1
|
Brochu AS, Dumonceaux TJ, Valenzuela M, Bélanger R, Pérez-López E. A New Multiplex TaqMan qPCR for Precise Detection and Quantification of Clavibacter michiganensis in Seeds and Plant Tissue. PLANT DISEASE 2024; 108:2272-2282. [PMID: 38381965 DOI: 10.1094/pdis-06-23-1194-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Bacterial canker of tomato caused by Clavibacter michiganensis (Cm) is one of the most devastating bacterial diseases affecting the tomato industry worldwide. As the result of Cm colonization of the xylem, the susceptible host shows typical symptoms of wilt, marginal leaf necrosis, stem cankers, and ultimately plant death. However, what makes Cm an even more dangerous pathogen is its ability to infect seeds and plants without causing symptoms. Unfortunately, there are no resistant cultivars or effective chemical or biological control methods available to growers against Cm. Its control relies heavily on prevention. The implementation of a rapid and accurate detection tool is imperative to monitor the presence of Cm and prevent its spread. In this study, we developed a specific and sensitive multiplex TaqMan qPCR assay to detect Cm and distinguish it from related bacterial species that affect tomato plants. Two Cm chromosomal virulence-related genes, rhuM and tomA, were used as specific targets. The plant internal control tubulin alpha-3 was included in each of the multiplexes to improve the reliability of the assay. Specificity was evaluated with 37 bacterial strains including other Clavibacter spp. and related and unrelated bacterial pathogens from different geographic locations affecting a wide variety of hosts. Results showed that the assay is able to discriminate Cm strains from other related bacteria. The assay was validated on tissue and seed samples following artificial infection, and all tested samples accurately detected the presence of Cm. The tool described here is highly specific, sensitive, and reliable for the detection of Cm and allows the quantification of Cm in seeds, roots, stems, and leaves. The diagnostic assay can also be adapted for multiple purposes such as seed certification programs, surveillance, biosafety, the effectiveness of control methods, border protection, and epidemiological studies.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Anne-Sophie Brochu
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec City, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Canada
- L'Institute EDS, Université Laval, Québec City, Canada
| | - Tim J Dumonceaux
- Agriculture and Agri-Food Canada Saskatoon Research and Development Centre, Saskatoon, SK, Canada
| | - Miryam Valenzuela
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry & Center of Biotechnology Dr. Daniel Alkalay Lowitt, Universidad Tecnica Federico Santa Maria, Valparaiso 2390123, Chile
| | - Richard Bélanger
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec City, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Canada
| | - Edel Pérez-López
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec City, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Canada
| |
Collapse
|
2
|
Brochu AS, Dionne A, Fall ML, Pérez-López E. A Decade of Hidden Phytoplasmas Unveiled Through Citizen Science. PLANT DISEASE 2023; 107:3389-3393. [PMID: 37227441 DOI: 10.1094/pdis-02-23-0227-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Climate change is impacting agriculture in many ways, and a contribution from all is required to reduce the imminent losses related to it. Recently, it has been shown that citizen science could be a way to trace the impact of climate change. However, how can citizen science be applied in plant pathology? Here, using as an example a decade of phytoplasma-related diseases reported by growers, agronomists, and citizens in general, and confirmed by a government laboratory, we explored how to better value plant pathogen monitoring data. Through this collaboration, we found that in the last decade, 34 hosts have been affected by phytoplasmas; 9, 13, and 5 of these plants were, for the first time, reported phytoplasma hosts in eastern Canada, all of Canada, and worldwide, respectively. Another finding of great impact is the first report of a 'Candidatus Phytoplasma phoenicium'-related strain in Canada, while 'Ca. P. pruni' and 'Ca. P. pyri' were reported for the first time in eastern Canada. These findings will have a great impact on the management of phytoplasmas and their insect vectors. Using these insect-vectored bacterial pathogens, we show the need for new strategies that can allow fast and accurate communication between concerned citizens and those institutions confirming their observations.[Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Anne-Sophie Brochu
- Départment de phytologie, Faculté Des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche et D'innovation Sur Les Végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Institute de Biologie Intégrative et Des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Antoine Dionne
- Laboratoire D'expertise et de Diagnostic en Phytoprotection, MAPAQ, Quebec City, Quebec, Canada
| | - Mamadou Lamine Fall
- Saint-Jean-Sur-Richelieu Research and Development Centre, AAFC, Saint-Jean-sur-Richelieu, Quebec, Canada
| | - Edel Pérez-López
- Départment de phytologie, Faculté Des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche et D'innovation Sur Les Végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Institute de Biologie Intégrative et Des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
3
|
Bennypaul H, Sanderson D, Donaghy P, Abdullahi I. Development of a Real-Time PCR Assay for the Detection and Identification of Rubus Stunt Phytoplasma in Rubus spp. PLANT DISEASE 2023; 107:2296-2306. [PMID: 36611241 DOI: 10.1094/pdis-09-22-2193-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rubus stunt, caused by 'Candidatus Phytoplasma rubi' (Rubus stunt phytoplasma; RSP), is an economically important disease of Rubus. This disease occurs in wild and cultivated Rubus spp. in Europe but has not been reported from North America; however, its major leafhopper vector is well established in western Canada and the U.S.A. RSP has the potential to impact the cane-fruit industry by significantly compromising yields and impacting export potential for Rubus propagation material. To mitigate the risk of this disease entering or establishing, import and export testing of propagation material is a phytosanitary requirement in Canada, the U.S.A., and other countries regulating RSP. In the absence of a specific test for RSP, the current testing scheme involves the use of a generic test to screen for phytoplasmas followed by additional time-consuming procedures to confirm the phytoplasma species. In this study, a real-time PCR assay, targeting a 154-bp region of tuf gene, was developed for sensitive and specific detection of RSP in Rubus spp. The developed assay detected a minimum of five target copies, and no cross-reactivity was observed even with the 'Ca. P. rubi'-related strain associated with blackberry witches' broom, which differs from RSP only by a single nucleotide polymorphism in the target region. Repeatability of the developed assay was checked on two real-time PCR platforms with acceptable results. In conclusion, this real-time PCR assay provides a sensitive and specific detection of RSP for mitigating the introduction and spread of Rubus stunt disease in Rubus spp.
Collapse
Affiliation(s)
- Harvinder Bennypaul
- Centre for Plant Health - Sidney Laboratory, Canadian Food Inspection Agency, North Saanich, British Columbia V8L 1H3, Canada
| | - Daniel Sanderson
- Centre for Plant Health - Sidney Laboratory, Canadian Food Inspection Agency, North Saanich, British Columbia V8L 1H3, Canada
| | - Peri Donaghy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Ismail Abdullahi
- Centre for Plant Health - Sidney Laboratory, Canadian Food Inspection Agency, North Saanich, British Columbia V8L 1H3, Canada
| |
Collapse
|
4
|
Pusz-Bochenska K, Perez-Lopez E, Wist TJ, Bennypaul H, Sanderson D, Green M, Dumonceaux TJ. Multilocus sequence typing of diverse phytoplasmas using hybridization probe-based sequence capture provides high resolution strain differentiation. Front Microbiol 2022; 13:959562. [PMID: 36246242 PMCID: PMC9556853 DOI: 10.3389/fmicb.2022.959562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022] Open
Abstract
Phytoplasmas are insect-vectored, difficult-to-culture bacterial pathogens that infect a wide variety of crop and non-crop plants, and are associated with diseases that can lead to significant yield losses in agricultural production worldwide. Phytoplasmas are currently grouped in the provisional genus ‘Candidatus Phytoplasma’, which includes 49 ‘Candidatus’ species. Further differentiation of phytoplasmas into ribosomal groups is based on the restriction fragment length polymorphism (RFLP) pattern of the 16S rRNA-encoding operon, with more than 36 ribosomal groups (16Sr) and over 100 subgroups reported. Since disease symptoms on plants are not associated with phytoplasma identity, accurate diagnostics is of critical importance to manage disease associated with these microorganisms. Phytoplasmas are typically detected from plant and insect tissue using PCR-based methods targeting universal taxonomic markers. Although these methods are relatively sensitive, specific and are widely used, they have limitations, since they provide limited resolution of phytoplasma strains, thus necessitating further assessment of biological properties and delaying implementation of mitigation measures. Moreover, the design of PCR primers that can target multiple loci from phytoplasmas that differ at the sequence level can be a significant challenge. To overcome these limitations, a PCR-independent, multilocus sequence typing (MLST) assay to characterize an array of phytoplasmas was developed. Hybridization probe s targeting cpn60, tuf, secA, secY, and nusA genes, as well as 16S and rp operons, were designed and used to enrich DNA extracts from phytoplasma-infected samples for DNA fragments corresponding to these markers prior to Illumina sequencing. This method was tested using different phytoplasmas including ‘Ca. P. asteris’ (16SrI-B), ‘Ca. P. pruni’ (16SrIII-A),‘Ca. P. prunorum’ (16SrX-B), ‘Ca. P. pyri’ (16SrX-C), ‘Ca. P. mali’ (16SrX-A), and ‘Ca. P. solani’ (16SrXII-A). Thousands of reads were obtained for each gene with multiple overlapping fragments, which were assembled to generate full-length (typically >2 kb), high-quality sequences. Phytoplasma groups and subgroups were accurately determined based on 16S ribosomal RNA and cpn60 gene sequences. Hybridization-based MLST facilitates the enrichment of target genes of phytoplasmas and allows the simultaneous determination of sequences corresponding to seven different markers. In this proof-of-concept study, hybridization-based MLST was demonstrated to be an efficient way to generate data regarding ‘Ca. Phytoplasma’ species/strain differentiation.
Collapse
Affiliation(s)
- Karolina Pusz-Bochenska
- Agriculture and Agri-Food Canada Saskatoon Research and Development Centre, Saskatoon, SK, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Edel Perez-Lopez
- Centre de Recherche et D'innovation sur les Végétaux (CRIV), Faculté des Sciences de L'agriculture et de L'alimentation, Département de Phytologie, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Tyler J. Wist
- Agriculture and Agri-Food Canada Saskatoon Research and Development Centre, Saskatoon, SK, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Harvinder Bennypaul
- Canadian Food Inspection Agency (CFIA), Sidney Laboratory, Centre for Plant Health, North Saanich, BC, Canada
| | - Daniel Sanderson
- Canadian Food Inspection Agency (CFIA), Sidney Laboratory, Centre for Plant Health, North Saanich, BC, Canada
| | - Margaret Green
- Canadian Food Inspection Agency (CFIA), Sidney Laboratory, Centre for Plant Health, North Saanich, BC, Canada
| | - Tim J. Dumonceaux
- Agriculture and Agri-Food Canada Saskatoon Research and Development Centre, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Tim J. Dumonceaux,
| |
Collapse
|
5
|
Pusz-Bochenska K, Pérez-López E, Dumonceaux TJ, Olivier C, Wist TJ. Rapid Molecular Diagnostics in the Field and Laboratory to Detect Plant Pathogen DNA in Potential Insect Vectors. Methods Mol Biol 2022; 2536:179-199. [PMID: 35819606 DOI: 10.1007/978-1-0716-2517-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A variety of sensitive and specific molecular diagnostic assays has been described for detecting nucleic acids in biological samples that may harbor pathogens of interest. These methods include very rapid, isothermal nucleic acid amplification methods that can be deployed outside of the laboratory environment, such as loop-mediated isothermal DNA amplification (LAMP) and recombinase-polymerase amplification (RPA). However, all molecular diagnostic assays must be preceded by nucleic acid extraction from the biological samples of interest, which provides suitable template molecules for the assays. To exploit the features of the amplification assays and be utilized outside of the lab, these methods must be rapid and avoid the need for typical laboratory chemicals and equipment. We describe a protocol for the extraction of DNA from field-collected insects that can be implemented at the point of collection and used to detect the presence of DNA sequences from potential plant pathogens that may be vectored by the insects. This protocol provides template DNA that is suitable for PCR, LAMP, and RPA. The FTA PlantSaver card-based DNA extraction product was also confirmed to amplify the mitochondrial cytochrome oxidase 1 (CO1) universal barcode that could later be sequenced to identify any insect. Lastly, we provide an example using field-collected insects, Neokolla (Graphocephala) heiroglyphica, and demonstrate the detection of the plant pathogen Xylella fastidiosa in carrier insects using PCR, RPA, and LAMP.
Collapse
Affiliation(s)
- Karolina Pusz-Bochenska
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
- Agriculture and Agri-Food Canada Saskatoon Research and Development Centre, Saskatoon, SK, Canada
| | - Edel Pérez-López
- Université Laval, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département de Phytologie, Québec City, QC, Canada
| | - Tim J Dumonceaux
- Agriculture and Agri-Food Canada Saskatoon Research and Development Centre, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Chrystel Olivier
- Agriculture and Agri-Food Canada Saskatoon Research and Development Centre, Saskatoon, SK, Canada
| | - Tyler J Wist
- Agriculture and Agri-Food Canada Saskatoon Research and Development Centre, Saskatoon, SK, Canada.
| |
Collapse
|
6
|
Detection of blueberry stunt phytoplasma in Eastern Canada using cpn60-based molecular diagnostic assays. Sci Rep 2021; 11:22118. [PMID: 34764366 PMCID: PMC8586236 DOI: 10.1038/s41598-021-01439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/25/2021] [Indexed: 11/15/2022] Open
Abstract
Blueberry stunt phytoplasma (BBSP; ‘Candidatus Phytoplasma asteris’) is an insect-vectored plant pathogen that causes severe yield losses in blueberry (Vaccinium corymbosum), which is the most valuable fruit crop in Canada. Rapid, field-based diagnostic assays are desirable tools for the control of BBSP, as part of an integrated, proactive approach to production management termed biovigilance. We designed and validated a chaperonin-60 (cpn60)-targeted LAMP assay for detection of BBSP, providing a rapid, low cost, field-deployable diagnostic option. Our validation demonstrates that the assay is reproducible, with high analytical specificity and improved sensitivity when compared with 16S rRNA nested PCR. We applied the validated LAMP assay to nearly 2000 blueberry samples from Québec and Nova Scotia over three growing seasons (2016–2018). Our surveys revealed that BBSP is present in most sites across both provinces, though detection of the pathogen in individual plants varied in different tissues across sampling dates and across years, and evidence of spread between plants was limited. To quantify pathogen load in select plants, we designed additional qPCR and ddPCR assays, also based on cpn60. We found that pathogen load fluctuates in individual plants, both within and between growing seasons. Finally, we designed an interactive map to visualize the results of our surveys. These results provide a validated diagnostic assay that can be used as part of a biovigilance strategy for detecting and controlling infections caused by BBSP.
Collapse
|
7
|
Phytoplasma diseases of plants: molecular diagnostics and way forward. World J Microbiol Biotechnol 2021; 37:102. [PMID: 34009500 DOI: 10.1007/s11274-021-03061-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Phytoplasmas are obligate phytopathogenic bacteria associated with devastating diseases in hundreds of crops across the world. They have been responsible for huge economic losses in many crop plants for decades now. Isolation and establishment of axenic culture of phytoplasma in complex media is a recent progress in phytoplasma research. Earlier methods for phytoplasma disease detection included symptom profiling, microscopy, serology and dodder transmission studies. With advancement in the field of molecular biology, phytoplasma diagnostics and characterisation witnessed radical improvement. Starting from PCR amplification which often necessities a nested PCR on account of low titre of phytoplasmas, to the closed tube quantitative PCR assays and then the ddPCR, an array of diagnostics have been developed for phytoplasma. The isothermal diagnostic platforms are the latest addition to this and the Loop Mediated Isothermal Amplification (LAMP) assay has been applied for the detection of phytoplasma from several hosts. The futuristic approach in phytoplasma detection will be very likely provided by an integration of nanotechnology and molecular diagnostics. Phytoplasma disease management majorly relies on early detection, vector control, use of disease free planting materials and cultivation of resistant varieties. Hence understanding the molecular mechanism of phytoplasma-host interaction is as important as timely and accurate detection, in the management of phytoplasma diseases. Further, the changing climatic scenario and global warming may lead to an upsurge in the phytoplasma diseases spread and severity across the world, making disease management even more challenging.
Collapse
|
8
|
Quoc NB, Xuan NTT, Nghiep NM, Phuong NDN, Linh TB, Chau NNB, Chuong NDX, Nien NC, Dickinson M. Loop-mediated isothermal amplification (LAMP) assay for detection of sesame phyllody phytoplasmas in Vietnam. Folia Microbiol (Praha) 2021; 66:273-283. [PMID: 33404955 DOI: 10.1007/s12223-020-00842-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/04/2020] [Indexed: 11/26/2022]
Abstract
Phloem-limiting phytoplasmas are known to be causal agents of phyllody, which is recognized by the abnormal development of floral structures resulting in serious yield losses in sesame plants. Currently, identification of the various groups of phytoplasmas that cause sesame phyllody (SP) is conducted by nested PCR, RFLP, and multiplex real-time qPCR assays. However, these methods require intensive labor and are costly and time-consuming so can only be undertaken in well-equipped labs. Here, diagnostic loop-mediated isothermal amplification (LAMP)-based assays allowing rapid detection of specific groups of phytoplasmas within 30 min were developed based on detection of the 16S rRNA sequence of phytoplasmas. Universal 16S rRNA phytoplasma primers and seven primer sets of different 16Sr group phytoplasmas (16SrI, 16SrII, 16SrIII, 16SrIV, 16SrV, 16SrX, 16SrXI) and universal plant cytochrome oxidase (cox) gene primers were used to detect 16S rRNA group phytoplasma sequences and the cox gene in sesame plants. The LAMP assays were carried out using a real-time fluorometer with amplification plots and annealing curves visualized directly. Results demonstrated that the 16SrI and 16SrII group phytoplasmas were causal agents of sesame phyllody in Vietnam. LAMP-based assays for in-field detection of sesame phyllody-causing phytoplasmas revealed advantages and potential applicability in comparison with conventional approaches. To the best of our knowledge, this is the first assessment of multiple phytoplasma infection associated with sesame phyllody disease in Vietnam using LAMP-based assays.
Collapse
Affiliation(s)
- Nguyen Bao Quoc
- Research Institute for Biotechnology and Environment, Nong Lam University, Ho Chi Minh City, Vietnam.
| | - Nguyen Thi Thanh Xuan
- Research Institute for Biotechnology and Environment, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Nguyen Mai Nghiep
- Research Institute for Biotechnology and Environment, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Nguyen Doan Nguyen Phuong
- Research Institute for Biotechnology and Environment, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Ton Bao Linh
- Department of Biotechnology, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Nguyen Ngoc Bao Chau
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| | | | - Nguyen Chau Nien
- Faculty of Agronomy, Nong Lam University, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
9
|
Banerjee A, Pérez-López E, Mossman K. Commentary: Phyllostomid bat microbiome composition is associated to host phylogeny and feeding strategies. Front Microbiol 2018; 9:2863. [PMID: 30524418 PMCID: PMC6262150 DOI: 10.3389/fmicb.2018.02863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/06/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Arinjay Banerjee
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, Michael DeGroote Centre for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Edel Pérez-López
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Karen Mossman
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, Michael DeGroote Centre for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
10
|
Perez-Lopez E, Vincent C, Moreau D, Hammond C, Town J, Dumonceaux TJ. A novel 'Candidatus Phytoplasma asteris' subgroup 16SrI-(E/AI)AI associated with blueberry stunt disease in eastern Canada. Int J Syst Evol Microbiol 2018; 69:322-332. [PMID: 30431416 DOI: 10.1099/ijsem.0.003100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytoplasmas ('Candidatus Phytoplasma' species) are phytopathogenic bacteria vectored by insects and are associated with crop diseases that cause severe yield losses by affecting reproductive tissue development. Infection of northern highbush blueberry plants (Vaccinium corymbosum; Ericaceae) with phytoplasma leads to yield losses by altering plant development resulting in stunting and subsequent plant death. Samples collected from symptomatic blueberry plants in two important blueberry-producing areas in Canada, in the provinces of Québec and Nova Scotia, were analysed for the presence of DNA sequences associated with phytoplasma. Analysis of the 16S rRNA gene sequences demonstrated that the plants were infected with a strain of 'Candidatus Phytoplasma asteris', which was previously identified as blueberry stunt phytoplasma (BBS; 16SrI-E). Examination of further bacterial sequences revealed that two distinct 16S rRNA-encoding gene sequences were present in each sample in combination with a single chaperonin-60 (cpn60) sequence and a single rpoperon sequence, suggesting that this strain displays 16S rRNA-encoding gene sequence heterogeneity. Two distinct rrnoperons, rrnE and the newly described rrnAI, were identified in samples analysed from all geographic locations. We propose, based on the sequences obtained, delineating the new subgroup 16SrI-(E/AI)AI, following the nomenclature proposed for heterogeneous subgroups. To our knowledge, this is the first report of a heterogeneous phytoplasma strain affecting blueberry plants and associated with blueberry stunt disease.
Collapse
Affiliation(s)
- Edel Perez-Lopez
- 1Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Charles Vincent
- 2Agriculture et Agroalimentaire Canada, Centre de recherche et de développement de Saint-Jean-sur-Richelieu, Québec, Canada
| | - Debra Moreau
- 3Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, Nova Scotia, Canada
| | - Christine Hammond
- 4Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Saskatchewan, Canada
| | - Jennifer Town
- 4Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Saskatchewan, Canada
| | - Tim J Dumonceaux
- 5Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,4Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
11
|
Li L, Jiang S, Shull PB, Gu G. SkinGest: artificial skin for gesture recognition via filmy stretchable strain sensors. Adv Robot 2018. [DOI: 10.1080/01691864.2018.1490666] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ling Li
- School of Mechanical Engineering, Robotics Institute, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Shuo Jiang
- School of Mechanical Engineering, Robotics Institute, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Peter B. Shull
- School of Mechanical Engineering, Robotics Institute, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Guoying Gu
- School of Mechanical Engineering, Robotics Institute, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
12
|
Bahar MH, Wist TJ, Bekkaoui DR, Hegedus DD, Olivier CY. Aster leafhopper survival and reproduction, and Aster yellows transmission under static and fluctuating temperatures, using ddPCR for phytoplasma quantification. Sci Rep 2018; 8:227. [PMID: 29321551 PMCID: PMC5762862 DOI: 10.1038/s41598-017-18437-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/12/2017] [Indexed: 01/14/2023] Open
Abstract
Aster yellows (AY) is an important disease of Brassica crops and is caused by Candidatus Phytoplasma asteris and transmitted by the insect vector, Aster leafhopper (Macrosteles quadrilineatus). Phytoplasma-infected Aster leafhoppers were incubated at various constant and fluctuating temperatures ranging from 0 to 35 °C with the reproductive host plant barley (Hordium vulgare). At 0 °C, leafhopper adults survived for 18 days, but failed to reproduce, whereas at 35 °C insects died within 18 days, but successfully reproduced before dying. Temperature fluctuation increased thermal tolerance in leafhoppers at 25 °C and increased fecundity of leafhoppers at 5 and 20 °C. Leafhopper adults successfully infected and produced AY-symptoms in canola plants after incubating for 18 days at 0-20 °C on barley, indicating that AY-phytoplasma maintains its virulence in this temperature range. The presence and number of AY-phytoplasma in insects and plants were confirmed by droplet digital PCR (ddPCR) quantification. The number of phytoplasma in leafhoppers increased over time, but did not differ among temperatures. The temperatures associated with a typical crop growing season on the Canadian Prairies will not limit the spread of AY disease by their predominant insect vector. Also, ddPCR quantification is a useful tool for early detection and accurate quantification of phytoplasma in plants and insects.
Collapse
Affiliation(s)
- Md H Bahar
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE, C1A 4N6, Canada.
| | - Tyler J Wist
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 7 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Diana R Bekkaoui
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 7 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Dwayne D Hegedus
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 7 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Chrystel Y Olivier
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 7 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
| |
Collapse
|