1
|
You L, Huang Z, He W, Zhang L, Yu H, Zeng Y, Huang Y, Zeng S, Zheng L. Dietary alpha-lipoic acid alleviates heat stress by modulating insulin-like signaling to maintain homeostasis in C. elegans. Food Funct 2025; 16:2824-2839. [PMID: 40095598 DOI: 10.1039/d4fo05301j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Prolonged exposure to high temperatures can cause oxidative stress in the body, negatively impacting human health. Alpha-lipoic acid (ALA) is a naturally occurring antioxidant prevalent in both plant and animal foods, exhibiting bioactivity comparable to that of vitamins. Although its roles in antioxidant defense and metabolic regulation have been extensively studied, its potential to mitigate heat stress in organisms is less explored and deserves further study. Our research demonstrates that ALA significantly improves the survival rates of Caenorhabditis elegans under heat stress. ALA achieves this by activating heat shock factor 1 (HSF-1) and promoting mitochondrial fission and mitophagy through the transcription factor HLH-30. These processes help alleviate oxidative damage from heat stress, maintain mitochondrial function, and stabilize cellular energy metabolism. Furthermore, the activation of HSF-1 and enhanced mitophagy by dietary ALA depend on the insulin-like signaling peptide 19 (INS-19), suggesting that ALA may target the insulin-like signaling pathway to combat heat stress and maintain homeostasis. These findings indicate that ALA could serve as a valuable dietary supplement for enhancing heat stress resistance in organisms and may inspire the development of novel food ingredients with protective properties against thermal challenges.
Collapse
Affiliation(s)
- Longnong You
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zirui Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wenyuan He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lizhu Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Haiyang Yu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yaoyong Zeng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yan Huang
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lingjun Zheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Gagnon D, Barry H, Barhdadi A, Oussaid E, Mongrain I, Lemieux Perreault LP, Dubé MP. A dataset of proteomic changes during human heat stress and heat acclimation. Sci Data 2023; 10:877. [PMID: 38062080 PMCID: PMC10703874 DOI: 10.1038/s41597-023-02809-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Hotter climates have important impacts on human health and performance. Yet, the cellular and molecular responses involved in human heat stress and acclimation remain understudied. This dataset includes physiological measurements and the plasma concentration of 2,938 proteins collected from 10 healthy adults, before and during passive heat stress that was performed both prior to and after a 7-day heat acclimation protocol. Physiological measurements included body temperatures, sweat rate, cutaneous vascular conductance, blood pressure, and skin sympathetic nerve activity. The proteomic dataset was generated using the Olink Explore 3072 assay, enabling a high-multiplex antibody-based assessment of protein changes based on proximity extension assay technology. The data need to be interpreted in the context of the moderate level of body hyperthermia attained and the specific demographic of young, healthy adults. We have made this dataset publicly available to facilitate research into the cellular and molecular mechanisms involved in human heat stress and acclimation, crucial for addressing the health and performance challenges posed by rising temperatures.
Collapse
Affiliation(s)
- Daniel Gagnon
- Montreal Heart Institute, Montreal, QC, Canada.
- School of Kinesiology and Exercise Science, Université de Montréal, Montreal, QC, Canada.
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada.
| | - Hadiatou Barry
- Montreal Heart Institute, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Amina Barhdadi
- Montreal Heart Institute, Montreal, QC, Canada
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC, Canada
| | - Essaid Oussaid
- Montreal Heart Institute, Montreal, QC, Canada
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC, Canada
| | - Ian Mongrain
- Montreal Heart Institute, Montreal, QC, Canada
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC, Canada
| | - Louis-Philippe Lemieux Perreault
- Montreal Heart Institute, Montreal, QC, Canada
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC, Canada
| | - Marie-Pierre Dubé
- Montreal Heart Institute, Montreal, QC, Canada.
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC, Canada.
- Department of Medicine and Department of Social and Preventive Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|