1
|
Li X, Wu X, Zhu Y, Li X, Meng Z, Wei N, Xiang M, Yang D, Zhu T. Chromosome-level genome assembly and annotation of largemouth bronze gudgeon (Coreius guichenoti). Sci Data 2025; 12:76. [PMID: 39814798 PMCID: PMC11735790 DOI: 10.1038/s41597-025-04416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
Coreius guichenoti, mainly distributed in upstream regions of the Yangtze River China, is currently on the brink of extinction and listed as national secondary protected animal. In this study, we aimed to obtain the chromosome-level genome of C. guichenoti using PacBio and Hi-C techniques. According to the PacBio sequencing, C. guichenoti genome was successfully assembled to 1100.1 Mb size, with a Contig N50 size of 25.0 Mb, and containing 731.0 Mb of repeats. Hi-C sequencing data was utilized for chromosome assembly and 25 chromosome sequences were ultimately yielded, with a total length of 1076.8 Mb. Moreover, a total of 22,506 protein-coding genes were predicted with average intron length of 2293 bp. Evolutionary analysis and divergence time prediction revealed that C. guichenoti was closely related to C. heterodon and they phylogenetically diverged from common ancestor ~20.7 million years ago (Mya), following the separation of Cyprinidae at 28.3 Mya. In the future, the utilization of comparative genomics research is important in elucidating the molecular mechanisms of Ichthyophthirius disease and ensuring the conservation of biological resources.
Collapse
Affiliation(s)
- Xuemei Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Xingbing Wu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yongjiu Zhu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Xiaoli Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Zihao Meng
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Nian Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Miao Xiang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Deguo Yang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Tingbing Zhu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
2
|
Oriowo TO, Chrysostomakis I, Martin S, Kukowka S, Brown T, Winkler S, Myers EW, Böhne A, Stange M. A chromosome-level, haplotype-resolved genome assembly and annotation for the Eurasian minnow (Leuciscidae: Phoxinus phoxinus) provide evidence of haplotype diversity. Gigascience 2025; 14:giae116. [PMID: 39877992 PMCID: PMC11775470 DOI: 10.1093/gigascience/giae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/06/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND In this study, we present an in-depth analysis of the Eurasian minnow (Phoxinus phoxinus) genome, highlighting its genetic diversity, structural variations, and evolutionary adaptations. We generated an annotated haplotype-phased, chromosome-level genome assembly (2n = 50) by integrating high-fidelity (HiFi) long reads and chromosome conformation capture data (Hi-C). RESULTS We achieved a haploid size of 940 megabase pairs (Mbp) for haplome 1 and 929 Mbp for haplome 2 with high scaffold N50 values of 36.4 Mb and 36.6 Mb and BUSCO scores of 96.9% and 97.2%, respectively, indicating a highly complete genome assembly. We detected notable heterozygosity (1.43%) and a high repeat content (approximately 54%), primarily consisting of DNA transposons, which contribute to genome rearrangements and variations. We found substantial structural variations within the genome, including insertions, deletions, inversions, and translocations. These variations affect genes enriched in functions such as dephosphorylation, developmental pigmentation, phagocytosis, immunity, and stress response. In the annotation of protein-coding genes, 30,980 messenger RNAs and 23,497 protein-coding genes were identified with a high completeness score, which further underpins the high contiguity of our genome assemblies. We performed a gene family evolution analysis by comparing our proteome to 10 other teleost species, which identified immune system gene families that prioritize histone-based disease prevention over NB-LRR-related-based immune responses. Additionally, demographic analysis indicates historical fluctuations in the effective population size of P. phoxinus, likely correlating with past climatic changes. CONCLUSIONS This annotated, phased reference genome provides a crucial resource for resolving the taxonomic complexity within the genus Phoxinus and highlights the importance of haplotype-phased assemblies in understanding haplotype diversity in species characterized by high heterozygosity.
Collapse
Affiliation(s)
- Temitope Opeyemi Oriowo
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, 53113 Bonn, Germany
| | - Ioannis Chrysostomakis
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, 53113 Bonn, Germany
| | - Sebastian Martin
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, 53113 Bonn, Germany
| | - Sandra Kukowka
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, 53113 Bonn, Germany
| | - Thomas Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Sequencing and Genotyping, 01307 Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Sequencing and Genotyping, 01307 Dresden, Germany
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Sequencing and Genotyping, 01307 Dresden, Germany
- Okinawa Institute of Science and Technology, Algorithms for Ecological and Evolutionary Genomics, Okinawa 904-0412, Japan
| | - Astrid Böhne
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, 53113 Bonn, Germany
| | - Madlen Stange
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, 53113 Bonn, Germany
| |
Collapse
|
3
|
Liang X, Wang W, Huang J, Luo M, Wangdui N, Sun C, Lu J. A chromosome-level genome assembly of big-barbel schizothorcin, Schizothorax macropogon. Sci Data 2024; 11:1402. [PMID: 39702420 DOI: 10.1038/s41597-024-04266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
Big-barbel schizothorcin (Schizothorax macropogon), an endemic and vulnerable species to the mid-reaches of the Yarlung Zangbo River, epitomizes survival in harsh conditions yet suffers significant population contractions due to human activities. This species was the subject of our study in which we leveraged PacBio, MGI-Seq, and Hi-C data to assemble a chromosome-scale genome. This assembly comprises 25 pseudo-chromosomes, yielding a genome size of 1.42 Gb with a scaffold N50 length of 59.4 Mb, indicative of a highly contiguous assembly. A BUSCO assessment ascertained the comprehensiveness of the genome at 97.9%. Annotation efforts identified 46,246 putative protein-coding genes, with 49.61% of the assembled genome annotated as repetitive sequences. This genome assembly is instrumental for advancing conservation of the giant whiskered schizothoracines and related species, and for illuminating the evolution and ecology of schizothoracine fishes in the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Xuanguang Liang
- School of Marine Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, Guangdong, China
| | - Wenhao Wang
- School of Marine Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, Guangdong, China
| | - Junrou Huang
- School of Marine Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, Guangdong, China
| | - Mingfei Luo
- Zhuhai Modern Agricultural Development Center, Zhuhai, 519082, Guangdong, China
| | - Nima Wangdui
- Nyingchi agriculture Kema Agriculture Co., LTD, Nyingchi, 860000, Xizang, China
| | - Caiyun Sun
- Nyingchi agriculture Kema Agriculture Co., LTD, Nyingchi, 860000, Xizang, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, Guangdong, China.
| |
Collapse
|
4
|
Wu L, Gu S, Wen P, Wu L, Li L, Guo S, Ding S. Chromosome-level genome assembly and annotation of the Spinibarbus caldwelli. Sci Data 2024; 11:933. [PMID: 39198473 PMCID: PMC11358287 DOI: 10.1038/s41597-024-03796-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Spinibarbus caldwelli is an important freshwater economic fish in China. Owing to uncontrolled fishing, wild resources of S. caldwelli have decreased rapidly and may be on the verge of extinction. In this study, utilizing single-molecule real-time (SMRT) sequencing technology and chromatin interaction mapping (Hi-C) technologies, we assembled the first chromosome-scale genome for S. caldwelli about 1.77 Gb in size, with a contig N50 length of 11.83 Mb and scaffold N50 length of 33.91 Mb. In total 1.72 Gb (97.01%) of the contig sequences were anchored onto fifty chromosomes with the longest scaffold being 56.20 Mb. Furthermore, proximately 49.41% of the genome was composed of repetitive elements. In total, 49,377 protein-coding genes were predicted, of which 47,724 (96.65%) genes have been functionally annotated. The high-quality chromosome-level reference genome and annotation are vital for supporting basic genetic studies and will be contribute to genetic structure, functional elucidation, evolutionary inquiry, and germplasm conservation for S. caldwelli.
Collapse
Affiliation(s)
- Lina Wu
- State Key Laboratory of Marine Environment Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Sui Gu
- State Key Laboratory of Marine Environment Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ping Wen
- Key laboratory of Cultivation and High - value Utilization of Marine Organisms in Fujian Province Fisheries Research institute of Fujian, Xiamen, 361013, China
| | - Lisheng Wu
- State Key Laboratory of Marine Environment Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Leibin Li
- Key laboratory of Cultivation and High - value Utilization of Marine Organisms in Fujian Province Fisheries Research institute of Fujian, Xiamen, 361013, China
| | - Shaopeng Guo
- Key laboratory of Cultivation and High - value Utilization of Marine Organisms in Fujian Province Fisheries Research institute of Fujian, Xiamen, 361013, China
| | - Shaoxiong Ding
- State Key Laboratory of Marine Environment Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
5
|
Quan J, Qu Y, Li Y, Ren Y, Zhao G, Li L, Lu J. Population Genetic Assessment Model Reveals Conservation Priorities for Gymnocypris Species Resources on the Qinghai-Tibetan Plateau. BIOLOGY 2024; 13:259. [PMID: 38666871 PMCID: PMC11047898 DOI: 10.3390/biology13040259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The Qinghai-Tibetan Plateau (QTP) has nurtured a rich diversity of species because of its unique geographical and environmental conditions. Gymnocypris species (subfamily Schizopygopsinae) are primitive fishes that live in the special environment of the plateau, and their evolution and distribution are inseparable from the historical changes of the QTP. Recently, the resources of Gymnocypris species have been decreasing due to habit deterioration and the intensification of human activities. Therefore, the scientific conservation of the genetic resources of Gymnocypris species is urgently required. In this study, we established two models for the priority conservation assessment of germplasm resources of Gymnocypris species on the basis of the genetic diversity and phylogenetic relationships of 674 individuals from eight Gymnocypris species populations. The results show that the Gymnocypris potanini (GPO), Gymnocypris eckloni (GE), and Gymnocypris przewalskii (GPR) populations are the most genetically diverse in terms of combined genetic diversity values and should be prioritized for conservation. In terms of genetic contribution, the GPO, GE, and GPR populations have a positive impact on maintaining the distinctiveness and diversity of the entire Gymnocypris species population and should be prioritized for conservation. However, in terms of different evolutionary clades, the Gymnocypris namensis, Gymnocypris waddellii, Gymnocypris dobula, and GE populations in clade A should be given priority for protection, the GE population in clade B should be given priority, and the GPR population in clade C should be given priority. In conclusion, the two models and assessment of conservation priorities will provide a scientific basis for the conservation of Gymnocypris species.
Collapse
Affiliation(s)
- Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, China; (G.Z.); (J.L.)
| | - Yuling Qu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yongqing Li
- Animal Husbandry Quality Standards Institute, Xinjiang Academy of Animal Science, Wulumuqi 830063, China;
| | - Yue Ren
- Institute of Livestock Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China;
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, China; (G.Z.); (J.L.)
| | - Lanlan Li
- College of Animal Science & Technology, Ningxia University, Yinchuan 750021, China;
| | - Junhao Lu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, China; (G.Z.); (J.L.)
| |
Collapse
|
6
|
Gao K, He Z, Xiong J, Chen Q, Lai B, Liu F, Chen P, Chen M, Luo W, Huang J, Ding W, Wang H, Pu Y, Zheng L, Jiao Y, Zhang M, Tang Z, Yue Q, Yang D, Yan T. Population structure and adaptability analysis of Schizothorax o'connori based on whole-genome resequencing. BMC Genomics 2024; 25:145. [PMID: 38321406 PMCID: PMC10845765 DOI: 10.1186/s12864-024-09975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Schizothorax o'connori is an endemic fish distributed in the upper and lower reaches of the Yarlung Zangbo River in China. It has experienced a fourth round of whole gene replication events and is a good model for exploring the genetic differentiation and environmental adaptability of fish in the Qinghai-Tibet Plateau. The uplift of the Qinghai-Tibet Plateau has led to changes in the river system, thereby affecting gene exchange and population differentiation between fish populations. With the release of fish whole genome data, whole genome resequencing has been widely used in genetic evolutionary analysis and screening of selected genes in fish, which can better elucidate the genetic basis and molecular environmental adaptation mechanisms of fish. Therefore, our purpose of this study was to understand the population structure and adaptive characteristics of S. o'connori using the whole-genome resequencing method. RESULTS The results showed that 23,602,746 SNPs were identified from seven populations, mostly distributed on chromosomes 2 and 23. There was no significant genetic differentiation between the populations, and the genetic diversity was relatively low. However, the Zangga population could be separated from the Bomi, Linzhi, and Milin populations in the cluster analysis. Based on historical dynamics analysis of the population, the size of the ancestral population of S. o'connori was affected by the late accelerated uplift of the Qinghai Tibet Plateau and the Fourth Glacial Age. The selected sites were mostly enriched in pathways related to DNA repair and energy metabolism. CONCLUSION Overall, the whole-genome resequencing analysis provides valuable insights into the population structure and adaptive characteristics of S. o'connori. There was no obvious genetic differentiation at the genome level between the S. o'connori populations upstream and downstream of the Yarlung Zangbo River. The current distribution pattern and genetic diversity are influenced by the late accelerated uplift of the Qinghai Tibet Plateau and the Fourth Ice Age. The selected sites of S. o'connori are enriched in the energy metabolism and DNA repair pathways to adapt to the low temperature and strong ultraviolet radiation environment at high altitude.
Collapse
Affiliation(s)
- Kuo Gao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jinxin Xiong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qiqi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bolin Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Fei Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ping Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingqiang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wenjie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Junjie Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wenxiang Ding
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Haochen Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yong Pu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Zheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yuanyuan Jiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ziting Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qingsong Yue
- Huadian Tibet Hydropower Development Co.,Ltd, Dagu Hydropower Station, Sangri, 856200, Shannan, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
7
|
Zhao Y, Zhou J, Dong Y, Xu D, Qi D. Transcriptome Analysis Reveals the Molecular Mechanisms Underlying Growth Superiority in a Novel Gymnocypris Hybrid, Gymnocypris przewalskii ♀ × Gymnocypris eckloni ♂. Genes (Basel) 2024; 15:182. [PMID: 38397172 PMCID: PMC10888472 DOI: 10.3390/genes15020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Artificial hybrid breeding can optimize parental traits to cultivate excellent hybrids with enhanced economic value. In this study, we investigated the growth performance and transcriptomes of Gymnocypris przewalskii (♀) and Gymnocypris eckloni (♂) and their F1 hybrid fishes. Hatched individuals of G. przewalskii (GP) and G. eckloni (GE) of the same size and their F1 hybrids (GH) were separately cultured for eight months in three cement tanks (n = 3). The growth indexes were measured, which showed that the growth rate of the groups was GE > GH > GP, while the survival rate was GH > GE > GP. The RNA-Seq data analysis of the muscles from the three Gymnocypris fish strains revealed that gene transcription has a significant impact on F1 hybrid fish and its parents. The differentially expressed genes (DEGs) in GH show less differences with GP, but more with GE. qRT-PCR was used to confirm the expression profiles of the chosen DEGs, and the results showed positive correlations with the RNA-seq data. KEGG enrichment results indicated that the DEGs were related to a variety of molecular functions, such as glycolysis/gluconeogenesis, arachidonic acid formation, citrate cycle, and the MAPK, PI3K-Akt, or mTOR signal pathways. Subsequent analysis indicated that there may be a significant correlation between the differential expression of IGF2 and a difference in the growth of GE and GP.
Collapse
Affiliation(s)
| | - Junming Zhou
- Key Laboratory of Plateau Wetland Ecology and Environmental Protection, Xichang University, Xichang 615013, China; (Y.Z.); (Y.D.); (D.X.); (D.Q.)
| | | | | | | |
Collapse
|