1
|
Onesto V, Forciniti S, Alemanno F, Narayanankutty K, Chandra A, Prasad S, Azzariti A, Gigli G, Barra A, De Martino A, De Martino D, del Mercato LL. Probing Single-Cell Fermentation Fluxes and Exchange Networks via pH-Sensing Hybrid Nanofibers. ACS NANO 2023; 17:3313-3323. [PMID: 36573897 PMCID: PMC9979640 DOI: 10.1021/acsnano.2c06114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/19/2022] [Indexed: 05/31/2023]
Abstract
The homeostatic control of their environment is an essential task of living cells. It has been hypothesized that, when microenvironmental pH inhomogeneities are induced by high cellular metabolic activity, diffusing protons act as signaling molecules, driving the establishment of exchange networks sustained by the cell-to-cell shuttling of overflow products such as lactate. Despite their fundamental role, the extent and dynamics of such networks is largely unknown due to the lack of methods in single-cell flux analysis. In this study, we provide direct experimental characterization of such exchange networks. We devise a method to quantify single-cell fermentation fluxes over time by integrating high-resolution pH microenvironment sensing via ratiometric nanofibers with constraint-based inverse modeling. We apply our method to cell cultures with mixed populations of cancer cells and fibroblasts. We find that the proton trafficking underlying bulk acidification is strongly heterogeneous, with maximal single-cell fluxes exceeding typical values by up to 3 orders of magnitude. In addition, a crossover in time from a networked phase sustained by densely connected "hubs" (corresponding to cells with high activity) to a sparse phase dominated by isolated dipolar motifs (i.e., by pairwise cell-to-cell exchanges) is uncovered, which parallels the time course of bulk acidification. Our method addresses issues ranging from the homeostatic function of proton exchange to the metabolic coupling of cells with different energetic demands, allowing for real-time noninvasive single-cell metabolic flux analysis.
Collapse
Affiliation(s)
- Valentina Onesto
- Institute
of Nanotechnology, National Research Council
(CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100Lecce, Italy
| | - Stefania Forciniti
- Institute
of Nanotechnology, National Research Council
(CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100Lecce, Italy
| | - Francesco Alemanno
- Institute
of Nanotechnology, National Research Council
(CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100Lecce, Italy
- Dipartimento
di Matematica e Fisica E. De Giorgi, University
of Salento, 73100Lecce, Italy
- Istituto
Nazionale di Fisica Nucleare (INFN), Sezione di Lecce, 73100Lecce, Italy
| | | | - Anil Chandra
- Institute
of Nanotechnology, National Research Council
(CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100Lecce, Italy
| | - Saumya Prasad
- Institute
of Nanotechnology, National Research Council
(CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100Lecce, Italy
| | - Amalia Azzariti
- IRCCS
Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124Bari, Italy
| | - Giuseppe Gigli
- Institute
of Nanotechnology, National Research Council
(CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100Lecce, Italy
- Dipartimento
di Matematica e Fisica E. De Giorgi, University
of Salento, 73100Lecce, Italy
| | - Adriano Barra
- Dipartimento
di Matematica e Fisica E. De Giorgi, University
of Salento, 73100Lecce, Italy
- Istituto
Nazionale di Fisica Nucleare (INFN), Sezione di Lecce, 73100Lecce, Italy
| | - Andrea De Martino
- Politecnico
di Torino, Corso Duca degli Abruzzi, 24, I-10129Torino, Italy
- Italian Institute
for Genomic Medicine, IRCCS Candiolo, SP-142, I-10060Candiolo, Italy
| | - Daniele De Martino
- Biofisika
Institutua (UPV/EHU, CSIC) and Fundación Biofísica Bizkaia, LeioaE-48940, Spain
- Ikerbasque
Foundation, Bilbao48013, Spain
| | - Loretta L. del Mercato
- Institute
of Nanotechnology, National Research Council
(CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100Lecce, Italy
| |
Collapse
|
2
|
Fernandez-de-Cossio-Diaz J, Mulet R. Statistical mechanics of interacting metabolic networks. Phys Rev E 2020; 101:042401. [PMID: 32422765 DOI: 10.1103/physreve.101.042401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/25/2020] [Indexed: 06/11/2023]
Abstract
We cast the metabolism of interacting cells within a statistical mechanics framework considering both the actual phenotypic capacities of each cell and its interaction with its neighbors. Reaction fluxes will be the components of high-dimensional spin vectors, whose values will be constrained by the stochiometry and the energy requirements of the metabolism. Within this picture, finding the phenotypic states of the population turns out to be equivalent to searching for the equilibrium states of a disordered spin model. We provide a general solution of this problem for arbitrary metabolic networks and interactions. We apply this solution to a simplified model of metabolism and to a complex metabolic network, the central core of Escherichia coli, and demonstrate that the combination of selective pressure and interactions defines a complex phenotypic space. We also present numerical results for cells fixed in a grid. These results reproduce the qualitative picture discussed for the mean-field model. Cells may specialize in producing or consuming metabolites complementing each other, and this is described by an equilibrium phase space with multiple minima, like in a spin-glass model.
Collapse
Affiliation(s)
- Jorge Fernandez-de-Cossio-Diaz
- Systems Biology Department, Center of Molecular Immunology, Calle 216 esq 15, PO Box 16040, Atabey, Playa, La Habana, CP 11600, Cuba
- Group of Complex Systems and Statistical Physics, Department of Theoretical Physics, Physics Faculty, University of Havana, CP 10400, La Habana, Cuba
| | - Roberto Mulet
- Group of Complex Systems and Statistical Physics, Department of Theoretical Physics, Physics Faculty, University of Havana, CP 10400, La Habana, Cuba
- Italian Institute for Genomic Medicine, IIGM, Torino, Italy
| |
Collapse
|
3
|
Fernandez-de-Cossio-Diaz J, Mulet R. Maximum entropy and population heterogeneity in continuous cell cultures. PLoS Comput Biol 2019; 15:e1006823. [PMID: 30811392 PMCID: PMC6411232 DOI: 10.1371/journal.pcbi.1006823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/11/2019] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
Continuous cultures of mammalian cells are complex systems displaying hallmark phenomena of nonlinear dynamics, such as multi-stability, hysteresis, as well as sharp transitions between different metabolic states. In this context mathematical models may suggest control strategies to steer the system towards desired states. Although even clonal populations are known to exhibit cell-to-cell variability, most of the currently studied models assume that the population is homogeneous. To overcome this limitation, we use the maximum entropy principle to model the phenotypic distribution of cells in a chemostat as a function of the dilution rate. We consider the coupling between cell metabolism and extracellular variables describing the state of the bioreactor and take into account the impact of toxic byproduct accumulation on cell viability. We present a formal solution for the stationary state of the chemostat and show how to apply it in two examples. First, a simplified model of cell metabolism where the exact solution is tractable, and then a genome-scale metabolic network of the Chinese hamster ovary (CHO) cell line. Along the way we discuss several consequences of heterogeneity, such as: qualitative changes in the dynamical landscape of the system, increasing concentrations of byproducts that vanish in the homogeneous case, and larger population sizes.
Collapse
Affiliation(s)
- Jorge Fernandez-de-Cossio-Diaz
- Group of Complex Systems and Statistical Physics, Department of Theoretical Physics, University of Havana, Physics Faculty, Cuba
- Systems Biology Department, Center of Molecular Immunology, Havana, Cuba
| | - Roberto Mulet
- Group of Complex Systems and Statistical Physics, Department of Theoretical Physics, University of Havana, Physics Faculty, Cuba
- Group of Statistical Inference and Computational Biology, Italian Institute for Genomic Medicine, Italy
| |
Collapse
|
4
|
Fernandez-de-Cossio-Diaz J, Vazquez A. A physical model of cell metabolism. Sci Rep 2018; 8:8349. [PMID: 29844352 PMCID: PMC5974398 DOI: 10.1038/s41598-018-26724-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/17/2018] [Indexed: 11/08/2022] Open
Abstract
Cell metabolism is characterized by three fundamental energy demands: to sustain cell maintenance, to trigger aerobic fermentation and to achieve maximum metabolic rate. The transition to aerobic fermentation and the maximum metabolic rate are currently understood based on enzymatic cost constraints. Yet, we are lacking a theory explaining the maintenance energy demand. Here we report a physical model of cell metabolism that explains the origin of these three energy scales. Our key hypothesis is that the maintenance energy demand is rooted on the energy expended by molecular motors to fluidize the cytoplasm and counteract molecular crowding. Using this model and independent parameter estimates we make predictions for the three energy scales that are in quantitative agreement with experimental values. The model also recapitulates the dependencies of cell growth with extracellular osmolarity and temperature. This theory brings together biophysics and cell biology in a tractable model that can be applied to understand key principles of cell metabolism.
Collapse
Affiliation(s)
| | - Alexei Vazquez
- Cancer Research UK Beatson Institute, Glasgow, UK.
- Institute for Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
5
|
Fernandez-de-Cossio-Diaz J, Leon K, Mulet R. Characterizing steady states of genome-scale metabolic networks in continuous cell cultures. PLoS Comput Biol 2017; 13:e1005835. [PMID: 29131817 PMCID: PMC5703580 DOI: 10.1371/journal.pcbi.1005835] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/27/2017] [Accepted: 10/20/2017] [Indexed: 12/15/2022] Open
Abstract
In the continuous mode of cell culture, a constant flow carrying fresh media replaces culture fluid, cells, nutrients and secreted metabolites. Here we present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. We provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. We derive a number of consequences from the model that are independent of parameter values. The ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties. This conclusion is robust even in the presence of multi-stability, which is explained in our model by a negative feedback loop due to toxic byproduct accumulation. A complex landscape of steady states emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced.
Collapse
Affiliation(s)
- Jorge Fernandez-de-Cossio-Diaz
- Systems Biology Department, Center of Molecular Immunlogy, Havana, Cuba
- Group of Complex Systems and Statistical Physics. Department of Theoretical Physics, Physics Faculty, University of Havana, Cuba
| | - Kalet Leon
- Systems Biology Department, Center of Molecular Immunlogy, Havana, Cuba
| | - Roberto Mulet
- Group of Complex Systems and Statistical Physics. Department of Theoretical Physics, Physics Faculty, University of Havana, Cuba
| |
Collapse
|