the past decade, immunotherapy has been the most promising treatment for gastrointestinal tumors. But the low response rate and drug resistance remain major concerns. It is therefore imperative to develop adjuvant therapies to increase the effectiveness of immunotherapy and prevent drug resistance. Ginseng has been used in Traditional Chinese medicine as a natural immune booster for thousands of years. The active components of ginseng, ginsenosides, have played an essential role in tumor treatment for decades and are candidates for anti-tumor adjuvant therapy. They are hypothesized to cooperate with immunotherapy drugs to improve the curative effect and reduce tumor resistance and adverse reactions. This review summarizes the research into the use of ginsenosides in immunotherapy of gastrointestinal tumors and discusses potential future applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Delgado-Gonzalez A, Laz-Ruiz JA, Cano-Cortes MV, Huang YW, Gonzalez VD, Diaz-Mochon JJ, Fantl WJ, Sanchez-Martin RM. Hybrid Fluorescent Mass-Tag Nanotrackers as Universal Reagents for Long-Term Live-Cell Barcoding. Anal Chem 2022; 94:10626-10635. [PMID: 35866879 PMCID: PMC9352147 DOI: 10.1021/acs.analchem.2c00795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Barcoding and pooling cells for processing as a composite
sample
are critical to minimize technical variability in multiplex technologies.
Fluorescent cell barcoding has been established as a standard method
for multiplexing in flow cytometry analysis. In parallel, mass-tag
barcoding is routinely used to label cells for mass cytometry. Barcode
reagents currently used label intracellular proteins in fixed and
permeabilized cells and, therefore, are not suitable for studies with
live cells in long-term culture prior to analysis. In this study,
we report the development of fluorescent palladium-based hybrid-tag
nanotrackers to barcode live cells for flow and mass cytometry dual-modal
readout. We describe the preparation, physicochemical characterization,
efficiency of cell internalization, and durability of these nanotrackers
in live cells cultured over time. In addition, we demonstrate their
compatibility with standardized cytometry reagents and protocols.
Finally, we validated these nanotrackers for drug response assays
during a long-term coculture experiment with two barcoded cell lines.
This method represents a new and widely applicable advance for fluorescent
and mass-tag barcoding that is independent of protein expression levels
and can be used to label cells before long-term drug studies.
Collapse
Affiliation(s)
- Antonio Delgado-Gonzalez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Gov-ernment, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain.,Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedi-cine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Grana-da, 18012 Granada, Spain.,Department of Urology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Jose Antonio Laz-Ruiz
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Gov-ernment, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain.,Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedi-cine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Grana-da, 18012 Granada, Spain
| | - M Victoria Cano-Cortes
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Gov-ernment, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain.,Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedi-cine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Grana-da, 18012 Granada, Spain
| | - Ying-Wen Huang
- Department of Urology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Veronica D Gonzalez
- Department of Urology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Juan Jose Diaz-Mochon
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Gov-ernment, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain.,Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedi-cine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Grana-da, 18012 Granada, Spain
| | - Wendy J Fantl
- Department of Urology, Stanford University School of Medicine, Stanford, California 94305, United States.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305, United States.,Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94304, United States
| | - Rosario M Sanchez-Martin
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Gov-ernment, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain.,Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedi-cine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Grana-da, 18012 Granada, Spain
| |
Collapse
|
18
|
Hautefort I, Poletti M, Papp D, Korcsmaros T. Everything You Always Wanted to Know About Organoid-Based Models (and Never Dared to Ask). Cell Mol Gastroenterol Hepatol 2022; 14:311-331. [PMID: 35643188 PMCID: PMC9233279 DOI: 10.1016/j.jcmgh.2022.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022]
Abstract
Homeostatic functions of a living tissue, such as the gastrointestinal tract, rely on highly sophisticated and finely tuned cell-to-cell interactions. These crosstalks evolve and continuously are refined as the tissue develops and give rise to specialized cells performing general and tissue-specific functions. To study these systems, stem cell-based in vitro models, often called organoids, and non-stem cell-based primary cell aggregates (called spheroids) appeared just over a decade ago. These models still are evolving and gaining complexity, making them the state-of-the-art models for studying cellular crosstalk in the gastrointestinal tract, and to investigate digestive pathologies, such as inflammatory bowel disease, colorectal cancer, and liver diseases. However, the use of organoid- or spheroid-based models to recapitulate in vitro the highly complex structure of in vivo tissue remains challenging, and mainly restricted to expert developmental cell biologists. Here, we condense the founding knowledge and key literature information that scientists adopting the organoid technology for the first time need to consider when using these models for novel biological questions. We also include information that current organoid/spheroid users could use to add to increase the complexity to their existing models. We highlight the current and prospective evolution of these models through bridging stem cell biology with biomaterial and scaffold engineering research areas. Linking these complementary fields will increase the in vitro mimicry of in vivo tissue, and potentially lead to more successful translational biomedical applications. Deepening our understanding of the nature and dynamic fine-tuning of intercellular crosstalks will enable identifying novel signaling targets for new or repurposed therapeutics used in many multifactorial diseases.
Collapse
Affiliation(s)
- Isabelle Hautefort
- Earlham Institute, Organisms and Ecosystems Programme, Norwich, United Kingdom
| | - Martina Poletti
- Earlham Institute, Organisms and Ecosystems Programme, Norwich, United Kingdom; Quadram Institute Bioscience, Gut Microbes and Health Programme, Norwich, United Kingdom
| | - Diana Papp
- Quadram Institute Bioscience, Gut Microbes and Health Programme, Norwich, United Kingdom
| | - Tamas Korcsmaros
- Earlham Institute, Organisms and Ecosystems Programme, Norwich, United Kingdom; Quadram Institute Bioscience, Gut Microbes and Health Programme, Norwich, United Kingdom; Imperial College London, Department of Metabolism, Digestion and Reproduction, London, United Kingdom.
| |
Collapse
|
19
|
Gardiner JC, Cukierman E. Meaningful connections: Interrogating the role of physical fibroblast cell-cell communication in cancer. Adv Cancer Res 2022; 154:141-168. [PMID: 35459467 PMCID: PMC9483832 DOI: 10.1016/bs.acr.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As part of the connective tissue, activated fibroblasts play an important role in development and disease pathogenesis, while quiescent resident fibroblasts are responsible for sustaining tissue homeostasis. Fibroblastic activation is particularly evident in the tumor microenvironment where fibroblasts transition into tumor-supporting cancer-associated fibroblasts (CAFs), with some CAFs maintaining tumor-suppressive functions. While the tumor-supporting features of CAFs and their fibroblast-like precursors predominantly function through paracrine chemical communication (e.g., secretion of cytokine, chemokine, and more), the direct cell-cell communication that occurs between fibroblasts and other cells, and the effect that the remodeled CAF-generated interstitial extracellular matrix has in these types of cellular communications, remain poorly understood. Here, we explore the reported roles fibroblastic cell-cell communication play within the cancer stroma context and highlight insights we can gain from other disciplines.
Collapse
Affiliation(s)
- Jaye C Gardiner
- Cancer Signaling and Epigenetics Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States
| | - Edna Cukierman
- Cancer Signaling and Epigenetics Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States.
| |
Collapse
|