1
|
Meliss S, Pascua-Martin C, Skipper JI, Murayama K. The magic, memory, and curiosity fMRI dataset of people viewing magic tricks. Sci Data 2024; 11:1063. [PMID: 39353978 PMCID: PMC11445505 DOI: 10.1038/s41597-024-03675-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/23/2024] [Indexed: 10/03/2024] Open
Abstract
Videos of magic tricks offer lots of opportunities to study the human mind. They violate the expectations of the viewer, causing prediction errors, misdirect attention, and elicit epistemic emotions. Herein we describe and share the Magic, Memory, and Curiosity (MMC) Dataset where 50 participants watched 36 magic tricks filmed and edited specifically for functional magnetic imaging (fMRI) experiments. The MMC Dataset includes a contextual incentive manipulation, curiosity ratings for the magic tricks, and incidental memory performance tested a week later. We additionally measured individual differences in working memory and constructs relevant to motivated learning. fMRI data were acquired before, during, and after learning. We show that both behavioural and fMRI data are of high quality, as indicated by basic validation analysis, i.e., variance decomposition as well as intersubject correlation and seed-based functional connectivity, respectively. The richness and complexity of the MMC Dataset will allow researchers to explore dynamic cognitive and motivational processes from various angles during task and rest.
Collapse
Affiliation(s)
- Stefanie Meliss
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
- Experimental Psychology, University College London, London, UK
| | | | | | - Kou Murayama
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK.
- Hector Research Institute of Education Sciences and Psychology, University of Tübingen, Tübingen, Germany.
- Research Institute, Kochi University of Technology, Kochi, Japan.
| |
Collapse
|
2
|
Yang E, Milisav F, Kopal J, Holmes AJ, Mitsis GD, Misic B, Finn ES, Bzdok D. The default network dominates neural responses to evolving movie stories. Nat Commun 2023; 14:4197. [PMID: 37452058 PMCID: PMC10349102 DOI: 10.1038/s41467-023-39862-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Neuroscientific studies exploring real-world dynamic perception often overlook the influence of continuous changes in narrative content. In our research, we utilize machine learning tools for natural language processing to examine the relationship between movie narratives and neural responses. By analyzing over 50,000 brain images of participants watching Forrest Gump from the studyforrest dataset, we find distinct brain states that capture unique semantic aspects of the unfolding story. The default network, associated with semantic information integration, is the most engaged during movie watching. Furthermore, we identify two mechanisms that underlie how the default network liaises with the amygdala and hippocampus. Our findings demonstrate effective approaches to understanding neural processes in everyday situations and their relation to conscious awareness.
Collapse
Affiliation(s)
- Enning Yang
- Department of Biomedical Engineering, TheNeuro-Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre (BIC), McGill University, Montreal, QC, Canada
- Mila-Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Filip Milisav
- Department of Biomedical Engineering, TheNeuro-Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre (BIC), McGill University, Montreal, QC, Canada
| | - Jakub Kopal
- Department of Biomedical Engineering, TheNeuro-Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre (BIC), McGill University, Montreal, QC, Canada
- Mila-Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Avram J Holmes
- Department of Psychology and Psychiatry, Yale University, New Haven, CT, USA
| | - Georgios D Mitsis
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Bratislav Misic
- Department of Biomedical Engineering, TheNeuro-Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre (BIC), McGill University, Montreal, QC, Canada
| | - Emily S Finn
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Danilo Bzdok
- Department of Biomedical Engineering, TheNeuro-Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre (BIC), McGill University, Montreal, QC, Canada.
- Mila-Quebec Artificial Intelligence Institute, Montreal, QC, Canada.
| |
Collapse
|
3
|
Ma S, Huang T, Qu Y, Chen X, Zhang Y, Zhen Z. An fMRI dataset for whole-body somatotopic mapping in humans. Sci Data 2022; 9:515. [PMID: 35999222 PMCID: PMC9399117 DOI: 10.1038/s41597-022-01644-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
The somatotopic representation of the body is a well-established organizational principle in the human brain. Classic invasive direct electrical stimulation for somatotopic mapping cannot be used to map the whole-body topographical representation of healthy individuals. Functional magnetic resonance imaging (fMRI) has become an indispensable tool for the noninvasive investigation of somatotopic organization of the human brain using voluntary movement tasks. Unfortunately, body movements during fMRI scanning often cause large head motion artifacts. Consequently, there remains a lack of publicly accessible fMRI datasets for whole-body somatotopic mapping. Here, we present public high-resolution fMRI data to map the somatotopic organization based on motor movements in a large cohort of healthy adults (N = 62). In contrast to previous studies that were mostly designed to distinguish few body representations, most body parts are considered, including toe, ankle, leg, finger, wrist, forearm, upper arm, jaw, lip, tongue, and eyes. Moreover, the fMRI data are denoised by combining spatial independent component analysis with manual identification to clean artifacts from head motion associated with body movements.
Collapse
Affiliation(s)
- Sai Ma
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Taicheng Huang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yukun Qu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Xiayu Chen
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Yajie Zhang
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Zonglei Zhen
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
4
|
Tan C, Liu X, Zhang G. Inferring Brain State Dynamics Underlying Naturalistic Stimuli Evoked Emotion Changes With dHA-HMM. Neuroinformatics 2022; 20:737-753. [PMID: 35244856 DOI: 10.1007/s12021-022-09568-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/31/2022]
Abstract
The brain functional mechanisms underlying emotional changes have been primarily studied based on the traditional task design with discrete and simple stimuli. However, the brain state transitions when exposed to continuous and naturalistic stimuli with rich affection variations remain poorly understood. This study proposes a dynamic hyperalignment algorithm (dHA) to functionally align the inter-subject neural activity. The hidden Markov model (HMM) was used to study how the brain dynamics responds to emotion during long-time movie-viewing activity. The results showed that dHA significantly improved inter-subject consistency and allowed more consistent temporal HMM states across participants. Afterward, grouping the emotions in a clustering dendrogram revealed a hierarchical grouping of the HMM states. Further emotional sensitivity and specificity analyses of ordered states revealed the most significant differences in happiness and sadness. We then compared the activation map in HMM states during happiness and sadness and found significant differences in the whole brain, but strong activation was observed during both in the superior temporal gyrus, which is related to the early process of emotional prosody processing. A comparison of the inter-network functional connections indicates unique functional connections of the memory retrieval and cognitive network with the cerebellum network during happiness. Moreover, the persistent bilateral connections among salience, cognitive, and sensorimotor networks during sadness may reflect the interaction between high-level cognitive networks and low-level sensory networks. The main results were verified by the second session of the dataset. All these findings enrich our understanding of the brain states related to emotional variation during naturalistic stimuli.
Collapse
Affiliation(s)
- Chenhao Tan
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Tianjin, 300350, People's Republic of China
| | - Xin Liu
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Tianjin, 300350, People's Republic of China
| | - Gaoyan Zhang
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
5
|
Liu X, Dai Y, Xie H, Zhen Z. A studyforrest extension, MEG recordings while watching the audio-visual movie "Forrest Gump". Sci Data 2022; 9:206. [PMID: 35562378 PMCID: PMC9106652 DOI: 10.1038/s41597-022-01299-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 03/30/2022] [Indexed: 01/01/2023] Open
Abstract
Naturalistic stimuli, such as movies, are being increasingly used to map brain function because of their high ecological validity. The pioneering studyforrest and other naturalistic neuroimaging projects have provided free access to multiple movie-watching functional magnetic resonance imaging (fMRI) datasets to prompt the community for naturalistic experimental paradigms. However, sluggish blood-oxygenation-level-dependent fMRI signals are incapable of resolving neuronal activity with the temporal resolution at which it unfolds. Instead, magnetoencephalography (MEG) measures changes in the magnetic field produced by neuronal activity and is able to capture rich dynamics of the brain at the millisecond level while watching naturalistic movies. Herein, we present the first public prolonged MEG dataset collected from 11 participants while watching the 2 h long audio-visual movie "Forrest Gump". Minimally preprocessed data was also provided to facilitate the use of the dataset. As a studyforrest extension, we envision that this dataset, together with fMRI data from the studyforrest project, will serve as a foundation for exploring the neural dynamics of various cognitive functions in real-world contexts.
Collapse
Affiliation(s)
- Xingyu Liu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Yuxuan Dai
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Hailun Xie
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Zonglei Zhen
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China.
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| |
Collapse
|
6
|
Aliko S, Huang J, Gheorghiu F, Meliss S, Skipper JI. A naturalistic neuroimaging database for understanding the brain using ecological stimuli. Sci Data 2020; 7:347. [PMID: 33051448 PMCID: PMC7555491 DOI: 10.1038/s41597-020-00680-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/16/2020] [Indexed: 12/22/2022] Open
Abstract
Neuroimaging has advanced our understanding of human psychology using reductionist stimuli that often do not resemble information the brain naturally encounters. It has improved our understanding of the network organization of the brain mostly through analyses of 'resting-state' data for which the functions of networks cannot be verifiably labelled. We make a 'Naturalistic Neuroimaging Database' (NNDb v1.0) publically available to allow for a more complete understanding of the brain under more ecological conditions during which networks can be labelled. Eighty-six participants underwent behavioural testing and watched one of 10 full-length movies while functional magnetic resonance imaging was acquired. Resulting timeseries data are shown to be of high quality, with good signal-to-noise ratio, few outliers and low movement. Data-driven functional analyses provide further evidence of data quality. They also demonstrate accurate timeseries/movie alignment and how movie annotations might be used to label networks. The NNDb can be used to answer questions previously unaddressed with standard neuroimaging approaches, progressing our knowledge of how the brain works in the real world.
Collapse
Affiliation(s)
- Sarah Aliko
- London Interdisciplinary Biosciences Consortium, University College London, London, UK.
- Experimental Psychology, University College London, London, UK.
| | - Jiawen Huang
- Experimental Psychology, University College London, London, UK
| | | | - Stefanie Meliss
- Experimental Psychology, University College London, London, UK
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | | |
Collapse
|