1
|
Ghasad PP, Vegivada JVS, Kamble VM, Bhurane AA, Santosh N, Sharma M, Tan RS, Rajendra Acharya U. A systematic review of automated prediction of sudden cardiac death using ECG signals. Physiol Meas 2025; 13:01TR01. [PMID: 39657316 DOI: 10.1088/1361-6579/ad9ce5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024]
Abstract
Background. Sudden cardiac death (SCD) stands as a life-threatening cardiac event capable of swiftly claiming lives. It ranks prominently among the leading causes of global mortality, contributing to approximately 10% of deaths worldwide. The timely anticipation of SCD holds the promise of immediate life-saving interventions, such as cardiopulmonary resuscitation. However, recent strides in the realms of deep learning (DL), machine learning (ML), and artificial intelligence have ushered in fresh opportunities for the automation of SCD prediction using physiological signals. Researchers have devised numerous models to automatically predict SCD using a combination of diverse feature extraction techniques and classifiers. Methods: We conducted a thorough review of research publications ranging from 2011 to 2023, with a specific focus on the automated prediction of SCD. Traditionally, specialists utilize molecular biomarkers, symptoms, and 12-lead ECG recordings for SCD prediction. However, continuous patient monitoring by experts is impractical, and only a fraction of patients seeks help after experiencing symptoms. However, over the past two decades, ML techniques have emerged and evolved for this purpose. Importantly, since 2021, the studies we have scrutinized delve into a diverse array of ML and DL algorithms, encompassing K-nearest neighbors, support vector machines, decision trees, random forest, Naive Bayes, and convolutional neural networks as classifiers.Results. This literature review presents a comprehensive analysis of ML and DL models employed in predicting SCD. The analysis provided valuable information on the fundamental structure of cardiac fatalities, extracting relevant characteristics from electrocardiogram (ECG) and heart rate variability (HRV) signals, using databases, and evaluating classifier performance. The review offers a succinct yet thorough examination of automated SCD prediction methodologies, emphasizing current constraints and underscoring the necessity for further advancements. It serves as a valuable resource, providing valuable insights and outlining potential research directions for aspiring scholars in the domain of SCD prediction.Conclusions. In recent years, researchers have made substantial strides in the prediction of SCD by leveraging openly accessible databases such as the MIT-BIH SCD Holter and Normal Sinus Rhythm, which contains extensive 24 h recordings of SCD patients. These sophisticated methodologies have previously demonstrated the potential to achieve remarkable accuracy, reaching levels as high as 97%, and can forecast SCD events with a lead time of 30-70 min. Despite these promising outcomes, the quest for even greater accuracy and reliability persists. ML and DL methodologies have shown great promise, their performance is intrinsically linked to the volume of training data available. Most predictive models rely on small-scale databases, raising concerns about their applicability in real-world scenarios. Furthermore, these models predominantly utilize ECG and HRV signals, often overlooking the potential contributions of other physiological signals. Developing real-time, clinically applicable models also represents a critical avenue for further exploration in this field.
Collapse
Affiliation(s)
- Preeti P Ghasad
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India
| | - Jagath V S Vegivada
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India
| | - Vipin M Kamble
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India
| | - Ankit A Bhurane
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India
| | - Nikhil Santosh
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, Gujarat, India
| | - Manish Sharma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, Gujarat, India
| | - Ru-San Tan
- National Heart Centre Singapore, Duke-NUS Medical School, Singapore, Singapore
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia
- Centre for Health Research, University of Southern Queensland, Springfield, Australia
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
2
|
Ilan Y. The Constrained Disorder Principle Overcomes the Challenges of Methods for Assessing Uncertainty in Biological Systems. J Pers Med 2024; 15:10. [PMID: 39852203 PMCID: PMC11767140 DOI: 10.3390/jpm15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
Different disciplines are developing various methods for determining and dealing with uncertainties in complex systems. The constrained disorder principle (CDP) accounts for the randomness, variability, and uncertainty that characterize biological systems and are essential for their proper function. Per the CDP, intrinsic unpredictability is mandatory for the dynamicity of biological systems under continuously changing internal and external perturbations. The present paper describes some of the parameters and challenges associated with uncertainty and randomness in biological systems and presents methods for quantifying them. Modeling biological systems necessitates accounting for the randomness, variability, and underlying uncertainty of systems in health and disease. The CDP provides a scheme for dealing with uncertainty in biological systems and sets the basis for using them. This paper presents the CDP-based second-generation artificial intelligence system that incorporates variability to improve the effectiveness of medical interventions. It describes the use of the digital pill that comprises algorithm-based personalized treatment regimens regulated by closed-loop systems based on personalized signatures of variability. The CDP provides a method for using uncertainties in complex systems in an outcome-based manner.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hadassah Medical Center, Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel
| |
Collapse
|
3
|
Saif D, Sarhan AM, Elshennawy NM. Deep-kidney: an effective deep learning framework for chronic kidney disease prediction. Health Inf Sci Syst 2024; 12:3. [PMID: 38045020 PMCID: PMC10692057 DOI: 10.1007/s13755-023-00261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/07/2023] [Indexed: 12/05/2023] Open
Abstract
Chronic kidney disease (CKD) is one of today's most serious illnesses. Because this disease usually does not manifest itself until the kidney is severely damaged, early detection saves many people's lives. Therefore, the contribution of the current paper is proposing three predictive models to predict CKD possible occurrence within 6 or 12 months before disease existence namely; convolutional neural network (CNN), long short-term memory (LSTM) model, and deep ensemble model. The deep ensemble model fuses three base deep learning classifiers (CNN, LSTM, and LSTM-BLSTM) using majority voting technique. To evaluate the performance of the proposed models, several experiments were conducted on two different public datasets. Among the predictive models and the reached results, the deep ensemble model is superior to all the other models, with an accuracy of 0.993 and 0.992 for the 6-month data and 12-month data predictions, respectively.
Collapse
Affiliation(s)
- Dina Saif
- Department of Computers and Control Engineering, Faculty of Engineering, Tanta University, Tanta, Egypt
| | - Amany M. Sarhan
- Department of Computers and Control Engineering, Faculty of Engineering, Tanta University, Tanta, Egypt
| | - Nada M. Elshennawy
- Department of Computers and Control Engineering, Faculty of Engineering, Tanta University, Tanta, Egypt
| |
Collapse
|
4
|
Behera TK, Sathia S, Panigrahi S, Naik PK. Revolutionizing cardiovascular disease classification through machine learning and statistical methods. J Biopharm Stat 2024:1-23. [PMID: 39582240 DOI: 10.1080/10543406.2024.2429524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 11/09/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) include abnormal conditions of the heart, diseased blood vessels, structural problems of the heart, and blood clots. Traditionally, CVD has been diagnosed by clinical experts, physicians, and medical specialists, which is expensive, time-consuming, and requires expert intervention. On the other hand, cost-effective digital diagnosis of CVD is now possible because of the emergence of machine learning (ML) and statistical techniques. METHOD In this research, extensive studies were carried out to classify CVD via 19 promising ML models. To evaluate the performance and rank the ML models for CVD classification, two benchmark CVD datasets are considered from well-known sources, such as Kaggle and the UCI repository. The results are analysed considering individual datasets and their combination to assess the efficiency and reliability of ML models on the basis of various performance measures, such as precision, kappa, accuracy, recall, and the F1 score. Since some of the ML models are stochastic, we repeated the simulation 50 times for each dataset using each model and applied nonparametric statistical tests to draw decisive conclusions. RESULTS The nonparametric Friedman - Nemenyi hypothesis test suggests that the Extra Tree Classifier provides statistically superior accuracy and precision compared with all other models. However, the Extreme Gradient Boost (XGBoost) classifier provides statistically superior recall, kappa, and F1 scores compared with those of all the other models. Additionally, the XGBRF classifier achieves a statistically second-best rank in terms of the recall measures.
Collapse
Affiliation(s)
- Tapan Kumar Behera
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha, India
| | - Siddhartha Sathia
- Department of Cardiothoracic Surgery (CTVS), All India Institute of Medical Sciences, Sijua, Patrapada, Bhubaneswar, Odisha, India
| | - Sibarama Panigrahi
- Department of Computer Science & Engineering (CSE), National Institute of Technology, Rourkela, Odisha, India
| | - Pradeep Kumar Naik
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha, India
| |
Collapse
|
5
|
Sun M, Liu W, Jiang H, Wu X, Zhang S, Liu H. Large-scale, comprehensive plasma metabolomic analyses reveal potential biomarkers for the diagnosis of early-stage coronary atherosclerosis. Clin Chim Acta 2024; 562:119832. [PMID: 38936535 DOI: 10.1016/j.cca.2024.119832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/11/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Coronary atherosclerosis (CAS) is a prevalent and chronic life-threatening disease. However, the detection of CAS at an early stage is difficult because of the lack of effective noninvasive diagnostic methods. The present study aimed to characterize the plasma metabolome of early-stage CAS patients to discover metabolomic biomarkers, develop a novel metabolite-based model for accurate noninvasive diagnosis of early-stage CAS, and explore the underlying metabolic mechanisms involved. METHODS A total of 100 patients with early-stage CAS and 120 age- and sex-matched control subjects were recruited from the Chinese Han population and further randomly divided into training (n = 120) and test sets (n = 100). The metabolomic profiles of the plasma samples were analyzed by an integrated untargeted liquid chromatography-mass spectrometry approach, including two separation modes and two ionization modes. Univariate and multivariate statistical analyses were employed to identify potential biomarkers and construct an early-stage CAS diagnostic model. RESULTS The integrated analytical method established herein improved metabolite coverage compared with single chromatographic separation and MS ionization mode. A total of 80 metabolites were identified as potential biomarkers of early-stage CAS, and these metabolites were mainly involved in glycerophospholipid, fatty acid, sphingolipid, and amino acid metabolism. An effective diagnostic model for early-stage CAS was established, incorporating 11 metabolites and achieving areas under the receiver operating characteristic curve (AUCs) of 0.984 and 0.908 in the training and test sets, respectively. CONCLUSIONS Our study not only successfully developed an effective noninvasive diagnostic model for identifying early-stage CAS but also provided novel insights into the pathogenesis of CAS.
Collapse
Affiliation(s)
- Meng Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, and The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, PR China
| | - Wei Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, and The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, PR China
| | - Hao Jiang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, and The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, PR China
| | - Xiaoyan Wu
- Department of Epidemiology and Biostatistics, Guilin Medical University, Guilin 514499, PR China
| | - Shuo Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, and The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, PR China.
| | - Haixia Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, and The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, PR China.
| |
Collapse
|
6
|
Wang L, Zheng Y, Chen Y, Xu H, Li F. Clinical named entity recognition for percutaneous coronary intervention surgical information with hybrid neural network. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:065114. [PMID: 38921058 DOI: 10.1063/5.0174442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/04/2024] [Indexed: 06/27/2024]
Abstract
Percutaneous coronary intervention (PCI) has become a vital treatment approach for coronary artery disease, but the clinical data of PCI cannot be directly utilized due to its unstructured characteristics. The existing clinical named entity recognition (CNER) has been used to identify specific entities such as body parts, drugs, and diseases, but its specific potential in PCI clinical texts remains largely unexplored. How to effectively use CNER to deeply mine the information in the existing PCI clinical records is worth studying. In this paper, a total of 24 267 corpora are collected from the Cardiovascular Disease Treatment Center of the People's Hospital of Liaoning Province in China. We select three types of clinical record texts of fine-grained PCI surgical information, from which 5.8% of representative surgical records of PCI patients are selected as datasets for labeling. To fully utilize global information and multi-level semantic features, we design a novel character-level vector embedding method and further propose a new hybrid model based on it. Based on the classic Bidirectional Long Short-Term Memory Network (BiLSTM), the model further integrates Convolutional Neural Networks (CNNs) and Bidirectional Encoder Representations from Transformers (BERTs) for feature extraction and representation, and finally uses Conditional Random Field (CRF) for decoding and predicting label sequences. This hybrid model is referred to as BCC-BiLSTM in this paper. In order to verify the performance of the proposed hybrid model for extracting PCI surgical information, we simultaneously compare both representative traditional and intelligent methods. Under the same circumstances, compared with other intelligent methods, the BCC-BiLSTM proposed in this paper reduces the word vector dimension by 15%, and the F1 score reaches 86.2% in named entity recognition of PCI clinical texts, which is 26.4% higher than that of HMM. The improvement is 1.2% higher than BiLSTM + CRF and 0.7% higher than the most popular BERT + BiLSTM + CRF. Compared with the representative models, the hybrid model has better performance and can achieve optimal results faster in the model training process, so it has good clinical application prospects.
Collapse
Affiliation(s)
- Li Wang
- Dalian Maritime University, Dalian 116026, China
| | - Yuhang Zheng
- Dalian Maritime University, Dalian 116026, China
| | - Yi Chen
- Sussex Artificial Intelligence Institute, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hongzeng Xu
- Department of Cardiology, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang 110011, China
| | - Feng Li
- Sussex Artificial Intelligence Institute, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
7
|
Akter S, Mustafa HA. Analysis and interpretability of machine learning models to classify thyroid disease. PLoS One 2024; 19:e0300670. [PMID: 38820460 PMCID: PMC11142566 DOI: 10.1371/journal.pone.0300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 03/01/2024] [Indexed: 06/02/2024] Open
Abstract
Thyroid disease classification plays a crucial role in early diagnosis and effective treatment of thyroid disorders. Machine learning (ML) techniques have demonstrated remarkable potential in this domain, offering accurate and efficient diagnostic tools. Most of the real-life datasets have imbalanced characteristics that hamper the overall performance of the classifiers. Existing data balancing techniques process the whole dataset at a time that sometimes causes overfitting and underfitting. However, the complexity of some ML models, often referred to as "black boxes," raises concerns about their interpretability and clinical applicability. This paper presents a comprehensive study focused on the analysis and interpretability of various ML models for classifying thyroid diseases. In our work, we first applied a new data-balancing mechanism using a clustering technique and then analyzed the performance of different ML algorithms. To address the interpretability challenge, we explored techniques for model explanation and feature importance analysis using eXplainable Artificial Intelligence (XAI) tools globally as well as locally. Finally, the XAI results are validated with the domain experts. Experimental results have shown that our proposed mechanism is efficient in diagnosing thyroid disease and can explain the models effectively. The findings can contribute to bridging the gap between adopting advanced ML techniques and the clinical requirements of transparency and accountability in diagnostic decision-making.
Collapse
Affiliation(s)
- Sumya Akter
- Institute of Information and Communication Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- Department of Computer Science and Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Hossen A. Mustafa
- Institute of Information and Communication Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| |
Collapse
|
8
|
Rahman A, Debnath T, Kundu D, Khan MSI, Aishi AA, Sazzad S, Sayduzzaman M, Band SS. Machine learning and deep learning-based approach in smart healthcare: Recent advances, applications, challenges and opportunities. AIMS Public Health 2024; 11:58-109. [PMID: 38617415 PMCID: PMC11007421 DOI: 10.3934/publichealth.2024004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/18/2023] [Indexed: 04/16/2024] Open
Abstract
In recent years, machine learning (ML) and deep learning (DL) have been the leading approaches to solving various challenges, such as disease predictions, drug discovery, medical image analysis, etc., in intelligent healthcare applications. Further, given the current progress in the fields of ML and DL, there exists the promising potential for both to provide support in the realm of healthcare. This study offered an exhaustive survey on ML and DL for the healthcare system, concentrating on vital state of the art features, integration benefits, applications, prospects and future guidelines. To conduct the research, we found the most prominent journal and conference databases using distinct keywords to discover scholarly consequences. First, we furnished the most current along with cutting-edge progress in ML-DL-based analysis in smart healthcare in a compendious manner. Next, we integrated the advancement of various services for ML and DL, including ML-healthcare, DL-healthcare, and ML-DL-healthcare. We then offered ML and DL-based applications in the healthcare industry. Eventually, we emphasized the research disputes and recommendations for further studies based on our observations.
Collapse
Affiliation(s)
- Anichur Rahman
- Department of CSE, National Institute of Textile Engineering and Research (NITER), Constituent Institute of the University of Dhaka, Savar, Dhaka-1350
- Department of CSE, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Tanoy Debnath
- Department of CSE, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
- Department of CSE, Green University of Bangladesh, 220/D, Begum Rokeya Sarani, Dhaka -1207, Bangladesh
| | - Dipanjali Kundu
- Department of CSE, National Institute of Textile Engineering and Research (NITER), Constituent Institute of the University of Dhaka, Savar, Dhaka-1350
| | - Md. Saikat Islam Khan
- Department of CSE, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Airin Afroj Aishi
- Department of Computing and Information System, Daffodil International University, Savar, Dhaka, Bangladesh
| | - Sadia Sazzad
- Department of CSE, National Institute of Textile Engineering and Research (NITER), Constituent Institute of the University of Dhaka, Savar, Dhaka-1350
| | - Mohammad Sayduzzaman
- Department of CSE, National Institute of Textile Engineering and Research (NITER), Constituent Institute of the University of Dhaka, Savar, Dhaka-1350
| | - Shahab S. Band
- Department of Information Management, International Graduate School of Artificial Intelligence, National Yunlin University of Science and Technology, Taiwan
| |
Collapse
|
9
|
Panjiyar BK, Davydov G, Nashat H, Ghali S, Afifi S, Suryadevara V, Habab Y, Hutcheson A, Arcia Franchini AP. A Systematic Review: Do the Use of Machine Learning, Deep Learning, and Artificial Intelligence Improve Patient Outcomes in Acute Myocardial Ischemia Compared to Clinician-Only Approaches? Cureus 2023; 15:e43003. [PMID: 37674942 PMCID: PMC10478604 DOI: 10.7759/cureus.43003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/05/2023] [Indexed: 09/08/2023] Open
Abstract
Cardiovascular diseases (CVDs) present a significant global health challenge and remain a primary cause of death. Early detection and intervention are crucial for improved outcomes in acute coronary syndrome (ACS), particularly acute myocardial infarction (AMI) cases. Artificial intelligence (AI) can detect heart disease early by analyzing patient information and electrocardiogram (ECG) data, providing invaluable insights into this critical health issue. However, the imbalanced nature of ECG and patient data presents challenges for traditional machine learning (ML) algorithms in performing unbiasedly. Investigators have proposed various data-level and algorithm-level solutions to overcome these challenges. In this study, we used a systematic literature review (SLR) approach to give an overview of the current literature and to highlight the difficulties of utilizing ML, deep learning (DL), and AI algorithms in predicting, diagnosing, and prognosis of heart diseases. We reviewed 181 articles from reputable journals published between 2013 and June 15, 2023, focusing on eight selected papers for in-depth analysis. The analysis considered factors such as heart disease type, algorithms used, applications, and proposed solutions and compared the benefits of algorithms combined with clinicians versus clinicians alone. This systematic review revealed that the current ML-based diagnostic approaches face several open problems and issues when implementing ML, DL, and AI in real-life settings. Although these algorithms show higher sensitivities, specificities, and accuracies in detecting heart disease, we must address the ethical concerns while implementing these models into clinical practice. The transparency of how these algorithms operate remains a challenge. Nevertheless, further exploration and research in ML, DL, and AI are necessary to overcome these challenges and fully harness their potential to improve health outcomes for patients with AMI.
Collapse
Affiliation(s)
- Binay K Panjiyar
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Gershon Davydov
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Hiba Nashat
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sally Ghali
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Shadin Afifi
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Vineet Suryadevara
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Yaman Habab
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Alana Hutcheson
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ana P Arcia Franchini
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
10
|
Khozeimeh F, Alizadehsani R, Shirani M, Tartibi M, Shoeibi A, Alinejad-Rokny H, Harlapur C, Sultanzadeh SJ, Khosravi A, Nahavandi S, Tan RS, Acharya UR. ALEC: Active learning with ensemble of classifiers for clinical diagnosis of coronary artery disease. Comput Biol Med 2023; 158:106841. [PMID: 37028142 DOI: 10.1016/j.compbiomed.2023.106841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/01/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Invasive angiography is the reference standard for coronary artery disease (CAD) diagnosis but is expensive and associated with certain risks. Machine learning (ML) using clinical and noninvasive imaging parameters can be used for CAD diagnosis to avoid the side effects and cost of angiography. However, ML methods require labeled samples for efficient training. The labeled data scarcity and high labeling costs can be mitigated by active learning. This is achieved through selective query of challenging samples for labeling. To the best of our knowledge, active learning has not been used for CAD diagnosis yet. An Active Learning with Ensemble of Classifiers (ALEC) method is proposed for CAD diagnosis, consisting of four classifiers. Three of these classifiers determine whether a patient's three main coronary arteries are stenotic or not. The fourth classifier predicts whether the patient has CAD or not. ALEC is first trained using labeled samples. For each unlabeled sample, if the outputs of the classifiers are consistent, the sample along with its predicted label is added to the pool of labeled samples. Inconsistent samples are manually labeled by medical experts before being added to the pool. The training is performed once more using the samples labeled so far. The interleaved phases of labeling and training are repeated until all samples are labeled. Compared with 19 other active learning algorithms, ALEC combined with a support vector machine classifier attained superior performance with 97.01% accuracy. Our method is justified mathematically as well. We also comprehensively analyze the CAD dataset used in this paper. As part of dataset analysis, features pairwise correlation is computed. The top 15 features contributing to CAD and stenosis of the three main coronary arteries are determined. The relationship between stenosis of the main arteries is presented using conditional probabilities. The effect of considering the number of stenotic arteries on sample discrimination is investigated. The discrimination power over dataset samples is visualized, assuming each of the three main coronary arteries as a sample label and considering the two remaining arteries as sample features.
Collapse
|
11
|
Kampaktsis PN, Emfietzoglou M, Al Shehhi A, Fasoula NA, Bakogiannis C, Mouselimis D, Tsarouchas A, Vassilikos VP, Kallmayer M, Eckstein HH, Hadjileontiadis L, Karlas A. Artificial intelligence in atherosclerotic disease: Applications and trends. Front Cardiovasc Med 2023; 9:949454. [PMID: 36741834 PMCID: PMC9896100 DOI: 10.3389/fcvm.2022.949454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the most common cause of death globally. Increasing amounts of highly diverse ASCVD data are becoming available and artificial intelligence (AI) techniques now bear the promise of utilizing them to improve diagnosis, advance understanding of disease pathogenesis, enable outcome prediction, assist with clinical decision making and promote precision medicine approaches. Machine learning (ML) algorithms in particular, are already employed in cardiovascular imaging applications to facilitate automated disease detection and experts believe that ML will transform the field in the coming years. Current review first describes the key concepts of AI applications from a clinical standpoint. We then provide a focused overview of current AI applications in four main ASCVD domains: coronary artery disease (CAD), peripheral arterial disease (PAD), abdominal aortic aneurysm (AAA), and carotid artery disease. For each domain, applications are presented with refer to the primary imaging modality used [e.g., computed tomography (CT) or invasive angiography] and the key aim of the applied AI approaches, which include disease detection, phenotyping, outcome prediction, and assistance with clinical decision making. We conclude with the strengths and limitations of AI applications and provide future perspectives.
Collapse
Affiliation(s)
- Polydoros N. Kampaktsis
- Division of Cardiology, Columbia University Irving Medical Center, New York, NY, United States,*Correspondence: Polydoros N. Kampaktsis,
| | - Maria Emfietzoglou
- Heart Centre, John Radcliffe Hospital, Oxford University Hospitals, NHS Foundation Trust, Oxford, United Kingdom
| | - Aamna Al Shehhi
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Nikolina-Alexia Fasoula
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany,School of Medicine, Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
| | - Constantinos Bakogiannis
- Third Department of Cardiology, Hippokration University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Mouselimis
- Third Department of Cardiology, Hippokration University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasios Tsarouchas
- Third Department of Cardiology, Hippokration University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vassilios P. Vassilikos
- Third Department of Cardiology, Hippokration University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michael Kallmayer
- Department for Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Leontios Hadjileontiadis
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates,Healthcare Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates,Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Angelos Karlas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany,School of Medicine, Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany,Department for Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
12
|
Nesaragi N, Sharma A, Patidar S, Acharya UR. Automated diagnosis of coronary artery disease using scalogram-based tensor decomposition with heart rate signals. Med Eng Phys 2022; 110:103811. [PMID: 35525698 DOI: 10.1016/j.medengphy.2022.103811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 01/18/2023]
Abstract
Early identification of coronary artery disease (CAD) can facilitate timely clinical intervention and save lives. This study aims to develop a machine learning framework that uses tensor analysis on heart rate (HR) signals to automate the CAD detection task. A third-order tensor representing a time-frequency relationship is constructed by fusing scalograms as vertical slices of the tensor. Each scalogram is computed from the considered time frame of a given HR signal. The derived scalogram represents the heterogeneity of data as a two-dimensional map. These two-dimensional maps are stacked one after the other horizontally along the z-axis to form a 3-way tensor for each HR signal. Each two-dimensional map is represented as a vertical slice in the xy - plane. Tensor factorization of such a fused tensor for every HR signal is performed using canonical polyadic (CP) decomposition. Only the core factor is retained later, excluding the three unitary matrices to provide the latent feature set for the detection task. The resultant latent features are then fed to machine learning classifiers for binary classification. Bayesian optimization is performed in a five-fold cross-validation strategy in search of the optimal machine learning classifier. The experimental results yielded the accuracy, sensitivity, and specificity of 96.62%, 96.53%, and 96.67%, respectively, with the bagged trees ensemble method. The proposed tensor decomposition deciphered higher-order interrelations among the considered time-frequency representations of HR signals.
Collapse
Affiliation(s)
- Naimahmed Nesaragi
- Dept. of Electronics & Communication Engineering, National Institute of Technology, Goa, India
| | - Ashish Sharma
- Dept. of Electronics & Communication Engineering, National Institute of Technology, Goa, India
| | - Shivnarayan Patidar
- Dept. of Electronics & Communication Engineering, National Institute of Technology, Goa, India.
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Bioinformatics and Medical Engineering, Asia University, Taiwan; School of Science and Technology, Singapore University of Social Sciences, Singapore.
| |
Collapse
|
13
|
Panahiazar M, Bishara AM, Chern Y, Alizadehsani R, Islam SMS, Hadley D, Arnaout R, Beygui RE. Gender-based time discrepancy in diagnosis of coronary artery disease based on data analytics of electronic medical records. Front Cardiovasc Med 2022; 9:969325. [PMID: 36505372 PMCID: PMC9729739 DOI: 10.3389/fcvm.2022.969325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Background Women continue to have worse Coronary Artery Disease (CAD) outcomes than men. The causes of this discrepancy have yet to be fully elucidated. The main objective of this study is to detect gender discrepancies in the diagnosis and treatment of CAD. Methods We used data analytics to risk stratify ~32,000 patients with CAD of the total 960,129 patients treated at the UCSF Medical Center over an 8 year period. We implemented a multidimensional data analytics framework to trace patients from admission through treatment to create a path of events. Events are any medications or noninvasive and invasive procedures. The time between events for a similar set of paths was calculated. Then, the average waiting time for each step of the treatment was calculated. Finally, we applied statistical analysis to determine differences in time between diagnosis and treatment steps for men and women. Results There is a significant time difference from the first time of admission to diagnostic Cardiac Catheterization between genders (p-value = 0.000119), while the time difference from diagnostic Cardiac Catheterization to CABG is not statistically significant. Conclusion Women had a significantly longer interval between their first physician encounter indicative of CAD and their first diagnostic cardiac catheterization compared to men. Avoiding this delay in diagnosis may provide more timely treatment and a better outcome for patients at risk. Finally, we conclude by discussing the impact of the study on improving patient care with early detection and managing individual patients at risk of rapid progression of CAD.
Collapse
Affiliation(s)
- Maryam Panahiazar
- Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of California, San Francisco, San Francisco, CA, United States,Institute for Computational Health Sciences (ICHS), School of Medicine, University of California, San Francisco, San Francisco, CA, United States,*Correspondence: Maryam Panahiazar ;
| | - Andrew M. Bishara
- Institute for Computational Health Sciences (ICHS), School of Medicine, University of California, San Francisco, San Francisco, CA, United States,Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Yorick Chern
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, VIC, Australia
| | - Sheikh M. Shariful Islam
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Dexter Hadley
- Department of Clinical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Rima Arnaout
- Institute for Computational Health Sciences (ICHS), School of Medicine, University of California, San Francisco, San Francisco, CA, United States,Division of Cardiology, Department of Medicine, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Ramin E. Beygui
- Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
14
|
Efficient Model for Coronary Artery Disease Diagnosis: A Comparative Study of Several Machine Learning Algorithms. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5359540. [PMID: 36304749 PMCID: PMC9596250 DOI: 10.1155/2022/5359540] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 11/18/2022]
Abstract
Background In today's industrialized world, coronary artery disease (CAD) is one of the leading causes of death, and early detection and timely intervention can prevent many of its complications and eliminate or reduce the resulting mortality. Machine learning (ML) methods as one of the cutting-edge technologies can be used as a suitable solution in diagnosing this disease. Methods In this study, different ML algorithms' performances were compared for their effectiveness in developing a model for early CAD diagnosis based on clinical examination features. This applied descriptive study was conducted on 303 records and overall 26 features, of which 26 were selected as the target features with the advice of several clinical experts. In order to provide a diagnostic model for CAD, we ran most of the most critical classification algorithms, including Multilayer Perceptron (MLP), Support Vector Machine (SVM), Logistic Regression (LR), J48, Random Forest (RF), K-Nearest Neighborhood (KNN), and Naive Bayes (NB). Seven different classification algorithms with 26 predictive features were tested to cover all feature space and reduce model error, and the most efficient algorithms were identified by comparison of the results. Results Based on the compared performance metrics, SVM (AUC = 0.88, F-measure = 0.88, ROC = 0.85), and RF (AUC = 0.87, F-measure = 0.87, ROC = 0.91) were the most effective ML algorithms. Among the algorithms, the KNN algorithm had the lowest efficiency (AUC = 0.81, F-measure = 0.81, ROC = 0.77). In the diagnosis of coronary artery disease, machine learning algorithms have played an important role. Proposed ML models can provide practical, cost-effective, and valuable support to doctors in making decisions according to a good prediction. Discussion. It can become the basis for developing clinical decision support systems. SVM and RF algorithms had the highest efficiency and could diagnose CAD based on patient examination data. It is suggested that further studies be performed using these algorithms to diagnose coronary artery disease to obtain more accurate results.
Collapse
|
15
|
A Novel Sequential Three-Way Decision Model for Medical Diagnosis. Symmetry (Basel) 2022. [DOI: 10.3390/sym14051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the sequential three-way decision model (S3WD), conditional probability and decision threshold pair are two key elements affecting the classification results. The classical model calculates the conditional probability based on the strict equivalence relationship, which limits its application in reality. In addition, little research has studied the relationship between the threshold change and its cause at different granularity levels. To deal with these deficiencies, we propose a novel sequential three-way decision model and apply it to medical diagnosis. Firstly, we propose two methods of calculating conditional probability based on similarity relation, which satisfies the property of symmetry. Then, we construct an S3WD model for a medical information system and use three different kinds of cost functions as the basis for modifying the threshold pair at each level. Subsequently, the rule of the decision threshold pair change is explored. Furthermore, two algorithms used for implementing the proposed S3WD model are introduced. Finally, extensive experiments are carried out to validate the feasibility and effectiveness of the proposed model, and the results show that the model can achieve better classification performance.
Collapse
|
16
|
Huang L, Hu SW, Lu CJ, Chang CC, Chen GD, Ng SC. The three-year evolution of overactive bladder syndrome in community-dwelling female residents aged 40 years and above. Taiwan J Obstet Gynecol 2022; 61:479-484. [PMID: 35595441 DOI: 10.1016/j.tjog.2022.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE In this 3-year longitudinal cohort study, we aimed to evaluate the evolution of overactive bladder in female community residents aged 40 years and above in central Taiwan and identify its risk factors. MATERIALS AND METHODS Female community residents aged 40 years and above were invited to participate in this study and fill out a yearly Overactive Bladder Symptom Score (OABSS) questionnaire over a 3-year period. A woman was defined to have OAB if the total OABSS was ≧4 and urgency score was ≧2. At the end of the third year, the incidence, remission, persistence, and relapse of OAB in these community residents were calculated. A novel statistical analysis technique, machine learning with data mining, was applied to examine its use in this field. Five machine learning models were used to predict the risk factors associated with persistent OAB and the results were compared with the conventional logistic regression model. RESULTS In total, 1469 female residents were included in the first year and 1290 (87.8%) women completed the questionnaires for all 3 years. The prevalence of OAB was 20.2% (n = 260). The second- and third-year incidence rates of OAB were 13.5% and 7.1%. The remission rates were 39.6% and 44.3%. Twenty-two percent of the women reported relapse of OAB in the third year. The two-year OAB persistence rate was 43.8%. For the prediction of risk factors for persistent OAB, the multivariable logistic regression model had better predictive accuracy (AUC = 0.664) than the five machine learning models. Age ≧ 60 was associated with persistent OAB (OR 2.8; 95% CI: 1.34-5.89, P = 0.002). CONCLUSION The yearly incidence, remission, and persistence rates of OAB were high in female community residents aged 40 years and above in central Taiwan. Older women had a higher risk of persistent OAB symptoms in this 3-year longitudinal cohort study.
Collapse
Affiliation(s)
- Litz Huang
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Suh-Woan Hu
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chi-Jie Lu
- Graduate Institute of Business Administration, Fu-Jen Catholic University, New Taipei City, Taiwan; Department of Information Management, Fu-Jen Catholic University, New Taipei City, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chi-Chang Chang
- School of Medical Informatics, Chung Shan Medical University, Taiwan; IT Office, Chung Shan Medical University Hospital, Taiwan
| | - Gin-Den Chen
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chun Shan Medical University, Taichung, Taiwan
| | - Soo-Cheen Ng
- Department of Obstetrics and Gynecology, St. Joseph's Hospital, Yunlin County, Taiwan.
| |
Collapse
|
17
|
Prediction model for different progressions of Atherosclerosis in ApoE-/- mice based on lipidomics. J Pharm Biomed Anal 2022; 214:114734. [DOI: 10.1016/j.jpba.2022.114734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/06/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023]
|
18
|
Hassannataj Joloudari J, Azizi F, Nematollahi MA, Alizadehsani R, Hassannatajjeloudari E, Nodehi I, Mosavi A. GSVMA: A Genetic Support Vector Machine ANOVA Method for CAD Diagnosis. Front Cardiovasc Med 2022; 8:760178. [PMID: 35187099 PMCID: PMC8855497 DOI: 10.3389/fcvm.2021.760178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background Coronary artery disease (CAD) is one of the crucial reasons for cardiovascular mortality in middle-aged people worldwide. The most typical tool is angiography for diagnosing CAD. The challenges of CAD diagnosis using angiography are costly and have side effects. One of the alternative solutions is the use of machine learning-based patterns for CAD diagnosis. Methods Hence, this paper provides a new hybrid machine learning model called genetic support vector machine and analysis of variance (GSVMA). The analysis of variance (ANOVA) is known as the kernel function for the SVM algorithm. The proposed model is performed based on the Z-Alizadeh Sani dataset so that a genetic optimization algorithm is used to select crucial features. In addition, SVM with ANOVA, linear SVM (LSVM), and library for support vector machine (LIBSVM) with radial basis function (RBF) methods were applied to classify the dataset. Results As a result, the GSVMA hybrid method performs better than other methods. This proposed method has the highest accuracy of 89.45% through a 10-fold crossvalidation technique with 31 selected features on the Z-Alizadeh Sani dataset. Conclusion We demonstrated that SVM combined with genetic optimization algorithm could be lead to more accuracy. Therefore, our study confirms that the GSVMA method outperforms other methods so that it can facilitate CAD diagnosis.
Collapse
Affiliation(s)
| | - Faezeh Azizi
- Department of Computer Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
| | | | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, VIC, Australia
| | - Edris Hassannatajjeloudari
- Department of Nursing, School of Nursing and Allied Medical Sciences, Maragheh Faculty of Medical Sciences, Maragheh, Iran
| | - Issa Nodehi
- Department of Computer Engineering, University of Qom, Qom, Iran
| | - Amir Mosavi
- Faculty of Informatics, Technische Universität Dresden, Dresden, Germany
- Faculty of Civil Engineering, TU-Dresden, Dresden, Germany
- John von Neumann Faculty of Informatics, Óbuda University, Budapest, Hungary
- Institute of Information Society, University of Public Service, Budapest, Hungary
- Institute of Information Engineering, Automation and Mathematics, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| |
Collapse
|
19
|
Bazoukis G, Hall J, Loscalzo J, Antman EM, Fuster V, Armoundas AA. The inclusion of augmented intelligence in medicine: A framework for successful implementation. Cell Rep Med 2022; 3:100485. [PMID: 35106506 PMCID: PMC8784713 DOI: 10.1016/j.xcrm.2021.100485] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Artificial intelligence (AI) algorithms are being applied across a large spectrum of everyday life activities. The implementation of AI algorithms in clinical practice has been met with some skepticism and concern, mainly because of the uneasiness that stems, in part, from a lack of understanding of how AI operates, together with the role of physicians and patients in the decision-making process; uncertainties regarding the reliability of the data and the outcomes; as well as concerns regarding the transparency, accountability, liability, handling of personal data, and monitoring and system upgrades. In this viewpoint, we take these issues into consideration and offer an integrated regulatory framework to AI developers, clinicians, researchers, and regulators, aiming to facilitate the adoption of AI that rests within the FDA's pathway, in research, development, and clinical medicine.
Collapse
Affiliation(s)
| | - Jennifer Hall
- American Heart Association, National Center, Dallas, TX
- Division of Cardiology, Department of Medicine, University of Minnesota, MN
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | | | - Valentín Fuster
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Antonis A. Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology Cambridge, MA
| |
Collapse
|
20
|
Nadakinamani RG, Reyana A, Kautish S, Vibith AS, Gupta Y, Abdelwahab SF, Mohamed AW. Clinical Data Analysis for Prediction of Cardiovascular Disease Using Machine Learning Techniques. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2973324. [PMID: 35069715 PMCID: PMC8767405 DOI: 10.1155/2022/2973324] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease is difficult to detect due to several risk factors, including high blood pressure, cholesterol, and an abnormal pulse rate. Accurate decision-making and optimal treatment are required to address cardiac risk. As machine learning technology advances, the healthcare industry's clinical practice is likely to change. As a result, researchers and clinicians must recognize the importance of machine learning techniques. The main objective of this research is to recommend a machine learning-based cardiovascular disease prediction system that is highly accurate. In contrast, modern machine learning algorithms such as REP Tree, M5P Tree, Random Tree, Linear Regression, Naive Bayes, J48, and JRIP are used to classify popular cardiovascular datasets. The proposed CDPS's performance was evaluated using a variety of metrics to identify the best suitable machine learning model. When it came to predicting cardiovascular disease patients, the Random Tree model performed admirably, with the highest accuracy of 100%, the lowest MAE of 0.0011, the lowest RMSE of 0.0231, and the fastest prediction time of 0.01 seconds.
Collapse
Affiliation(s)
| | - A. Reyana
- Department of Computer Science and Engineering, Hindusthan College of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Sandeep Kautish
- Department of Computer Science and Engineering, LBEF Campus, Kathmandu, Nepal, India
| | - A. S. Vibith
- Department of Computer Science and Engineering, RMK College of Engineering and Technology, Tiruvallur, Tamil Nadu, India
| | - Yogita Gupta
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Sayed F. Abdelwahab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, PO Box 11099, Taif 21944, Saudi Arabia
| | - Ali Wagdy Mohamed
- Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt
- Department of Mathematics and Actuarial Science, School of Science and Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
21
|
Sharifrazi D, Alizadehsani R, Joloudari JH, Band SS, Hussain S, Sani ZA, Hasanzadeh F, Shoeibi A, Dehzangi A, Sookhak M, Alinejad-Rokny H. CNN-KCL: Automatic myocarditis diagnosis using convolutional neural network combined with k-means clustering. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:2381-2402. [PMID: 35240789 DOI: 10.3934/mbe.2022110] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Myocarditis is the form of an inflammation of the middle layer of the heart wall which is caused by a viral infection and can affect the heart muscle and its electrical system. It has remained one of the most challenging diagnoses in cardiology. Myocardial is the prime cause of unexpected death in approximately 20% of adults less than 40 years of age. Cardiac MRI (CMR) has been considered a noninvasive and golden standard diagnostic tool for suspected myocarditis and plays an indispensable role in diagnosing various cardiac diseases. However, the performance of CMR depends heavily on the clinical presentation and features such as chest pain, arrhythmia, and heart failure. Besides, other imaging factors like artifacts, technical errors, pulse sequence, acquisition parameters, contrast agent dose, and more importantly qualitatively visual interpretation can affect the result of the diagnosis. This paper introduces a new deep learning-based model called Convolutional Neural Network-Clustering (CNN-KCL) to diagnose Myocarditis. In this study, we used 47 subjects with a total number of 98,898 images to diagnose myocarditis disease. Our results demonstrate that the proposed method achieves an accuracy of 97.41% based on 10 fold-cross validation technique with 4 clusters for diagnosis of Myocarditis. To the best of our knowledge, this research is the first to use deep learning algorithms for the diagnosis of myocarditis.
Collapse
Affiliation(s)
- Danial Sharifrazi
- Department of Computer Engineering, School of Technical and Engineering, Shiraz Branch, Islamic Azad University, Shiraz, IR
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, VIC 3216, AU
| | | | - Shahab S Band
- Future Technology Research Center, College of Future, National Yunlin University of Science and Technology 123 University Road, Section 3, Douliou, Yunlin 64002, TW
| | - Sadiq Hussain
- System Administrator, Dibrugarh University, Assam 786004, IN
| | - Zahra Alizadeh Sani
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Omid hospital, Iran University of Medical Sciences, Tehran, IR
| | | | - Afshin Shoeibi
- FPGA Laboratory, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, IR
| | - Abdollah Dehzangi
- Department of Computer Science, Rutgers University, Camden, NJ 08102, USA
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA
| | - Mehdi Sookhak
- Department of Computer Science, Texas A & M University at Corpus Christi, Corpus Christi, TX 78412, USA
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, AU
- Health Data Analytics Program, AI-enabled Processes (AIP) Research Centre, Macquarie University, Sydney 2109, AU
| |
Collapse
|
22
|
Valarmathi R, Sheela T. Heart disease prediction using hyper parameter optimization (HPO) tuning. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.103033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Khozeimeh F, Sharifrazi D, Izadi NH, Joloudari JH, Shoeibi A, Alizadehsani R, Gorriz JM, Hussain S, Sani ZA, Moosaei H, Khosravi A, Nahavandi S, Islam SMS. Combining a convolutional neural network with autoencoders to predict the survival chance of COVID-19 patients. Sci Rep 2021; 11:15343. [PMID: 34321491 PMCID: PMC8319175 DOI: 10.1038/s41598-021-93543-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
COVID-19 has caused many deaths worldwide. The automation of the diagnosis of this virus is highly desired. Convolutional neural networks (CNNs) have shown outstanding classification performance on image datasets. To date, it appears that COVID computer-aided diagnosis systems based on CNNs and clinical information have not yet been analysed or explored. We propose a novel method, named the CNN-AE, to predict the survival chance of COVID-19 patients using a CNN trained with clinical information. Notably, the required resources to prepare CT images are expensive and limited compared to those required to collect clinical data, such as blood pressure, liver disease, etc. We evaluated our method using a publicly available clinical dataset that we collected. The dataset properties were carefully analysed to extract important features and compute the correlations of features. A data augmentation procedure based on autoencoders (AEs) was proposed to balance the dataset. The experimental results revealed that the average accuracy of the CNN-AE (96.05%) was higher than that of the CNN (92.49%). To demonstrate the generality of our augmentation method, we trained some existing mortality risk prediction methods on our dataset (with and without data augmentation) and compared their performances. We also evaluated our method using another dataset for further generality verification. To show that clinical data can be used for COVID-19 survival chance prediction, the CNN-AE was compared with multiple pre-trained deep models that were tuned based on CT images.
Collapse
Affiliation(s)
- Fahime Khozeimeh
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Danial Sharifrazi
- Department of Computer Engineering, School of Technical and Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Navid Hoseini Izadi
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | | | - Afshin Shoeibi
- Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
- Faculty of Electrical and Computer Engineering, Biomedical Data Acquisition Lab, K. N. Toosi University of Technology, Tehran, Iran
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3216, Australia.
| | - Juan M Gorriz
- Department of Signal Theory, Networking and Communications, Universidad de Granada, Granada, Spain
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Sadiq Hussain
- System Administrator, Dibrugarh University, Assam, 786004, India
| | | | - Hossein Moosaei
- Department of Mathematics, Faculty of Science, University of Bojnord, Bojnord, Iran
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Sheikh Mohammed Shariful Islam
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, 3220, Australia
- Cardiovascular Division, The George Institute for Global Health, Newtown, Australia
- Sydney Medical School, University of Sydney, Camperdown, Australia
| |
Collapse
|
24
|
Sharifrazi D, Alizadehsani R, Roshanzamir M, Joloudari JH, Shoeibi A, Jafari M, Hussain S, Sani ZA, Hasanzadeh F, Khozeimeh F, Khosravi A, Nahavandi S, Panahiazar M, Zare A, Islam SMS, Acharya UR. Fusion of convolution neural network, support vector machine and Sobel filter for accurate detection of COVID-19 patients using X-ray images. Biomed Signal Process Control 2021; 68:102622. [PMID: 33846685 PMCID: PMC8026268 DOI: 10.1016/j.bspc.2021.102622] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/22/2021] [Accepted: 04/04/2021] [Indexed: 02/02/2023]
Abstract
The coronavirus (COVID-19) is currently the most common contagious disease which is prevalent all over the world. The main challenge of this disease is the primary diagnosis to prevent secondary infections and its spread from one person to another. Therefore, it is essential to use an automatic diagnosis system along with clinical procedures for the rapid diagnosis of COVID-19 to prevent its spread. Artificial intelligence techniques using computed tomography (CT) images of the lungs and chest radiography have the potential to obtain high diagnostic performance for Covid-19 diagnosis. In this study, a fusion of convolutional neural network (CNN), support vector machine (SVM), and Sobel filter is proposed to detect COVID-19 using X-ray images. A new X-ray image dataset was collected and subjected to high pass filter using a Sobel filter to obtain the edges of the images. Then these images are fed to CNN deep learning model followed by SVM classifier with ten-fold cross validation strategy. This method is designed so that it can learn with not many data. Our results show that the proposed CNN-SVM with Sobel filter (CNN-SVM + Sobel) achieved the highest classification accuracy, sensitivity and specificity of 99.02%, 100% and 95.23%, respectively in automated detection of COVID-19. It showed that using Sobel filter can improve the performance of CNN. Unlike most of the other researches, this method does not use a pre-trained network. We have also validated our developed model using six public databases and obtained the highest performance. Hence, our developed model is ready for clinical application.
Collapse
Affiliation(s)
- Danial Sharifrazi
- Department of Computer Engineering, School of Technical and Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Mohamad Roshanzamir
- Department of Computer Engineering, Faculty of Engineering, Fasa University, 74617-81189, Fasa, Iran
| | | | - Afshin Shoeibi
- Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
- Faculty of Electrical and Computer Engineering, Biomedical Data Acquisition Lab, K. N. Toosi University of Technology, Tehran, Iran
| | - Mahboobeh Jafari
- Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran
| | - Sadiq Hussain
- System Administrator, Dibrugarh University, Assam, 786004, India
| | - Zahra Alizadeh Sani
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Omid Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fahime Khozeimeh
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Maryam Panahiazar
- Institute for Computational Health Sciences, University of California, San Francisco, USA
| | - Assef Zare
- Faculty of Electrical Engineering, Gonabad Branch, Islamic Azad University, Gonabad, Iran
| | - Sheikh Mohammed Shariful Islam
- Institute for Physical Activity and Nutrition, Deakin University, Melbourne, Australia
- Cardiovascular Division, The George Institute for Global Health, Australia
- Sydney Medical School, University of Sydney, Australia
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore
- Department of Bioinformatics and Medical Engineering, Asia University, Taiwan
| |
Collapse
|
25
|
Cen X, Yuan J, Pan C, Tang Q, Ma Q. Contextual embedding bootstrapped neural network for medical information extraction of coronary artery disease records. Med Biol Eng Comput 2021; 59:1111-1121. [PMID: 33893606 DOI: 10.1007/s11517-021-02359-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/01/2021] [Indexed: 12/26/2022]
Abstract
Coronary artery disease (CAD) is the major cause of human death worldwide. The development of new CAD early diagnosis methods based on medical big data has a great potential to reduce the risk of CAD death. In this process, neural network (NN), as a powerful tool for electronic medical record (EMR) processing, enables extract structured data accurately to unlock medical information and to further improve CAD diagnosis. However, the excessive time and labor caused by dataset's annotation is the main limitation of its application, especially on the CAD records situation with large natural language text and biomedical professional content. In this study, we present an annotation cost saving NN approach for CAD records, which is bootstrapped by deep language model with contextual embedding pre-trained on large unannotated CAD corpus. To demonstrate the feasibility and to further evaluate the performance of our approach, we performed pre-training experiment and term classification experiment, by using the unannotated and annotated CAD records, respectively. The results showed that our contextual embedding bootstrapped NN for CAD records has better performance under the condition of annotations reduction.
Collapse
Affiliation(s)
- Xingxing Cen
- Shanghai Chest Hospital, Shanghai Jiaotong University, 241 West Huaihai Road, Shanghai, China
| | - Junyi Yuan
- Shanghai Chest Hospital, Shanghai Jiaotong University, 241 West Huaihai Road, Shanghai, China.
| | - Changqing Pan
- Shanghai Chest Hospital, Shanghai Jiaotong University, 241 West Huaihai Road, Shanghai, China
| | - Qinhua Tang
- Shanghai Chest Hospital, Shanghai Jiaotong University, 241 West Huaihai Road, Shanghai, China
| | - Qunsheng Ma
- Shanghai Chest Hospital, Shanghai Jiaotong University, 241 West Huaihai Road, Shanghai, China
| |
Collapse
|
26
|
Alizadehsani R, Roshanzamir M, Hussain S, Khosravi A, Koohestani A, Zangooei MH, Abdar M, Beykikhoshk A, Shoeibi A, Zare A, Panahiazar M, Nahavandi S, Srinivasan D, Atiya AF, Acharya UR. Handling of uncertainty in medical data using machine learning and probability theory techniques: a review of 30 years (1991-2020). ANNALS OF OPERATIONS RESEARCH 2021; 339:1-42. [PMID: 33776178 PMCID: PMC7982279 DOI: 10.1007/s10479-021-04006-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 05/17/2023]
Abstract
Understanding the data and reaching accurate conclusions are of paramount importance in the present era of big data. Machine learning and probability theory methods have been widely used for this purpose in various fields. One critically important yet less explored aspect is capturing and analyzing uncertainties in the data and model. Proper quantification of uncertainty helps to provide valuable information to obtain accurate diagnosis. This paper reviewed related studies conducted in the last 30 years (from 1991 to 2020) in handling uncertainties in medical data using probability theory and machine learning techniques. Medical data is more prone to uncertainty due to the presence of noise in the data. So, it is very important to have clean medical data without any noise to get accurate diagnosis. The sources of noise in the medical data need to be known to address this issue. Based on the medical data obtained by the physician, diagnosis of disease, and treatment plan are prescribed. Hence, the uncertainty is growing in healthcare and there is limited knowledge to address these problems. Our findings indicate that there are few challenges to be addressed in handling the uncertainty in medical raw data and new models. In this work, we have summarized various methods employed to overcome this problem. Nowadays, various novel deep learning techniques have been proposed to deal with such uncertainties and improve the performance in decision making.
Collapse
Affiliation(s)
- Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Mohamad Roshanzamir
- Department of Computer Engineering, Faculty of Engineering, Fasa University, 74617-81189 Fasa, Iran
| | - Sadiq Hussain
- System Administrator, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Afsaneh Koohestani
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | | | - Moloud Abdar
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Adham Beykikhoshk
- Applied Artificial Intelligence Institute, Deakin University, Geelong, Australia
| | - Afshin Shoeibi
- Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
- Faculty of Electrical and Computer Engineering, Biomedical Data Acquisition Lab, K. N. Toosi University of Technology, Tehran, Iran
| | - Assef Zare
- Faculty of Electrical Engineering, Gonabad Branch, Islamic Azad University, Gonabad, Iran
| | - Maryam Panahiazar
- Institute for Computational Health Sciences, University of California, San Francisco, USA
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Dipti Srinivasan
- Dept. of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576 Singapore
| | - Amir F. Atiya
- Department of Computer Engineering, Faculty of Engineering, Cairo University, Cairo, 12613 Egypt
| | - U. Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore, Singapore
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
27
|
Bazoukis G, Stavrakis S, Zhou J, Bollepalli SC, Tse G, Zhang Q, Singh JP, Armoundas AA. Machine learning versus conventional clinical methods in guiding management of heart failure patients-a systematic review. Heart Fail Rev 2021; 26:23-34. [PMID: 32720083 PMCID: PMC7384870 DOI: 10.1007/s10741-020-10007-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Machine learning (ML) algorithms "learn" information directly from data, and their performance improves proportionally with the number of high-quality samples. The aim of our systematic review is to present the state of the art regarding the implementation of ML techniques in the management of heart failure (HF) patients. We manually searched MEDLINE and Cochrane databases as well the reference lists of the relevant review studies and included studies. Our search retrieved 122 relevant studies. These studies mainly refer to (a) the role of ML in the classification of HF patients into distinct categories which may require a different treatment strategy, (b) discrimination of HF patients from the healthy population or other diseases, (c) prediction of HF outcomes, (d) identification of HF patients from electronic records and identification of HF patients with similar characteristics who may benefit form a similar treatment strategy, (e) supporting the extraction of important data from clinical notes, and (f) prediction of outcomes in HF populations with implantable devices (left ventricular assist device, cardiac resynchronization therapy). We concluded that ML techniques may play an important role for the efficient construction of methodologies for diagnosis, management, and prediction of outcomes in HF patients.
Collapse
Affiliation(s)
- George Bazoukis
- Second Department of Cardiology, Evangelismos General Hospital of Athens, Athens, Greece
| | - Stavros Stavrakis
- University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Jiandong Zhou
- School of Data Science, City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, Guangdong, China
| | - Sandeep Chandra Bollepalli
- Cardiovascular Research Center, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston, MA, 02129, USA
| | - Gary Tse
- Laboratory of Cardiovascular Physiology, Li Ka Shing Institute of Health Sciences, Hong Kong SAR, People's Republic of China
| | - Qingpeng Zhang
- School of Data Science, City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, Guangdong, China
| | - Jagmeet P Singh
- Cardiology Division, Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA
| | - Antonis A Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston, MA, 02129, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| |
Collapse
|
28
|
Alizadehsani R, Khosravi A, Roshanzamir M, Abdar M, Sarrafzadegan N, Shafie D, Khozeimeh F, Shoeibi A, Nahavandi S, Panahiazar M, Bishara A, Beygui RE, Puri R, Kapadia S, Tan RS, Acharya UR. Coronary artery disease detection using artificial intelligence techniques: A survey of trends, geographical differences and diagnostic features 1991-2020. Comput Biol Med 2020; 128:104095. [PMID: 33217660 DOI: 10.1016/j.compbiomed.2020.104095] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/24/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023]
Abstract
While coronary angiography is the gold standard diagnostic tool for coronary artery disease (CAD), but it is associated with procedural risk, it is an invasive technique requiring arterial puncture, and it subjects the patient to radiation and iodinated contrast exposure. Artificial intelligence (AI) can provide a pretest probability of disease that can be used to triage patients for angiography. This review comprehensively investigates published papers in the domain of CAD detection using different AI techniques from 1991 to 2020, in order to discern broad trends and geographical differences. Moreover, key decision factors affecting CAD diagnosis are identified for different parts of the world by aggregating the results from different studies. In this study, all datasets that have been used for the studies for CAD detection, their properties, and achieved performances using various AI techniques, are presented, compared, and analyzed. In particular, the effectiveness of machine learning (ML) and deep learning (DL) techniques to diagnose and predict CAD are reviewed. From PubMed, Scopus, Ovid MEDLINE, and Google Scholar search, 500 papers were selected to be investigated. Among these selected papers, 256 papers met our criteria and hence were included in this study. Our findings demonstrate that AI-based techniques have been increasingly applied for the detection of CAD since 2008. AI-based techniques that utilized electrocardiography (ECG), demographic characteristics, symptoms, physical examination findings, and heart rate signals, reported high accuracy for the detection of CAD. In these papers, the authors ranked the features based on their assessed clinical importance with ML techniques. The results demonstrate that the attribution of the relative importance of ML features for CAD diagnosis is different among countries. More recently, DL methods have yielded high CAD detection performance using ECG signals, which drives its burgeoning adoption.
Collapse
Affiliation(s)
- Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Mohamad Roshanzamir
- Department of Engineering, Fasa Branch, Islamic Azad University, Post Box No 364, Fasa, Fars, 7461789818, Iran
| | - Moloud Abdar
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Khorram Ave, Isfahan, Iran; Faculty of Medicine, SPPH, University of British Columbia, Vancouver, BC, Canada.
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahime Khozeimeh
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Afshin Shoeibi
- Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran; Faculty of Electrical and Computer Engineering, Biomedical Data Acquisition Lab, K. N. Toosi University of Technology, Tehran, Iran
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Maryam Panahiazar
- Institute for Computational Health Sciences, University of California, San Francisco, USA
| | - Andrew Bishara
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, USA
| | - Ramin E Beygui
- Cardiovascular Surgery Division, Department of Surgery, University of California, San Francisco, CA, USA
| | - Rishi Puri
- Department of Cardiovascular Medicine, Cleveland Clinic, OH, USA
| | - Samir Kapadia
- Department of Cardiovascular Medicine, Cleveland Clinic, OH, USA
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore; Department of Bioinformatics and Medical Engineering, Asia University, Taiwan
| |
Collapse
|
29
|
Qiu S, Sun J. lncRNA-MALAT1 expression in patients with coronary atherosclerosis and its predictive value for in-stent restenosis. Exp Ther Med 2020; 20:129. [PMID: 33082861 DOI: 10.3892/etm.2020.9258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 08/07/2020] [Indexed: 01/07/2023] Open
Abstract
This study was designed to investigate the long non-coding RNA (lncRNA)-metastasis associated lung adenocarcinoma transcript 1 (MALAT1) expression in patients with coronary atherosclerosis and its predictive value for in-stent restenosis. Ninety-five patients with coronary heart disease who came to our hospital for treatment and underwent stent implantation were selected as a research group (RG), and 95 volunteers undergoing physical examination who did not suffer from coronary heart disease during the same period were selected as a control group (CG). MALAT1 of subjects in both groups before and after treatment were detected by RT-qPCR, and N-terminal pro-brain natriuretic peptide (NT-proBNP), high sensitivity C-reactive protein (hs-CRP), lactate dehydrogenase (LDH), and creatine kinase isoenzyme (CK-MB) of them in the RG before treatment were detected. The level was evaluated and detected, and its correlation with MALAT1 was analyzed. Then, the predictive value of MALAT1 for in-stent restenosis in patients with coronary heart disease was analyzed. MALAT1 expression in patients with coronary heart disease was higher than that of normal subjects (P<0.05); after treatment, the expression levels of MALAT1, NT-proBNP, hs-CRP, LDH, and CK-MB in the serum of patients were significantly lower than those before treatment (P<0.05); MALAT1 expression was positively correlated with the expression levels of NT-proBNP, hs-CRP, LDH, and CK-MB (P<0.05). Receiver operating characteristic of MALAT1 for predicting in-stent restenosis in patients with coronary heart disease was over 0.8; the number of lesions, MALAT1, diabetes, NT-proBNP and hs-CRP were independent risk factors for in-stent restenosis. MALAT1 is highly expressed in the serum of patients with coronary heart disease, and it has high value in its diagnosis and the prediction of in-stent restenosis. It is also an independent risk factor for in-stent restenosis in patients with coronary heart disease.
Collapse
Affiliation(s)
- Shi Qiu
- Department of Cardiovascular Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| | - Jinhui Sun
- Department of Cardiovascular Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
30
|
A Novel Approach for Coronary Artery Disease Diagnosis using Hybrid Particle Swarm Optimization based Emotional Neural Network. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2020.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Abstract
The advent of open data in health care has increased healthcare innovation, with the publication of complete datasets aggregated by private and public entities that lead to efficiency through crowdsourcing working code, facilitating research into personalized medicine, and publishing reproducible data pipelines for experimental validation. However, there lacks an internationally recognized definition for health data governance at the scope of individual health data and open source big data, which bring about a discussion about the implications of open data on data privacy. First, healthcare data sourced directly from public healthcare systems: by whom and for what purpose is these data used for within the context of healthcare research. Second, health data from private research: the regulations needed for mutual disclosure. Third, personal user-generated health data: safeguards in a digital era needed to prevent misappropriation and abuse. This paper addresses the opportunities of open data in healthcare research in a digital age without transparent regulation. The consequence of open data on privacy leads to a framework of four safeguards for stakeholders: public education, operational transparency, regulation for accountability, and validation of research ethics. It also pioneers public policy direction for a balanced agenda between privacy and healthcare research.
Collapse
|
32
|
Schaefer J, Lehne M, Schepers J, Prasser F, Thun S. The use of machine learning in rare diseases: a scoping review. Orphanet J Rare Dis 2020; 15:145. [PMID: 32517778 PMCID: PMC7285453 DOI: 10.1186/s13023-020-01424-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Emerging machine learning technologies are beginning to transform medicine and healthcare and could also improve the diagnosis and treatment of rare diseases. Currently, there are no systematic reviews that investigate, from a general perspective, how machine learning is used in a rare disease context. This scoping review aims to address this gap and explores the use of machine learning in rare diseases, investigating, for example, in which rare diseases machine learning is applied, which types of algorithms and input data are used or which medical applications (e.g., diagnosis, prognosis or treatment) are studied. METHODS Using a complex search string including generic search terms and 381 individual disease names, studies from the past 10 years (2010-2019) that applied machine learning in a rare disease context were identified on PubMed. To systematically map the research activity, eligible studies were categorized along different dimensions (e.g., rare disease group, type of algorithm, input data), and the number of studies within these categories was analyzed. RESULTS Two hundred eleven studies from 32 countries investigating 74 different rare diseases were identified. Diseases with a higher prevalence appeared more often in the studies than diseases with a lower prevalence. Moreover, some rare disease groups were investigated more frequently than to be expected (e.g., rare neurologic diseases and rare systemic or rheumatologic diseases), others less frequently (e.g., rare inborn errors of metabolism and rare skin diseases). Ensemble methods (36.0%), support vector machines (32.2%) and artificial neural networks (31.8%) were the algorithms most commonly applied in the studies. Only a small proportion of studies evaluated their algorithms on an external data set (11.8%) or against a human expert (2.4%). As input data, images (32.2%), demographic data (27.0%) and "omics" data (26.5%) were used most frequently. Most studies used machine learning for diagnosis (40.8%) or prognosis (38.4%) whereas studies aiming to improve treatment were relatively scarce (4.7%). Patient numbers in the studies were small, typically ranging from 20 to 99 (35.5%). CONCLUSION Our review provides an overview of the use of machine learning in rare diseases. Mapping the current research activity, it can guide future work and help to facilitate the successful application of machine learning in rare diseases.
Collapse
Affiliation(s)
- Julia Schaefer
- Technische Universität Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Moritz Lehne
- Berlin Institute of Health (BIH), Berlin, Germany.
| | | | - Fabian Prasser
- Berlin Institute of Health (BIH), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sylvia Thun
- Berlin Institute of Health (BIH), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- Hochschule Niederrhein - University of Applied Sciences, Krefeld, Germany
| |
Collapse
|
33
|
Sani Z, Darbandy M, Rostamnezhad M, Hussain S, Khosravi A, Nahavandi S. A new approach to detect the physical fatigue utilizing heart rate signals. Res Cardiovasc Med 2020. [DOI: 10.4103/rcm.rcm_8_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
34
|
|