1
|
Bruneaux M, Ashrafi R, Kronholm I, Laanto E, Örmälä‐Tiznado A, Galarza JA, Zihan C, Kubendran Sumathi M, Ketola T. The effect of a temperature-sensitive prophage on the evolution of virulence in an opportunistic bacterial pathogen. Mol Ecol 2022; 31:5402-5418. [PMID: 35917247 PMCID: PMC9826266 DOI: 10.1111/mec.16638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Viruses are key actors of ecosystems and have major impacts on global biogeochemical cycles. Prophages deserve particular attention as they are ubiquitous in bacterial genomes and can enter a lytic cycle when triggered by environmental conditions. We explored how temperature affects the interactions between prophages and other biological levels using an opportunistic pathogen, the bacterium Serratia marcescens, which harbours several prophages and that had undergone an evolution experiment under several temperature regimes. We found that the release of one of the prophages was temperature-sensitive and malleable to evolutionary changes. We further discovered that the virulence of the bacterium in an insect model also evolved and was positively correlated with phage release rates. We determined through analysis of genetic and epigenetic data that changes in the bacterial outer cell wall structure possibly explain this phenomenon. We hypothezise that the temperature-dependent phage release rate acted as a selection pressure on S. marcescens and that it resulted in modified bacterial virulence in the insect host. Our study system illustrates how viruses can mediate the influence of abiotic environmental changes to other biological levels and thus be involved in ecosystem feedback loops.
Collapse
Affiliation(s)
- Matthieu Bruneaux
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Roghaieh Ashrafi
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Ilkka Kronholm
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Elina Laanto
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland,Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | | | - Juan A. Galarza
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Chen Zihan
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland,Shenzhen Research InstituteThe Chinese University of Hong KongShenzhenChina
| | - Mruthyunjay Kubendran Sumathi
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland,Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | - Tarmo Ketola
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
2
|
Silva MF, Kienesberger S, Pereira G, Mateus L, Lopes-da-Costa L, Silva E. Molecular diagnosis of bovine genital campylobacteriosis using high-resolution melting analysis. Front Microbiol 2022; 13:969825. [PMID: 36160264 PMCID: PMC9501873 DOI: 10.3389/fmicb.2022.969825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine Genital Campylobacteriosis (BGC) is a worldwide spread venereal disease of cattle caused by Campylobacter fetus subsp. venerealis (Cfv). Although several real-time PCR assays were developed for Cfv identification, most target mobile genetic elements, which may lead to false-positive diagnosis. In this study, a real-time PCR assay coupled with High-Resolution Melting analysis (HRM) was developed for the identification of Campylobacter fetus subspecies and application in BGC diagnosis. Two HRM assays targeting different single nucleotide polymorphisms were validated using 51 C. fetus strains, including 36 Cfv and 15 C. fetus subsp. fetus (Cff). The specificity was assessed in 50 preputial samples previously tested as negative for C. fetus and in 24 strains from other Campylobacter species. The analytical sensitivity was determined with ten-fold dilutions of Cfv genome copies and in preputial samples spiked with Cfv cells. Both HRM assays accurately identified the 51 C. fetus strains, showing 100% concordance with the previous identification. C. fetus subspecies identification by HRM showed concordant results with the glycine test in 98.0% of the isolates. No amplification was obtained in C. fetus negative preputial samples as well as in strains from other Campylobacter species. The assays were able to detect 102 genome copies of Cfv, while for preputial washing samples the limit of detection was 103 CFU/mL. These novel HRM assays represent a highly specific and sensitive tool for the identification of C. fetus subspecies and show potential for direct use in bull preputial samples for BGC diagnosis.
Collapse
Affiliation(s)
- Marta Filipa Silva
- Faculdade de Medicina Veterinária, Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
| | - Sabine Kienesberger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Gonçalo Pereira
- Faculdade de Medicina Veterinária, Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
| | - Luísa Mateus
- Faculdade de Medicina Veterinária, Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
| | - Luís Lopes-da-Costa
- Faculdade de Medicina Veterinária, Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
| | - Elisabete Silva
- Faculdade de Medicina Veterinária, Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
- *Correspondence: Elisabete Silva,
| |
Collapse
|
3
|
Genotyping of Listeria monocytogenes isolates by high-resolution melting curve (HRM) analysis of tandem repeat locus. Braz J Infect Dis 2022; 26:102348. [PMID: 35341738 PMCID: PMC9387474 DOI: 10.1016/j.bjid.2022.102348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Listeria monocytogenes is responsible for causing listeriosis, a type of food poisoning with high mortality. This bacterium is mainly transmitted to humans through the consumption of contaminated foods. Detection of L. monocytogenes through molecular methods is crucial for food safety and clinical diagnosis. Present techniques are characterized by low discrimination power and high cost, as well as being time-consuming and taking several days to give the final result. In our study, MLVA-HRM (Multiple-Locus Variable-number tandem repeats Analysis ‒ High-Resolution Melting) was investigated as an alternative method for a fast and precise method for the genotyping of L. monocytogenes isolates. Forty-eight isolates of L. monocytogenes obtained from the microbial bank of Department of Microbiology, Iran University of Medical Sciences, were typed by MLVA-HRM analysis using five Variable Numbers of Tandem Repeat (VNTR) loci. A total of 43 different types were obtained. This research demonstrated the usefulness of the MLVA-HRMA method and its ability to discriminate L. monocytogenes isolates. Since this method is easier and more efficient than existing methods, it can be widely used in food processing plants and diagnostic laboratories as a fast and accurate method.
Collapse
|
4
|
Co-harboring of mcr-1 and β-lactamase genes in Pseudomonas aeruginosa by high-resolution melting curve analysis (HRMA): Molecular typing of superbug strains in bloodstream infections (BSI). INFECTION GENETICS AND EVOLUTION 2020; 85:104518. [PMID: 32891877 DOI: 10.1016/j.meegid.2020.104518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/05/2020] [Accepted: 08/25/2020] [Indexed: 11/21/2022]
Abstract
Background Colistin resistance in P. aeruginosa (CRPA) is due to the appearance of superbug strains. As this pathogen gains more transferrable resistance mechanisms and continues to adapt to acquire additional resistance mechanisms during antimicrobial therapy rapidly, we face the growing threat of CRPA in bloodstream infections (BSI). This study designed to evaluate the frequency of CRPA strains producing different β-lactamases by the High-Resolution Melting Curve Analysis (HRMA) method in BSI and to characterize the different types by multilocus sequence typing (MLST). MATERIAL AND METHODS Sixty-nine (69) P. aeruginosa isolates were collected from blood culture. MIC E-test methods examined the antimicrobial susceptibilities of the bacterial isolates. Detection of resistant strains performed by using HRMA assay. RESULTS The strains resistant to amikacin (n = 11; 15.94%) and colistin (n = 10; 14.49%) were the least abundant and the gentamicin (n = 56; 82.6%) and ciprofloxacin (n = 67; 97.10%) resistant strains were the most frequent. Also, 39 isolates (56.52%) considered as multidrug-resistant (MDR), 20 isolates (28.98%) as extensively drug resistant (XDR), and 11 isolates (15.94%) as Pandrug Resistance (PDR). Further, 32 isolates (46.37%) considered as AmpC producer, and 28 isolates (40.57%) were considered an MBL producer. According to HRMA results, the blaSPM gene was detected in 19 isolates (27.53%), blaNDM gene in 11 isolates (15.94%), blaFOX gene in 31 isolates (44.92%), mcr-1 gene in 10 isolates (14.49%), blaACC and blaVIM genes in 27 isolates (39.13%), and blaTEM gene was reported in 20 isolates (28.98%). Furthermore, P. aeruginosa PASGNDM699, ST3340, and ST235 identified in 1.44%, 11.59% and 17.39% isolates, respectively. CONCLUSION CRPA strains play an essential role in the spread of antibiotic resistance in BSI. Likewise, the HRMA method was sensitive and specific for the detection of superbugs. Moreover, MLST analysis of a diverse collection of P. aeruginosa from blood culture suggests that particular strains or clonal complexes are associated with antibiotic resistance profile.
Collapse
|
5
|
Chávez-Madero C, de León-Derby MD, Samandari M, Ceballos-González CF, Bolívar-Monsalve EJ, Mendoza-Buenrostro C, Holmberg S, Garza-Flores NA, Almajhadi MA, González-Gamboa I, Yee-de León JF, Martínez-Chapa SO, Rodríguez CA, Wickramasinghe HK, Madou M, Dean D, Khademhosseini A, Zhang YS, Alvarez MM, Trujillo-de Santiago G. Using chaotic advection for facile high-throughput fabrication of ordered multilayer micro- and nanostructures: continuous chaotic printing. Biofabrication 2020; 12:035023. [PMID: 32224513 DOI: 10.1088/1758-5090/ab84cc] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This paper introduces the concept of continuous chaotic printing, i.e. the use of chaotic flows for deterministic and continuous extrusion of fibers with internal multilayered micro- or nanostructures. Two free-flowing materials are coextruded through a printhead containing a miniaturized Kenics static mixer (KSM) composed of multiple helicoidal elements. This produces a fiber with a well-defined internal multilayer microarchitecture at high-throughput (>1.0 m min-1). The number of mixing elements and the printhead diameter determine the number and thickness of the internal lamellae, which are generated according to successive bifurcations that yield a vast amount of inter-material surface area (∼102 cm2 cm-3) at high resolution (∼10 µm). This creates structures with extremely high surface area to volume ratio (SAV). Comparison of experimental and computational results demonstrates that continuous chaotic 3D printing is a robust process with predictable output. In an exciting new development, we demonstrate a method for scaling down these microstructures by 3 orders of magnitude, to the nanoscale level (∼150 nm), by feeding the output of a continuous chaotic 3D printhead into an electrospinner. The simplicity and high resolution of continuous chaotic printing strongly supports its potential use in novel applications, including-but not limited to-bioprinting of multi-scale layered biological structures such as bacterial communities, living tissues composed of organized multiple mammalian cell types, and fabrication of smart multi-material and multilayered constructs for biomedical applications.
Collapse
Affiliation(s)
- Carolina Chávez-Madero
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey 64849, NL, México. Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey 64849, NL, México. Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, United States of America. These authors contributed equally to this work
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kronholm I, Ormsby T, McNaught KJ, Selker EU, Ketola T. Marked Neurospora crassa Strains for Competition Experiments and Bayesian Methods for Fitness Estimates. G3 (BETHESDA, MD.) 2020; 10:1261-1270. [PMID: 32001556 PMCID: PMC7144071 DOI: 10.1534/g3.119.400632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/27/2020] [Indexed: 01/17/2023]
Abstract
The filamentous fungus Neurospora crassa, a model microbial eukaryote, has a life cycle with many features that make it suitable for studying experimental evolution. However, it has lacked a general tool for estimating relative fitness of different strains in competition experiments. To remedy this need, we constructed N. crassa strains that contain a modified csr-1 locus and developed an assay for detecting the proportion of the marked strain using a post PCR high resolution melting assay. DNA extraction from spore samples can be performed on 96-well plates, followed by a PCR step, which allows many samples to be processed with ease. Furthermore, we suggest a Bayesian approach for estimating relative fitness from competition experiments that takes into account the uncertainty in measured strain proportions. We show that there is a fitness effect of the mating type locus, as mating type mat a has a higher competitive fitness than mat A The csr-1* marker also has a small fitness effect, but is still a suitable marker for competition experiments. As a proof of concept, we estimate the fitness effect of the qde-2 mutation, a gene in the RNA interference pathway, and show that its competitive fitness is lower than what would be expected from its mycelial growth rate alone.
Collapse
Affiliation(s)
- Ilkka Kronholm
- Department of Biological and Environmental Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | | | | | | | - Tarmo Ketola
- Department of Biological and Environmental Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| |
Collapse
|
7
|
Dehbashi S, Tahmasebi H, Sedighi P, Davarian F, Arabestani MR. Development of high-resolution melting curve analysis in rapid detection of vanA gene, Enterococcus faecalis, and Enterococcus faecium from clinical isolates. Trop Med Health 2020; 48:8. [PMID: 32099522 PMCID: PMC7027104 DOI: 10.1186/s41182-020-00197-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
Background High-resolution melting analysis (HRMA) is a novel molecular technique based on the real-time PCR that can be used to detect vancomycin resistance Enterococcus (VRE). The purpose of this study was to identify VRE species with HRMA in clinical isolates. Results Out of 49 Enterococcus isolates, 11 (22.44%) E. faecium isolates and 19 (38.77%) E. faecalis isolates were detected. Average melting temperatures for divIVA in E.faecalis, alanine racemase in E.faecium, and vanA in VRE strains were obtained as 79.9 ± 0.5 °C, 85.4 ± 0.5 °C, and 82.99 ± 0.5 °C, respectively. Furthermore, the data showed that the HRMA method was sensitive to detect 100 CFU/ml for the divIVA, alanine racemase, and vanA genes. Also, out of 49 Enterococcus spp., which were isolated by HRMA assay, 8 isolates (16.32%) of E. faecium and 18 isolates (36.73%) of E. faecalis were detected. The vanA gene was reported in 2 isolates (25%) of E. faecium and 9 isolates (50%) of E. faecalis. Conclusions This study demonstrated that using the HRMA method, we can detect E. faecium, E. faecalis, and the vanA gene with high sensitivity and specificity.
Collapse
Affiliation(s)
- Sanaz Dehbashi
- 1Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Pajoohesh junction, Hamadan, Iran
| | - Hamed Tahmasebi
- 2Department of Microbiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Faeze Davarian
- 4School of Paramedical, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- 1Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Pajoohesh junction, Hamadan, Iran.,5Nutritious Research Center, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
8
|
Tahmasebi H, Dehbashi S, Arabestani MR. New approach to identify colistin-resistant Pseudomonas aeruginosa by high-resolution melting curve analysis assay. Lett Appl Microbiol 2020; 70:290-299. [PMID: 31883350 DOI: 10.1111/lam.13270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
Colistin-resistant Pseudomonas aeruginosa (CRPA), as a health care system threat, is increasing globally. This study aimed was to determine CRPA by high-resolution melting curve (HRM) analysis method. The HRM method was done on standard strains of P. aeruginosa and CRPA strains. Ninefold serial dilutions of known genomic DNA (gDNA) and plasmid DNA (pDNA) concentrations, extracted from P. aeruginosa NCTC13715 and P. aeruginosa NCTC10728 were prepared and tested by melting curve analysis and HRM assay. Data analysis was performed using the Step-One Plus Software v2.3 and hrm Software v3.0.1. The results of the melt curve analysis and HRM showed a very similar melt peak for all positive controls with a melt temperature that ranged from 88·1°C to 88·6°C for the 16srRNA, 90·0°C to 90·05°C for the mcr-1 and 91·2°C to 91·7°C for the pmrA gene. Furthermore, the data indicated that the HRM approach has the sensitivity to detect 100 CFU per ml for the 16srRNA gene, 101 CFU per ml for the pmrA gene, and 103 CFU per ml for the mcr-1 gene. According to our findings, it was concluded that the HRM method could detect 100 to 103 CFU per ml of P. aeruginosa gDNA and pDNA. Therefore, CRPA strains can be identified with high sensitivity and specificity by HRM assay. SIGNIFICANCE AND IMPACT OF THE STUDY: The highlight of our research is about the detection of bacteria resistance genes to antibiotics by advanced molecular methods, which means high-resolution melting curve (HRM) analysis. We determined that the HRM method in identifying colistin-resistant P. aeruginosa has high accuracy and speed, and with high sensitivity and specificity.
Collapse
Affiliation(s)
- H Tahmasebi
- Microbiology Department, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - S Dehbashi
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - M R Arabestani
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
9
|
A Combination of Real-Time PCR and High-Resolution Melting Analysis to Detect and Identify CpGV Genotypes Involved in Type I Resistance. Viruses 2019; 11:v11080723. [PMID: 31390849 PMCID: PMC6723291 DOI: 10.3390/v11080723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 02/05/2023] Open
Abstract
Cydia pomonella granulovirus, in particular CpGV-M isolate, is used as a biological control against the codling moth (CM), Cydia pomonella. As a result of intensive control over the years, codling moth populations have developed resistance against this isolate. This resistance is now called type I resistance. Isolates, among them, CpGV-R5, have been found that are able to overcome type I resistance. Both CpGV-M and CpGV-R5 are used in orchards to control the codling moth. High resolution melting (HRM) has been adapted to differentiate between CpGV-M and CpGV-R5 isolates. Specific PCR primers have been designed for the CpGV p38 gene, encompassing the variable region responsible for the ability to overcome resistance. Because each amplicon has a specific melting point, it is possible to identify the CpGV-M and CpGV-R5 genotypes and to quantify their relative proportion. This method has been validated using mixtures of occlusion bodies of each isolate at various proportions. Then, the HRM has been used to estimate the proportion of each genotype in infected larvae or in occlusion bodies (OBs) extracted from dead larvae. This method allows a rapid detection of genotype replication and enables the assessment of either success or failure of the infection in field conditions.
Collapse
|
10
|
Pulkkinen K, Pekkala N, Ashrafi R, Hämäläinen DM, Nkembeng AN, Lipponen A, Hiltunen T, Valkonen JK, Taskinen J. Effect of resource availability on evolution of virulence and competition in an environmentally transmitted pathogen. FEMS Microbiol Ecol 2019; 94:4962392. [PMID: 29659817 DOI: 10.1093/femsec/fiy060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 01/21/2023] Open
Abstract
Understanding ecological and epidemiological factors driving pathogen evolution in contemporary time scales is a major challenge in modern health management. Pathogens that replicate outside the hosts are subject to selection imposed by ambient environmental conditions. Increased nutrient levels could increase pathogen virulence by pre-adapting for efficient use of resources upon contact to a nutrient rich host or by favouring transmission of fast-growing virulent strains. We measured changes in virulence and competition in Flavobacterium columnare, a bacterial pathogen of freshwater fish, under high and low nutrient levels. To test competition between strains in genotype mixtures, we developed a quantitative real-time PCR assay. We found that a virulent strain maintained its virulence and outcompeted less virulent strains independent of the nutrient level and resource renewal rate while a less virulent strain further lost virulence in chemostats under low nutrient level and over long-term serial culture under high nutrient level. Our results suggest that increased outside-host nutrient levels might maintain virulence in less virulent strains and increase their contribution to epidemics in aquaculture. The results highlight a need to further explore the role of resource in the outside-host environment in maintaining strain diversity and driving evolution of virulence among environmentally growing pathogens.
Collapse
Affiliation(s)
- Katja Pulkkinen
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland
| | - Nina Pekkala
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland
| | - Roghaieh Ashrafi
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland.,Centre of Excellence in Biological Interactions, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä,Finland
| | - Dorrit M Hämäläinen
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland
| | - Aloysius N Nkembeng
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland
| | - Anssi Lipponen
- A. I. Virtanen Institute for Molecular Sciences, P. O. Box 1627, (Neulaniementie 2), University of Eastern Finland, Kuopio, Finland
| | - Teppo Hiltunen
- Department of Microbiology, P. O. Box 56, (Viikinkaari 9), University of Helsinki, Helsinki, Finland
| | - Janne K Valkonen
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland.,Centre of Excellence in Biological Interactions, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä,Finland
| | - Jouni Taskinen
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
11
|
Kristensen TN, Ketola T, Kronholm I. Adaptation to environmental stress at different timescales. Ann N Y Acad Sci 2018; 1476:5-22. [PMID: 30259990 DOI: 10.1111/nyas.13974] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 08/24/2018] [Accepted: 09/08/2018] [Indexed: 12/21/2022]
Abstract
Environments are changing rapidly, and to cope with these changes, organisms have to adapt. Adaptation can take many shapes and occur at different speeds, depending on the type of response, the trait, the population, and the environmental conditions. The biodiversity crisis that we are currently facing illustrates that numerous species and populations are not capable of adapting with sufficient speed to ongoing environmental changes. Here, we discuss current knowledge on the ability of animals and plants to adapt to environmental stress on different timescales, mainly focusing on thermal stress and ectotherms. We discuss within-generation responses that can be fast and induced within minutes or hours, evolutionary adaptations that are often slow and take several generations, and mechanisms that lay somewhere in between and that include epigenetic transgenerational effects. To understand and predict the impacts of environmental change and stress on biodiversity, we suggest that future studies should (1) have an increased focus on understanding the type and speed of responses to fast environmental changes; (2) focus on the importance of environmental fluctuations and the predictability of environmental conditions on adaptive capabilities, preferably in field studies encompassing several fitness components; and (3) look at ecosystem responses to environmental stress and their resilience when disturbed.
Collapse
Affiliation(s)
- Torsten Nygaard Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.,Department of Bioscience, University of Aarhus, Aarhus, Denmark
| | - Tarmo Ketola
- Department of Biology and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ilkka Kronholm
- Department of Biology and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
12
|
Lee SR, Jin H, Kim WT, Kim WJ, Kim SZ, Leem SH, Kim SM. Tristetraprolin activation by resveratrol inhibits the proliferation and metastasis of colorectal cancer cells. Int J Oncol 2018; 53:1269-1278. [PMID: 29956753 DOI: 10.3892/ijo.2018.4453] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Resveratrol (RSV) is a polyphenolic compound that naturally occurs in grapes, peanuts and berries. Considerable research has been conducted to determine the benefits of RSV against various human cancer types. Tristetraprolin (TTP) is an AU-rich element-binding protein that regulates mRNA stability and has decreased expression in human cancer. The present study investigated the biological effect of RSV on TTP gene regulation in colon cancer cells. RSV inhibited the proliferation and invasion/metastasis of HCT116 and SNU81 colon cancer cells. Furthermore, RSV induced a dose-dependent increase in TTP expression in HCT116 and SNU81 cells. The microarray experiment revealed that RSV significantly increased TTP expression by downregulating E2F transcription factor 1 (E2F1), a downstream target gene of TTP and regulated genes associated with inflammation, cell proliferation, cell death, angiogenesis and metastasis. Although TTP silencing inhibited TTP mRNA expression, the expression was subsequently restored by RSV. Small interfering RNA-induced TTP inhibition attenuated the effects of RSV on cell growth. In addition, RSV induced the mRNA-decaying activity of TTP and inhibited the relative luciferase activity of baculoviral IAP repeat containing 3 (cIAP2), large tumor suppressor kinase 2 (LATS2), E2F1, and lin‑28 homolog A (Lin28) in HCT116 and SNU81 cells. Therefore, RSV enhanced the inhibitory activity of TTP in HCT116 and SNU81 cells by negatively regulating cIAP2, E2F1, LATS2, and Lin28 expression. In conclusion, RSV suppressed the proliferation and invasion/metastasis of colon cancer cells by activating TTP.
Collapse
Affiliation(s)
- Se-Ra Lee
- Department of Biological Science, Dong-A University, Busan 49315, Republic of Korea
| | - Hua Jin
- Department of Physiology, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Won-Tae Kim
- Department of Biological Science, Dong-A University, Busan 49315, Republic of Korea
| | - Won-Jung Kim
- Department of Biological Science, Dong-A University, Busan 49315, Republic of Korea
| | - Sung Zoo Kim
- Department of Physiology, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Sun-Hee Leem
- Department of Biological Science, Dong-A University, Busan 49315, Republic of Korea
| | - Soo Mi Kim
- Department of Physiology, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| |
Collapse
|
13
|
Ketola T, Kristensen TN. Experimental Approaches for Testing if Tolerance Curves Are Useful for Predicting Fitness in Fluctuating Environments. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|