1
|
Novaes RD, Souza-E-Leite EG, Silva TD, Caetano-da-Silva JE, Caldas IS, Souza RLM, Marques MJ, Gonçalves RV. Pharmacological blockade of infection chronification modulates oxy-inflammation and prevents the activation of stress-induced premature senescence markers in schistosomiasis. Microb Pathog 2025; 199:107264. [PMID: 39732412 DOI: 10.1016/j.micpath.2024.107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Chronic inflammation, oxidative stress, and DNA damage are observed in schistosomiasis and premature aging. However, the potential of these events to trigger stress-induced premature senescence (SIPS) throughout schistosomiasis progression remains overlooked, especially in response to the first-line pharmacological treatment. Thus, we investigated the relationship between oxidative stress and SIPS sentinel markers in untreated Schistosoma mansoni-infected mice and those receiving praziquantel (Pz)-based reference treatment. Swiss mice were randomized into 5 groups: uninfected (followed by 60- and 180-days post-infection), acutely (60 days) and chronically (180 days) infected untreated, and infected treated with Pz followed until 180 days. Our results indicated that infection chronification was accompanied by the worsening of hepatic granulomatous inflammation, increased number of granulomas, IL-4, TGF-β, reactive oxygen species (ROS) levels, fibrosis, hepatocytes DNA damage, upregulation in SA-β-gal activity, p16 and p21 gene expression, and hepatocytes proliferation down-regulation in the absence of telomeric shortening. These abnormalities were blocked by Pz treatment, which prevented infection chronification and the decline in hepatocytes proliferative potential, stimulating granulomatous inflammation resolution. Taken together, our findings provide the evidence that progressive fibrosis, sustained production of high ROS levels, marked DNA damage and decline in p16 and p21 expression are associated with hepatocytes replication attenuation in the chronic phase of S. mansoni infection. Thus, pharmacological blockade of infection and granulomatous inflammation is essential to prevent these premature senescence markers associated with hepatocytes replicative disorders, stimulating liver regeneration in schistosomiasis mansoni.
Collapse
Affiliation(s)
- Rômulo D Novaes
- Instituto de Ciências Biomédicas (ICB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil; Departamento de Biologia Animal (DBA), Programa de Pós-Graduação em Biologia Animal (PPGBA), Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas (PPGCB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil; Programa de Pós-Graduação em Biociências Aplicadas à Saúde (PPGB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil.
| | - Elda G Souza-E-Leite
- Instituto de Ciências Biomédicas (ICB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil; Programa de Pós-Graduação em Biociências Aplicadas à Saúde (PPGB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil
| | - Thiago D Silva
- Programa de Pós-Graduação em Ciências Biológicas (PPGCB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil; Programa de Pós-Graduação em Biociências Aplicadas à Saúde (PPGB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil
| | - José Edson Caetano-da-Silva
- Programa de Pós-Graduação em Ciências Biológicas (PPGCB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil
| | - Ivo S Caldas
- Instituto de Ciências Biomédicas (ICB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas (PPGCB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil
| | - Raquel L M Souza
- Instituto de Ciências Biomédicas (ICB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas (PPGCB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil
| | - Marcos J Marques
- Instituto de Ciências Biomédicas (ICB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas (PPGCB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil
| | - Reggiani V Gonçalves
- Departamento de Biologia Animal (DBA), Programa de Pós-Graduação em Biologia Animal (PPGBA), Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Minas Gerais, Brazil
| |
Collapse
|
2
|
Li J, Zhang J, Zhang B, Chen G, Huang M, Xu B, Zhu D, Chen J, Duan Y, Gao W. ATF3 is involved in rSjP40-mediated inhibition of HSCs activation in Schistosoma japonicum-infected mice. J Cell Mol Med 2024; 28:e18458. [PMID: 39031798 PMCID: PMC11190947 DOI: 10.1111/jcmm.18458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/14/2024] [Accepted: 05/16/2024] [Indexed: 07/22/2024] Open
Abstract
Schistosomiasis is a parasitic disease characterized by liver fibrosis, a process driven by the activation of hepatic stellate cells (HSCs) and subsequent collagen production. Previous studies from our laboratory have demonstrated the ability of Schistosoma japonicum protein P40 (SjP40) to inhibit HSCs activation and exert an antifibrotic effect. In this study, we aimed to elucidate the molecular mechanism underlying the inhibitory effect of recombinant SjP40 (rSjP40) on HSCs activation. Using a cell model in which rSjP40 inhibited LX-2 cell activation, we performed RNA-seq analyses and identified ATF3 as the most significantly altered gene. Further investigation revealed that rSjP40 inhibited HSCs activation partly by suppressing ATF3 activation. Knockdown of ATF3 in mouse liver significantly alleviated S. japonicum-induced liver fibrosis. Moreover, our results indicate that ATF3 is a direct target of microRNA-494-3p, a microRNA associated with anti-liver fibrosis effects. rSjP40 was found to downregulate ATF3 expression by upregulating microRNA-494-3p in LX-2 cells. This downregulation led to the inhibition of the expression of liver fibrosis proteins α-SMA and COL1A1, ultimately alleviating liver fibrosis caused by S. japonicum.
Collapse
Affiliation(s)
- Jing Li
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongJiangsuPeople's Republic of China
| | - Jiali Zhang
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
- Department of Laboratory MedicinePeople's Hospital of Haimen DistrictNantongJiangsuPeople's Republic of China
| | - Bei Zhang
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
| | - Guo Chen
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
| | - Min Huang
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
| | - Boyin Xu
- Department of Infection ControlAffiliated Hospital of Nantong UniversityNantongJiangsuPeople's Republic of China
| | - Dandan Zhu
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
| | - Jinling Chen
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
| | - Yinong Duan
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
| | - Wenxi Gao
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
- Laboratory Center, School of Educational SciencesNantong UniversityNantongJiangsuPeople's Republic of China
| |
Collapse
|
3
|
Zheng W, Bian S, Qiu S, Bishop CE, Wan M, Xu N, Sun X, Sequeira RC, Atala A, Gu Z, Zhao W. Placenta mesenchymal stem cell-derived extracellular vesicles alleviate liver fibrosis by inactivating hepatic stellate cells through a miR-378c/SKP2 axis. Inflamm Regen 2023; 43:47. [PMID: 37798761 PMCID: PMC10557276 DOI: 10.1186/s41232-023-00297-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Extracellular vesicles derived from mesenchymal stem/stromal cells (MSCs) have shown therapeutic effects on liver fibrosis. This study aimed to evaluate the effects of extracellular vesicles from placenta-derived MSCs (Pd-MSCs-EVs) on liver fibrosis at 3D/2D levels and explore the potential mechanisms. METHODS The multicellular liver organoids, consisting of hepatocytes, hepatic stellate cells (HSCs), Kupffer cells, and liver sinusoidal endothelial cells, were observed for growth status, morphological changes, and metabolism. Human transformation growth factor- beta 1 (TGF-β1) was used to induce fibrosis at optimal concentration. The anti-fibrosis effects of Pd-MSCs-EVs were evaluated in liver organoids and HSCs models. Anti-fibrotic content of Pd-MSCs-EVs was identified by multiple experimental validations. RESULTS TGF-β1 induced fibrosis in liver organoids, while Pd-MSCs-EVs significantly alleviated fibrotic phenotypes. Following serial verifications, miR-378c was identified as a potential key anti-fibrosis content. In contrast, miR-378c depletion decreased the anti-fibrotic effects of Pd-MSCs-EVs. Additionally, Pd-MSCs-EVs administration repressed TGF-β1-mediated HSCs activation at 2D or 3D levels. Mechanistically, exosomal miR-378c inactivated HSCs by inhibiting epithelial-mesenchymal transition (EMT) through stabilizing E-cadherin via targeting its E3 ubiquitin ligase S-Phase Kinase Associated Protein 2 (SKP2). CONCLUSION Pd-MSCs-EVs ameliorated TGF-β1-induced fibrosis by deactivating HSCs in a miR-378c/SKP2-dependent manner, which may be an efficient therapeutic candidate for liver fibrosis.
Collapse
Affiliation(s)
- Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Saiyan Bian
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Shi Qiu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Colin E Bishop
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Meimei Wan
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Nuo Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Xieyin Sun
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Russel Clive Sequeira
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Zhifeng Gu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
4
|
Differential Analysis of Key Proteins Related to Fibrosis and Inflammation in Soluble Egg Antigen of Schistosoma mansoni at Different Infection Times. Pathogens 2023; 12:pathogens12030441. [PMID: 36986363 PMCID: PMC10054402 DOI: 10.3390/pathogens12030441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Schistosomiasis is a major global health problem. Schistosomes secrete antigens into the host tissue that bind to chemokines or inhibit immune cell receptors, regulating the immune responses to allow schistosome development. However, the detailed mechanism of chronic schistosome infection-induced liver fibrosis, including the relationship between secreted soluble egg antigen (SEA) and hepatic stellate cell (HSC) activation, is still unknown. We used mass spectrometry to identify the SEA protein sequences from different infection weeks. In the 10th and 12th infection weeks, we focused on the SEA components and screened out the special protein components, particularly fibrosis- and inflammation-related protein sequences. Our results have identified heat shock proteins, phosphorylation-associated enzymes, or kinases, such as Sm16, GSTA3, GPCRs, EF1-α, MMP7, and other proteins linked to schistosome-induced liver fibrosis. After sorting, we found many special proteins related to fibrosis and inflammation, but studies proving their association with schistosomiasis infection are limited. Follow-up studies on MICOS, MATE1, 14-3-3 epsilon, and CDCP1 are needed. We treated the LX-2 cells with the SEA from the 8th, 10th, and 12th infection weeks to test HSC activation. In a trans-well cell model in which PBMCs and HSCs were co-cultured, the SEA could significantly induce TGF-β secretion, especially from the 12th week of infection. Our data also showed that TGF-β secreted by PBMC after the SEA treatment activates LX-2 and upregulates hepatic fibrotic markers α-SMA and collagen 1. Based on these results, the CUB domain-containing protein 1 (CDCP1) screened at the 12th infection week could be investigated further. This study clarifies the trend of immune mechanism variation in the different stages of schistosome infection. However, how egg-induced immune response transformation causes liver tissue fibrosis needs to be studied further.
Collapse
|
5
|
Liu Z, Zhang L, Liang Y, Lu L. Pathology and molecular mechanisms of Schistosoma japonicum-associated liver fibrosis. Front Cell Infect Microbiol 2022; 12:1035765. [PMID: 36389166 PMCID: PMC9650140 DOI: 10.3389/fcimb.2022.1035765] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Schistosomiasis has been widely disseminated around the world, and poses a significant threat to human health. Schistosoma eggs and soluble egg antigen (SEA) mediated inflammatory responses promote the formation of egg granulomas and liver fibrosis. With continuous liver injuries and inflammatory stimulation, liver fibrosis can develop into liver cirrhosis and liver cancer. Therefore, anti-fibrotic therapy is crucial to increase the survival rate of patients. However, current research on antifibrotic treatments for schistosomiasis requires further exploration. In the complicated microenvironment of schistosome infections, it is important to understand the mechanism and pathology of schistosomiasis-associated liver fibrosis(SSLF). In this review, we discuss the role of SEA in inhibiting liver fibrosis, describe its mechanism, and comprehensively explore the role of host-derived and schistosome-derived microRNAs (miRNAs) in SSLF. Inflammasomes and cytokines are significant factors in promoting SSLF, and we discuss the mechanisms of some critical inflammatory signals and pro-fibrotic cytokines. Natural killer(NK) cells and Natural killer T(NKT) cells can inhibit SSLF but are rarely described, therefore, we highlight their significance. This summarizes and provides insights into the mechanisms of key molecules involved in SSLF development.
Collapse
Affiliation(s)
- Zhilong Liu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Lichen Zhang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Yinming Liang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Yinming Liang, ; Liaoxun Lu,
| | - Liaoxun Lu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Yinming Liang, ; Liaoxun Lu,
| |
Collapse
|
6
|
Shen P, Zhang T, Chen G, Zhang B, Huang A, Duan L, Zhu D, Chen J, Wang J, Duan Y. Recombinant P40 protein of Schistosoma japonicum inhibits TREM-1 expression in RAW264.7 cells via FOXO3a. Biomed Pharmacother 2022; 149:112826. [PMID: 35306429 DOI: 10.1016/j.biopha.2022.112826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 11/02/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 1 (TREM-1) is a transmembrane glycoprotein receptor and TREM-1 expression reached the peak at 6 weeks after infection with Schistosoma japonicum and inhibited subsequently. Since TREM-1 may be involved in the macrophage polarization process, the reason for the inhibition of TREM-1 expression in chronic schistosomiasis engaged us in them. In this study, flow cytometry was used to observe TREM-1 expression in peritoneal macrophages from mice infected with Schistosoma japonicum. Since P40 is one of the main components from schistosoma eggs, western blot and dual-luciferase reporter assays were performed to observe the effect of recombinant Schistosoma japonicum P40 protein (rSjP40) on TREM-1 expression in the mouse leukemic monocyte/macrophage cell line RAW264.7. These methods were also conducted to observe the effect of FOXO3a on the expression of TREM-1 in RAW264.7 cells, and a ChIP assay was performed to confirm the binding site of FOXO3a to the TREM-1 promoter. Our results showed that TREM-1 expression reached the peak in peritoneal macrophages from mice at 6 weeks after infection with Schistosoma japonicum. rSjP40 inhibited TREM-1 promoter activity at the position of - 1924 ~ - 1531 bp. rSjP40 down-regulated TREM-1 and FOXO3a protein expression in RAW264.7 cells. TREM-1 protein expression may be regulated by binding of FOXO3a to the promoter of TREM-1 in RAW264.7 cells. In conclusion, we found that rSjP40 inhibited TREM-1 expression in macrophages by inhibiting FOXO3a expression. This study will provide the basis for the study to explore the role of TREM-1 in Schistosoma japonicum infection.
Collapse
Affiliation(s)
- Pei Shen
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China; Department of Laboratory Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Tianyu Zhang
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Guo Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Bei Zhang
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Ailong Huang
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Lian Duan
- Department of Medical Informatics, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China.
| | - Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Jianxin Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
The role of let-7b in the inhibition of hepatic stellate cell activation by rSjP40. PLoS Negl Trop Dis 2021; 15:e0009472. [PMID: 34161325 PMCID: PMC8221521 DOI: 10.1371/journal.pntd.0009472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hepatic stellate cells (HSCs) are one of the main cell types involved in liver fibrosis induced by many factors, including schistosomes. Previous studies in our lab have shown that recombinant P40 protein from Schistosoma japonicum (rSjP40) can inhibit HSC activation in vitro. Let-7b is a member of the let-7 microRNA family and plays an inhibitory role in a variety of diseases and inflammatory conditions. In this study, we investigated the role of let-7b in the inhibition of HSC activation by rSjP40. METHODS Expression of let-7b was detected by quantitative real-time PCR. A dual luciferase assay was used to confirm direct interaction between let-7b and collagen I. We also used western blot to assess protein levels of TGFβRI and collagen type I α1 (COL1A1). RESULTS We found that rSjP40 up-regulates expression of let-7b in HSCs. Let-7b inhibits collagen I expression by directly targeting the 3'UTR region of the collagen I gene. Furthermore, we discovered that let-7b inhibitor partially restores the loss of collagen I expression caused by rSjP40. CONCLUSION Our research clarifies the role of let-7b in the inhibition of HSC activation by rSjP40 and will provide new insights and ideas for the inhibition of HSC activation and treatment of liver fibrosis.
Collapse
|
8
|
Skp2 regulates DNA damage repair and apoptosis via interaction with Ku70. Exp Cell Res 2020; 397:112335. [PMID: 33132134 DOI: 10.1016/j.yexcr.2020.112335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Skp2, an oncoprotein, regulates tumor proliferation, invasion and metastasis. Ku70 is a critical component of the non-homologous end-joining (NHEJ) process. Both Skp2 and Ku70 are positively associated in multiple cancers. However, there is no report about the relationship between Skp2 and Ku70 proteins. METHODS In this study, we carried out Bioinformatics and molecular biological methods to investigate the relationship between Skp2 and Ku70 proteins. RESULTS We first observed Skp2 and Ku70 mRNAs were significantly increased in cervical cancer tissues. And we identified Ku70 as a Skp2-binding protein and the binding site located in the C-terminal of Ku70 protein. We further found that Skp2 knockdown decreased the Ku70 protein level in cells, and increase the cellular apoptosis and DNA damage, suggesting Skp2 mediates the Ku70 protein stability and function via post-translational modification. CONCLUSION The direct interaction between Skp2 and Ku70 proteins mediates the DNA damage repair and cellular apoptosis by regulating Ku70 stability and function via post-translational modification. The molecular mechanisms how Skp2 stabilize Ku70 would be clarified in our following research work.
Collapse
|
9
|
Cheng ZJ, Cai HQ, Zhang MJ, Zhong Y, He J, Yuan Q, Hao JJ, Wang MR, Wan JH. High S phase kinase-associated protein 2 expression is a potential prognostic biomarker for glioma. Oncol Lett 2020; 20:2788-2796. [PMID: 32782596 PMCID: PMC7400960 DOI: 10.3892/ol.2020.11818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
S phase kinase-associated protein 2 (SKP2), a substrate recognizing protein, serves an important role in promoting cell cycle progression through ubiquitination and degradation of cell cycle inhibitors. In the present study, the clinical significance of SKP2 in gliomas was studied; 395 glioma specimens and 20 non-neoplastic tissues were collected and immunohistochemical analysis was performed. χ2 test was used to assess the associations between SKP2 expression and clinical parameters. Overall survival (OS) curves were plotted according to the Kaplan-Meier method. In the tested glioma samples, SKP2 expression was mainly observed in glioblastomas (GBMs). Survival analysis demonstrated that the overall survival time of the high SKP2 expression group was lower compared with the low SKP2 expression group (median OS, 10.04 months vs. 16.50 months; P=0.003). Moreover, SKP2 was independently associated with an unfavorable prognosis in GBMs. In addition, the expression of SKP2 was associated with the expression of phosphorylated retinoblastoma protein and the epidermal growth factor receptor. A combination of SKP2 expression along with isocitrate dehydrogenase 1 (IDH1) mutations and telomerase reverse transcriptase (TERT) promoter mutations was used to classify glioma patients for survival analysis. Patients with low SKP2 expression, IDH1 mutation and wild-type TERT promoter demonstrated the longest survival time. The findings of the present study, indicate that SKP2 is a potential prognostic biomarker in patients with GBMs.
Collapse
Affiliation(s)
- Zhi-Jian Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China.,Department of State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Hong-Qing Cai
- Department of Neurosurgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Min-Jie Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China.,Department of State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yi Zhong
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China.,Department of State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jie He
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Qing Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China.,Department of State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jia-Jie Hao
- Department of State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Ming-Rong Wang
- Department of State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jing-Hai Wan
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
10
|
Shen W, Huang B, He Y, Shi L, Yang J. Long non‐coding RNA RP11‐820 promotes extracellular matrix production via regulating miR‐3178/MYOD1 in human trabecular meshwork cells. FEBS J 2019; 287:978-990. [PMID: 31495061 DOI: 10.1111/febs.15058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/09/2019] [Accepted: 09/03/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Wencui Shen
- Tianjin Eye Hospital & Eye Institute Tianjin Key Lab of Ophthalmology and Visual Science NanKai University Tianjin China
| | - Bingqing Huang
- Department of Pathology Institute of Hematology and Blood Diseases Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin China
| | - Ye He
- Tianjin Medical University Eye Hospital China
| | - Liukun Shi
- Tianjin Eye Hospital & Eye Institute Tianjin Key Lab of Ophthalmology and Visual Science NanKai University Tianjin China
| | - Jin Yang
- Tianjin Eye Hospital & Eye Institute Tianjin Key Lab of Ophthalmology and Visual Science NanKai University Tianjin China
| |
Collapse
|
11
|
De Marco Verissimo C, Potriquet J, You H, McManus DP, Mulvenna J, Jones MK. Qualitative and quantitative proteomic analyses of Schistosoma japonicum eggs and egg-derived secretory-excretory proteins. Parasit Vectors 2019; 12:173. [PMID: 30992086 PMCID: PMC6469072 DOI: 10.1186/s13071-019-3403-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Schistosome parasites lay up to a thousand eggs per day inside the veins of their mammalian hosts. The immature eggs deposited by females against endothelia of venules will embryonate within days. Approximately 30% of the eggs will migrate to the lumen of the intestine to continue the parasite life-cycle. Many eggs, however, are trapped in the liver and intestine causing the main pathology associated with schistosomiasis mansoni and japonica, the liver granulomatous response. Excretory-secretory egg proteins drive much of egg-induced pathogenesis of schistosomiasis mansoni, and Schistosoma japonicum induce a markedly distinct granulomatous response to that of S. mansoni. METHODS To explore the basis of variations in this responsiveness, we investigated the proteome of eggs of S. japonicum. Using mass spectrometry qualitative and quantitative (SWATH) analyses, we describe the protein composition of S. japonicum eggs secretory proteins (ESP), and the differential expression of proteins by fully mature and immature eggs, isolated from faeces and ex vivo adults. RESULTS Of 957 egg-related proteins identified, 95 were exclusively found in S. japonicum ESP which imply that they are accessible to host immune system effector elements. An in-silico analysis implies that ESP are able of stimulating the innate and adaptive immune system through several different pathways. While quantitative SWATH analysis revealed 124 proteins that are differentially expressed by mature and immature S. japonicum eggs, illuminating some important aspects of eggs biology and infection, we also show that mature eggs are more likely than immature eggs to stimulate host immune responses. CONCLUSIONS Here we present a list of potential targets that can be used to develop better strategies to avoid severe morbidity during S. japonicum infection, as well as improving diagnosis, treatment and control of schistosomiasis japonica.
Collapse
Affiliation(s)
- Carolina De Marco Verissimo
- School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia. .,Medical Biological Centre, Queen's University Belfast, Belfast, UK.
| | - Jeremy Potriquet
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Hong You
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Donald P McManus
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jason Mulvenna
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Malcolm K Jones
- School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Role of hepatic stellate cell (HSC)-derived cytokines in hepatic inflammation and immunity. Cytokine 2018; 124:154542. [PMID: 30241896 DOI: 10.1016/j.cyto.2018.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/01/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022]
Abstract
In their quiescent state, Hepatic stellate cells (HSCs), are present in the sub-endothelial space of Disse and have minimal interaction with immune cells. However, upon activation following injury, HSCs directly or indirectly interact with various immune cells that enter the space of Disse and thereby regulate diverse hepatic function and immune physiology. Other than the normal physiological functions of HSCs such as hepatic homeostasis, maturation and differentiation, they also participate in hepatic inflammation by releasing a battery of inflammatory cytokines and chemokines and interacting with other liver cells. Here, we have reviewed the role of HSC in the pathogenesis of liver inflammation and some infectious diseases in order to understand how the interplay between immune cells and HSCs regulates the overall outcome and disease pathology.
Collapse
|
13
|
TLR3 Modulates the Response of NK Cells against Schistosoma japonicum. J Immunol Res 2018; 2018:7519856. [PMID: 30246036 PMCID: PMC6136572 DOI: 10.1155/2018/7519856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/18/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells are classic innate immune cells that play roles in many types of infectious diseases. NK cells possess many kinds of TLRs that allow them to sense and respond to invading pathogens. Our previous study found that NK cells could modulate the immune response induced by Schistosoma japonicum (S. japonicum) in C57BL/6 mice. In the present study, the role of TLRs in the progress of S. japonicum infection was investigated. Results showed that the expression of TLR3 on NK cells increased significantly after S. japonicum infection by using RT-PCR and FACS (P < 0.05). TLR3 agonist (Poly I:C) increased IFN-γ and IL-4 levels in the supernatant of cultured splenocytes and induced a higher percentage of IFN-γ- and IL-4-secreting NK cells from infected mouse splenocytes (P < 0.05). Not only the percentages of MHC II-, CD69-, and NKG2A/C/E-expressing cells but also the percentages of IL-4-, IL-5-, and IL-17-producing cells in TLR3+ NK cells increased significantly after infection (P < 0.05). Moreover, the expression of NKG2A/C/E, NKG2D, MHC II, and CD69 on the surface of splenic NK cells was changed in S. japonicum-infected TLR3-/- (TLR3 KO mice, P < 0.05); the abilities of NK cells in IL-4, IL-5, and IL-17 secretion were decreased too (P < 0.05). These results indicate that TLR3 is the primary molecule which modulates the activation and function of NK cells during the course of S. japonicum infection in C57BL/6 mice.
Collapse
|
14
|
Duan Y, Lyu L, Zhu D, Wang J, Chen J, Chen L, Yang C, Sun X. Recombinant SjP40 protein enhances p27 promoter expression in hepatic stellate cells via an E2F1-dependent mechanism. Oncotarget 2018; 8:40705-40712. [PMID: 28489573 PMCID: PMC5522240 DOI: 10.18632/oncotarget.17248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/06/2017] [Indexed: 12/29/2022] Open
Abstract
The p27 protein plays a critical role in cell cycle arrest. Our previous studies have demonstrated that recombinant P40 protein from Schistosoma japonicum (rSjP40) could induce G1 phase arrest of cell cycle. We, therefore, attempted to observe the effect of rSjP40 on p27 promoter activity in LX-2 cells and to explore its potential mechanisms in this study. Using both Western blot and dual-luciferase reporter assay, we demonstrated that rSjP40 could enhance the expression of p27 in LX-2 cells. Results obtained using truncated fragments of p27 promoter showed that rSjP40 increased p27 promoter activity in LX-2 cells, mainly via some transcription factors that bind to the -1740/-873 region of p27 promoter. Further studies confirmed that the enhancement of p27 promoter activity induced by rSjP40 was related to E2F1 in LX-2 cells. Transfection of siRNA of E2F1 could also restore the effect of rSjP40 on expression of p27 and partially on α-SMA. Therefore, our study provided further insights into the mechanism by which rSjP40 induces LX-2 cell cycle arrest at G1 phase and inhibits HSC activation. Our results provide basis for future study of the blocking effect of rSjP40 in liver fibrosis.
Collapse
Affiliation(s)
- Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Lei Lyu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Jianxin Wang
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Liuting Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Chunzhao Yang
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Xiaolei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| |
Collapse
|