1
|
Zhou P, Liu X, Tian Y, Ren S, Liang H. High-throughput metabolomics exploring the pharmacological effects and mechanism of icariin on rheumatoid arthritis rat based on ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Front Mol Biosci 2025; 12:1514882. [PMID: 40270592 PMCID: PMC12015166 DOI: 10.3389/fmolb.2025.1514882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/07/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction Metabolomics could provide insights into the pharmacological effects and action mechanisms of drugs through assessment of the changes in relevant biomarkers and biological pathways. Icariin (ICA) is a promising ffavonoid compound known to have significant anticancer activity; however, the pharmacological mechanisms of ICA in the treatment of rheumatoid arthritis (RA) need to be explored further. Methods The changes in the metabolic profiles of serum samples were revealed using non-targeted metabolomics based on ultrahigh-performance liquid chromatography coupled with quadrupole time-of-fight mass spectrometry. Tissue histopathology, physical parameters, and biochemical indicators were also measured and analyzed to reveal the mechanisms of ICA in the treatment of RA. Results and discussion Thirty-one potential biomarkers were identified to highlight the metabolic disorders in an RA animal model, out of which twenty-three were regulated by ICA treatment. These biomarkers were mainly involved in alanine, aspartate, and glutamate metabolism; arachidonic acid metabolism; citrate cycle; pyruvate metabolism; and glycolysis/gluconeogenesis pathways. The anticancer mechanism of ICA on RA may be attributed to amelioration of the amino acid metabolism, unsaturated fatty acid metabolism, citrate cycle, pyruvate metabolism, and others, which in turn regulate the oxidative stress state and inflammatory effects. Thus, metabolomics is a promising approach for revealing the biomarker distribution and pathways of RA to determine the effects and mechanisms of ICA, which can benefit the development of natural medicines.
Collapse
Affiliation(s)
- Peng Zhou
- School of Continuing Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xixi Liu
- Beijing Mentougou District of Traditional Chinese Medicine, Beijing, China
| | - Yushi Tian
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shouze Ren
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Liang
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Weischedel J, Higgins L, Rogers S, Gramalla-Schmitz A, Wyrzykowska P, Borgoni S, MacCarthy T, Chahwan R. Modular cytosine base editing promotes epigenomic and genomic modifications. Nucleic Acids Res 2024; 52:e8. [PMID: 37994786 PMCID: PMC10810192 DOI: 10.1093/nar/gkad1118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 10/06/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Prokaryotic and eukaryotic adaptive immunity differ considerably. Yet, their fundamental mechanisms of gene editing via Cas9 and activation-induced deaminase (AID), respectively, can be conveniently complimentary. Cas9 is an RNA targeted dual nuclease expressed in several bacterial species. AID is a cytosine deaminase expressed in germinal centre B cells to mediate genomic antibody diversification. AID can also mediate epigenomic reprogramming via active DNA demethylation. It is known that sequence motifs, nucleic acid structures, and associated co-factors affect AID activity. But despite repeated attempts, deciphering AID's intrinsic catalytic activities and harnessing its targeted recruitment to DNA is still intractable. Even recent cytosine base editors are unable to fully recapitulate AID's genomic and epigenomic editing properties. Here, we describe the first instance of a modular AID-based editor that recapitulates the full spectrum of genomic and epigenomic editing activity. Our 'Swiss army knife' toolbox will help better understand AID biology per se as well as improve targeted genomic and epigenomic editing.
Collapse
Affiliation(s)
- Julian Weischedel
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Laurence Higgins
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Sally Rogers
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Anna Gramalla-Schmitz
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Paulina Wyrzykowska
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Simone Borgoni
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Thomas MacCarthy
- Department of Applied Mathematics & Statistics, Stony Brook University, NY 11794-3600, USA
| | - Richard Chahwan
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
3
|
Budzko L, Hoffa-Sobiech K, Jackowiak P, Figlerowicz M. Engineered deaminases as a key component of DNA and RNA editing tools. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102062. [PMID: 38028200 PMCID: PMC10661471 DOI: 10.1016/j.omtn.2023.102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Over recent years, zinc-dependent deaminases have attracted increasing interest as key components of nucleic acid editing tools that can generate point mutations at specific sites in either DNA or RNA by combining a targeting module (such as a catalytically impaired CRISPR-Cas component) and an effector module (most often a deaminase). Deaminase-based molecular tools are already being utilized in a wide spectrum of therapeutic and research applications; however, their medical and biotechnological potential seems to be much greater. Recent reports indicate that the further development of nucleic acid editing systems depends largely on our ability to engineer the substrate specificity and catalytic activity of the editors themselves. In this review, we summarize the current trends and achievements in deaminase engineering. The presented data indicate that the potential of these enzymes has not yet been fully revealed or understood. Several examples show that even relatively minor changes in the structure of deaminases can give them completely new and unique properties.
Collapse
Affiliation(s)
- Lucyna Budzko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Karolina Hoffa-Sobiech
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
4
|
AID, APOBEC3A and APOBEC3B efficiently deaminate deoxycytidines neighboring DNA damage induced by oxidation or alkylation. Biochim Biophys Acta Gen Subj 2019; 1863:129415. [PMID: 31404619 DOI: 10.1016/j.bbagen.2019.129415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND AID/APOBEC3 (A3) enzymes instigate genomic mutations that are involved in immunity and cancer. Although they can deaminate any deoxycytidine (dC) to deoxyuridine (dU), each family member has a signature preference determined by nucleotides surrounding the target dC. This WRC (W = A/T, R = A/G) and YC (Y = T/C) hotspot preference is established for AID and A3A/A3B, respectively. Base alkylation and oxidation are two of the most common types of DNA damage induced environmentally or by chemotherapy. Here we examined the activity of AID, A3A and A3B on dCs neighboring such damaged bases. METHODS Substrates were designed to contain target dCs either in normal WRC/YC hotspots, or in oxidized/alkylated DNA motifs. AID, A3A and A3B were purified and deamination kinetics of each were compared between substrates containing damaged vs. normal motifs. RESULTS All three enzymes efficiently deaminated dC when common damaged bases were present in the -2 or -1 positions. Strikingly, some damaged motifs supported comparable or higher catalytic efficiencies by AID, A3A and A3B than the WRC/YC motifs which are their most favored normal sequences. Based on the resolved interactions of AID, A3A and A3B with DNA, we modeled interactions with alkylated or oxidized bases. Corroborating the enzyme assay data, the surface regions that recognize normal bases are predicted to also interact robustly with oxidized and alkylated bases. CONCLUSIONS AID, A3A and A3B can efficiently recognize and deaminate dC whose neighbouring nucleotides are damaged. GENERAL SIGNIFICANCE Beyond AID/A3s initiating DNA damage, some forms of pre-existing damaged DNA can constitute favored targets of AID/A3s if encountered.
Collapse
|
5
|
Zhu Q, Stöger R, Alberio R. A Lexicon of DNA Modifications: Their Roles in Embryo Development and the Germline. Front Cell Dev Biol 2018; 6:24. [PMID: 29637072 PMCID: PMC5880922 DOI: 10.3389/fcell.2018.00024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/27/2018] [Indexed: 12/12/2022] Open
Abstract
5-methylcytosine (5mC) on CpG dinucleotides has been viewed as the major epigenetic modification in eukaryotes for a long time. Apart from 5mC, additional DNA modifications have been discovered in eukaryotic genomes. Many of these modifications are thought to be solely associated with DNA damage. However, growing evidence indicates that some base modifications, namely 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), 5-carboxylcytosine (5caC), and N6-methadenine (6mA), may be of biological relevance, particularly during early stages of embryo development. Although abundance of these DNA modifications in eukaryotic genomes can be low, there are suggestions that they cooperate with other epigenetic markers to affect DNA-protein interactions, gene expression, defense of genome stability and epigenetic inheritance. Little is still known about their distribution in different tissues and their functions during key stages of the animal lifecycle. This review discusses current knowledge and future perspectives of these novel DNA modifications in the mammalian genome with a focus on their dynamic distribution during early embryonic development and their potential function in epigenetic inheritance through the germ line.
Collapse
Affiliation(s)
- Qifan Zhu
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Reinhard Stöger
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
6
|
DeNizio JE, Schutsky EK, Berrios KN, Liu MY, Kohli RM. Harnessing natural DNA modifying activities for editing of the genome and epigenome. Curr Opin Chem Biol 2018; 45:10-17. [PMID: 29452938 DOI: 10.1016/j.cbpa.2018.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/12/2018] [Accepted: 01/28/2018] [Indexed: 12/27/2022]
Abstract
The introduction of site-specific DNA modifications to the genome or epigenome presents great opportunities for manipulating biological systems. Such changes are now possible through the combination of DNA-modifying enzymes with targeting modules, including dCas9, that can localize the enzymes to specific sites. In this review, we take a DNA modifying enzyme-centric view of recent advances. We highlight the variety of natural DNA-modifying enzymes-including DNA methyltransferases, oxygenases, deaminases, and glycosylases-that can be used for targeted editing and discuss how insights into the structure and function of these enzymes has further expanded editing potential by introducing enzyme variants with altered activities or by improving spatiotemporal control of modifications.
Collapse
Affiliation(s)
- Jamie E DeNizio
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily K Schutsky
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kiara N Berrios
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Monica Yun Liu
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul M Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Jandova Z, Fast D, Setz M, Pechlaner M, Oostenbrink C. Saturation Mutagenesis by Efficient Free-Energy Calculation. J Chem Theory Comput 2018; 14:894-904. [PMID: 29262673 PMCID: PMC5813279 DOI: 10.1021/acs.jctc.7b01099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Single-point mutations
in proteins can greatly influence protein
stability, binding affinity, protein function or its expression per
se. Here, we present accurate and efficient predictions of the free
energy of mutation of amino acids. We divided the complete mutational
free energy into an uncharging step, which we approximate by a third-power
fitting (TPF) approach, and an annihilation step, which we approximate
using the one-step perturbation (OSP) method. As a diverse set of
test systems, we computed the solvation free energy of all amino acid
side chain analogues and obtained an excellent agreement with thermodynamic
integration (TI) data. Moreover, we calculated mutational free energies
in model tripeptides and established an efficient protocol involving
a single reference state. Again, the approximate methods agreed excellently
with the TI references, with a root-mean-square error of only 3.6
kJ/mol over 17 mutations. Our combined TPF+OSP approach does show
not only a very good agreement but also a 2-fold higher efficiency
than full blown TI calculations.
Collapse
Affiliation(s)
- Zuzana Jandova
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences , Vienna A-1190, Austria
| | - Daniel Fast
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences , Vienna A-1190, Austria
| | - Martina Setz
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences , Vienna A-1190, Austria
| | - Maria Pechlaner
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences , Vienna A-1190, Austria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences , Vienna A-1190, Austria
| |
Collapse
|