1
|
Zhang J, Tang C, Liu Y, Sun J, Li X, Long K, Kong F, Chen S, Liang H, Ding Y, Li M, Shen L, Ge J, Ma J, Ge L. Single cell transcriptome profiling of immune tissues from germ-free and specific pathogen-free piglet. Sci Data 2025; 12:652. [PMID: 40251240 PMCID: PMC12008294 DOI: 10.1038/s41597-025-04957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/04/2025] [Indexed: 04/20/2025] Open
Abstract
The commensal microbiota provides immunomodulatory signals during the development, differentiation and activation of immune cells, and is crucial for maintaining host immune homeostasis. However, the systematic effects of commensal microbiota on host immunity based on large animal model at the single-cell level remain to be resolved. Here, we utilized single-cell RNA sequencing (scRNA-seq) to analyze the transcriptome profiling containing 57,720 cells from three important immune tissues [Peyer's patches (PP), mesenteric lymph node (MLN), and spleen] of germ-free (GF) and specific pathogen-free (SPF) piglet. We presented detailed description of the dataset and preliminarily identified the major cell types including immune and non-immune cells, and further annotated the immune cell subsets. This dataset provides a data mining resource for researchers involved in microbe-host interactions, and enables in-depth analysis of cell map alterations caused by the microbiota colonization during early immune development. As the first single-cell transcriptomics dataset for immune tissue of GF and SPF piglet, this provides a valuable data resource for the study of commensal microbe-host immunity regulation.
Collapse
Affiliation(s)
- Jinwei Zhang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chuang Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Liu
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Sichuan Animal Science Academy, Chengdu, 610066, Sichuan, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
| | - Xiaokai Li
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
| | - Keren Long
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fanli Kong
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Shuangshuang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Liang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
| | - Yuchun Ding
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Shen
- Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Junbo Ge
- Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jideng Ma
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
| |
Collapse
|
2
|
Palmer JA, Rosenthal N, Teichmann SA, Litvinukova M. Revisiting Cardiac Biology in the Era of Single Cell and Spatial Omics. Circ Res 2024; 134:1681-1702. [PMID: 38843288 PMCID: PMC11149945 DOI: 10.1161/circresaha.124.323672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Throughout our lifetime, each beat of the heart requires the coordinated action of multiple cardiac cell types. Understanding cardiac cell biology, its intricate microenvironments, and the mechanisms that govern their function in health and disease are crucial to designing novel therapeutical and behavioral interventions. Recent advances in single-cell and spatial omics technologies have significantly propelled this understanding, offering novel insights into the cellular diversity and function and the complex interactions of cardiac tissue. This review provides a comprehensive overview of the cellular landscape of the heart, bridging the gap between suspension-based and emerging in situ approaches, focusing on the experimental and computational challenges, comparative analyses of mouse and human cardiac systems, and the rising contextualization of cardiac cells within their niches. As we explore the heart at this unprecedented resolution, integrating insights from both mouse and human studies will pave the way for novel diagnostic tools and therapeutic interventions, ultimately improving outcomes for patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Jack A. Palmer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom (J.A.P., S.A.T.)
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus (J.A.P., S.A.T.), University of Cambridge, United Kingdom
| | - Nadia Rosenthal
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME (N.R.)
- National Heart and Lung Institute, Imperial College London, United Kingdom (N.R.)
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom (J.A.P., S.A.T.)
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus (J.A.P., S.A.T.), University of Cambridge, United Kingdom
- Theory of Condensed Matter Group, Department of Physics, Cavendish Laboratory (S.A.T.), University of Cambridge, United Kingdom
| | - Monika Litvinukova
- University Hospital Würzburg, Germany (M.L.)
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Germany (M.L.)
- Helmholtz Pioneer Campus, Helmholtz Munich, Germany (M.L.)
| |
Collapse
|
3
|
Chen Z, Pan Z, Huang C, Zhu X, Li N, Huynh H, Xu J, Huang L, Vaz FM, Liu J, Han Z, Ouyang K. Cardiac lipidomic profiles in mice undergo changes from fetus to adult. Life Sci 2024; 341:122484. [PMID: 38311219 DOI: 10.1016/j.lfs.2024.122484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
AIMS Lipids are essential cellular components with many important biological functions. Disturbed lipid biosynthesis and metabolism has been shown to cause cardiac developmental abnormality and cardiovascular diseases. In this study, we aimed to investigate the composition and the molecular profiles of lipids in mammalian hearts between embryonic and adult stages and uncover the underlying links between lipid and cardiac development and maturation. MATERIALS AND METHODS We collected mouse hearts at the embryonic day 11.5 (E11.5), E15.5, and the age of 2 months, 4 months and 10 months, and performed lipidomic analysis to determine the changes of the composition, molecular species, and relative abundance of cardiac lipids between embryonic and adult stages. Additionally, we also performed the electronic microscopy and RNA sequencing in both embryonic and adult mouse hearts. KEY FINDINGS The relative abundances of certain phospholipids and sphingolipids including cardiolipin, phosphatidylglycerol, phosphatidylethanolamine, and ceramide, are different between embryonic and adult hearts. Such lipidomic changes are accompanied with increased densities of mitochondrial membranes and elevated expression of genes related to mitochondrial formation in adult mouse hearts. We also analyzed individual molecular species of phospholipids and sphingolipids, and revealed that the composition and distribution of lipid molecular species in hearts also change with development. SIGNIFICANCE Our study provides not only a lipidomic view of mammalian hearts when developing from the embryonic to the adult stage, but also a potential pool of lipid indicators for cardiac cell development and maturation.
Collapse
Affiliation(s)
- Ze'e Chen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Zhixiang Pan
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Can Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Xiangbin Zhu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Na Li
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Helen Huynh
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Junjie Xu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, the Netherlands
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China.
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China.
| |
Collapse
|