1
|
Gu J, Sim BR, Li J, Yu Y, Qin L, Wu L, Liu H, Xu Y, Zhao YL, Nie Y. Coevolution-based protein engineering of alcohol dehydrogenase at distal sites enables enzymatic compatibility with substrate diversity and stereoselectivity. Int J Biol Macromol 2025; 306:141233. [PMID: 39993679 DOI: 10.1016/j.ijbiomac.2025.141233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/16/2025] [Accepted: 02/16/2025] [Indexed: 02/26/2025]
Abstract
Chiral alcohols with various substituents and functional groups are attractive synthesizers in many fields. Biocatalysts have attracted great interest for their use in " sustainable chemistry". However, substrate specificity of enzymes limits their widespread use as "generalists" in biocatalysis. In addition, engineering enzymes for simultaneously improving catalytic efficiency and stereoselectivity for structurally diverse substrates is a contemporary challenge. Inspired by naturally occurring coevolution of residues dedicated to a particular function and clustered together in space, we applied coevolution-based engineering to the alcohol dehydrogenase CpRCR from Candida parapsilosis to identify distal sites which can synergistically improve the catalytic properties of diverse substrates. Five variants were developed by clustering the coupling strength and structure of coevolutionary sites which showed improved (up to 28-fold) catalytic efficiency with high stereoselectivity toward 16 structurally diverse substrates (aryl ketones, heterocyclic ketones and β-ketoesters). In particular, for substrate 2-acetylpyridine, the specific activity of K191L/D216H is 12-fold higher than the previously reported highest activity of alcohol dehydrogenase. Theses distal mutations do not directly modify the active center but rather modulate catalytic capacity in various allosteric ways favoring substrate diversity. This study provides a broadly applicable strategy for protein engineering and expanded the applications of biocatalyst on value-added chemicals.
Collapse
Affiliation(s)
- Jie Gu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Byu Ri Sim
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Biochemistry, University of Toronto, Ontario M5S 3H6, Canada
| | - Jiarui Li
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yangqing Yu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lei Qin
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lunjie Wu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Huan Liu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yao Nie
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Gu J, Mu W, Xu Y, Nie Y. From discovery to application: Enabling technology-based optimizing carbonyl reductases biocatalysis for active pharmaceutical ingredient synthesis. Biotechnol Adv 2025; 79:108496. [PMID: 39647674 DOI: 10.1016/j.biotechadv.2024.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
The catalytic conversion of chiral alcohols and corresponding carbonyl compounds by carbonyl reductases (alcohol dehydrogenases), which are NAD(P) or NAD(P)H-dependent oxidoreductases, has attracted considerable attention. However, existing carbonyl reductases are insufficient to meet the demands of diverse industrial applications; hence, new enzymes with functions that can expand the toolbox of biocatalysts are urgently required. Developing precisely controlled chiral biocatalysts is of great significance for the efficient development of a broad spectrum of active pharmaceutical ingredients via biosynthesis. In this review, we summarized methods for discovering novel natural carbonyl reductases from various perspectives. Furthermore, advances in protein engineering, utilizing known sequence and structural information as well as catalytic dynamics mechanisms to improve potential functions, are also addressed. The exponential growth in data-driven tools over the past decade has made it possible to de novo design carbonyl reductases. Additionally, various applications of these high-performance carbonyl reductases and different strategies for coenzyme regeneration involving photocatalysis during the reaction process were reviewed. These advancements will bring new opportunities and challenges to the fields of green chemistry and biosynthesis in the future.
Collapse
Affiliation(s)
- Jie Gu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wanmeng Mu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Li Y, Li SF, Zhang L, Xue YP, Zheng YG. Engineering of a hydroxysteroid dehydrogenase with simultaneous enhancement in activity and thermostability for efficient biosynthesis of ursodeoxycholic acid. Appl Environ Microbiol 2024; 90:e0123724. [PMID: 39207158 PMCID: PMC11409680 DOI: 10.1128/aem.01237-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Hydroxysteroid dehydrogenases (HSDHs) catalyze the oxidation/reduction of hydroxyl/keto groups of steroids with high regio- or stereoselectivity, playing an essential role in producing optically pure chemicals. In this work, a novel approach was developed to simultaneously improve the stability and activity of 7β-hydroxysteroid dehydrogenase (7β-HSDH) by combining B-factor analysis and computer-aided prediction. Several advantageous mutants were identified, and the most promising variant, S51Y/P202Y, exhibited 2.3-fold improvements in catalytic activity, 3.3-fold in half-life at 40°C, and 4.7-fold in catalytic efficiency (kcat/Km), respectively. Structural modeling analysis showed that the shortened reversible oxidation reaction catalytic distance and the strengthened residue interactions compared to the wild type were attributed to the improved stability and activity of the obtained mutants. To synthesize ursodeoxycholic acid cost-effectively by mutant S51Y/P202Y, a NAD-kinase was employed to facilitate the substitution of nicotinamide adenine dinucleotide phosphate (NADP+) with nicotinamide adenine dinucleotide (NAD+) in the whole-cell catalysis system. The substrate 7-ketolithocholic acid (100 mM) was converted completely in 0.5 h, achieving a space-time yield of 1,887.3 g L-1 d-1. This work provided a general target-oriented strategy for obtaining stable and highly active dehydrogenase for efficient biosynthesis. IMPORTANCE Hydroxysteroid dehydrogenases have emerged as indispensable tools in the synthesis of steroids, bile acids, and other steroid derivatives for the pharmaceutical and chemical industries. In this study, a novel approach was developed to simultaneously improve the stability and activity of a hydroxysteroid dehydrogenase by combining B-factor analysis and computer-aided prediction. This semi-rational method was demonstrated to be highly effective for enzyme engineering. In addition, NAD kinase was introduced to convert NAD+ to NADP+ for effective coenzyme regeneration in the whole-cell multienzyme-catalyzed system. This strategy reduces the significant economic costs associated with externally supplemented cofactors in NADP-dependent biosynthetic pathways.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Shu-Fang Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Lin Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
4
|
He W, Yang P, Huang T, Liu Y, Zhang Y, Zhang W, Zhang T, Zheng M, Ma L, Zhao C, Li H, Liao Y, Wu A, Zhang J. Detoxifying bacterial genes for deoxynivalenol epimerization confer durable resistance to Fusarium head blight in wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2395-2409. [PMID: 38593377 PMCID: PMC11331793 DOI: 10.1111/pbi.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/26/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Fusarium head blight (FHB) and the presence of mycotoxin deoxynivalenol (DON) pose serious threats to wheat production and food safety worldwide. DON, as a virulence factor, is crucial for the spread of FHB pathogens on plants. However, germplasm resources that are naturally resistant to DON and DON-producing FHB pathogens are inadequate in plants. Here, detoxifying bacteria genes responsible for DON epimerization were used to enhance the resistance of wheat to mycotoxin DON and FHB pathogens. We characterized the complete pathway and molecular basis leading to the thorough detoxification of DON via epimerization through two sequential reactions in the detoxifying bacterium Devosia sp. D6-9. Epimerization efficiently eliminates the phytotoxicity of DON and neutralizes the effects of DON as a virulence factor. Notably, co-expressing of the genes encoding quinoprotein dehydrogenase (QDDH) for DON oxidation in the first reaction step, and aldo-keto reductase AKR13B2 for 3-keto-DON reduction in the second reaction step significantly reduced the accumulation of DON as virulence factor in wheat after the infection of pathogenic Fusarium, and accordingly conferred increased disease resistance to FHB by restricting the spread of pathogenic Fusarium in the transgenic plants. Stable and improved resistance was observed in greenhouse and field conditions over multiple generations. This successful approach presents a promising avenue for enhancing FHB resistance in crops and reducing mycotoxin contents in grains through detoxification of the virulence factor DON by exogenous resistance genes from microbes.
Collapse
Affiliation(s)
- Wei‐Jie He
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Peng Yang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Jiangsu Ruihua Agricultural Science and Technology Co., Ltd.SuqianChina
| | - Tao Huang
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yu‐Fan Liu
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yu‐Wei Zhang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Wen‐Min Zhang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Tian‐Tian Zhang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Meng‐Ru Zheng
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ling Ma
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chang‐Xing Zhao
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - He‐Ping Li
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yu‐Cai Liao
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ai‐Bo Wu
- SIBS‐UGENT‐SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Jing‐Bo Zhang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
5
|
Construction of Bi-Enzyme Self-Assembly Clusters Based on SpyCatcher/SpyTag for the Efficient Biosynthesis of (R)-Ethyl 2-hydroxy-4-phenylbutyrate. Biomolecules 2023; 13:biom13010091. [PMID: 36671476 PMCID: PMC9855569 DOI: 10.3390/biom13010091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Cascade reactions catalyzed by multi-enzyme systems are important in science and industry and can be used to synthesize drugs and nutrients. In this study, two types of macromolecules of bi-enzyme self-assembly clusters (BESCs) consisting of carbonyl reductase (CpCR) and glucose dehydrogenase (GDH) were examined. Stereoselective CpCR and GDH were successfully fused with SpyCatcher and SpyTag, respectively, to obtain four enzyme modules, namely: SpyCatcher-CpCR, SpyCatcher-GDH, SpyTag-CpCR, and SpyTag-GDH, which were covalently coupled in vitro to form two types of hydrogel-like BESCs: CpCR-SpyCatcher-SpyTag-GDH and GDH-SpyCatcher-SpyTag-CpCR. CpCR-SpyCatcher-SpyTag-GDH showed a better activity and efficiently converted ethyl 2-oxo-4-phenylbutyrate (OPBE) to ethyl(R)2-hydroxy-4-phenylbutanoate ((R)-HPBE), while regenerating NADPH. At 30 °C and pH 7, the conversion rate of OPBE with CpCR-SpyCatcher-SpyTag-GDH as a catalyst reached 99.9%, with the ee% of (R)-HPBE reaching above 99.9%. This conversion rate was 2.4 times higher than that obtained with the free bi-enzyme. The pH tolerance and temperature stability of the BESCs were also improved compared with those of the free enzymes. In conclusion, bi-enzyme assemblies were docked using SpyCatcher/SpyTag to produce BESCs with a special structure and excellent catalytic activity, improving the catalytic efficiency of the enzyme.
Collapse
|
6
|
Abraham N, Schroeter KL, Zhu Y, Chan J, Evans N, Kimber MS, Carere J, Zhou T, Seah SYK. Structure-function characterization of an aldo-keto reductase involved in detoxification of the mycotoxin, deoxynivalenol. Sci Rep 2022; 12:14737. [PMID: 36042239 PMCID: PMC9427786 DOI: 10.1038/s41598-022-19040-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin, produced by filamentous fungi such as Fusarium graminearum, that causes significant yield losses of cereal grain crops worldwide. One of the most promising methods to detoxify this mycotoxin involves its enzymatic epimerization to 3-epi-DON. DepB plays a critical role in this process by reducing 3-keto-DON, an intermediate in the epimerization process, to 3-epi-DON. DepBRleg from Rhizobium leguminosarum is a member of the new aldo-keto reductase family, AKR18, and it has the unusual ability to utilize both NADH and NADPH as coenzymes, albeit with a 40-fold higher catalytic efficiency with NADPH compared to NADH. Structural analysis of DepBRleg revealed the putative roles of Lys-217, Arg-290, and Gln-294 in NADPH specificity. Replacement of these residues by site-specific mutagenesis to negatively charged amino acids compromised NADPH binding with minimal effects on NADH binding. The substrate-binding site of DepBRleg is larger than its closest structural homolog, AKR6A2, likely contributing to its ability to utilize a wide range of aldehydes and ketones, including the mycotoxin, patulin, as substrates. The structure of DepBRleg also suggests that 3-keto-DON can adopt two binding modes to facilitate 4-pro-R hydride transfer to either the re- or si-face of the C3 ketone providing a possible explanation for the enzyme's ability to convert 3-keto-DON to 3-epi-DON and DON in diastereomeric ratios of 67.2% and 32.8% respectively.
Collapse
Affiliation(s)
- Nadine Abraham
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Kurt L Schroeter
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Yan Zhu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Jonathan Chan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Natasha Evans
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Matthew S Kimber
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Jason Carere
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Stephen Y K Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada.
| |
Collapse
|
7
|
Wu X, Zhang C, Xing XH, Yun Z, Zhao L, Wu Q. Construction and characterization of novel bifunctional fusion proteins composed of alcohol dehydrogenase and NADH oxidase with efficient oxidized cofactor regeneration. Biotechnol Appl Biochem 2021; 69:1535-1544. [PMID: 34269481 DOI: 10.1002/bab.2225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/12/2021] [Indexed: 11/10/2022]
Abstract
To tune the efficiency of oxidized cofactor recycling between alcohol dehydrogenase (ADH) and NADH oxidase (NOX) for the production of aromatic chiral alcohols, we designed and constructed four novel bifunctional fusion proteins composed of thermostable ADH and NOX from Thermococcus kodakarensis KOD1. ADH was linked to the N- or C-terminus of NOX with a typical rigid linker (EAAAK)3 and a flexible linker (GGGGS)3 , respectively. Compared with the parental enzymes, the NOX moieties in the four fusion proteins exhibited higher specific activities (141%-282%), while the ADH moieties exhibited varying levels of specific activity (69%-167%). All fusion proteins showed decreased affinities toward the cofactors, with increased Km values toward NADH (159%-406%) and NAD+ (202%-372%). In the enantioselective oxidation of (RS)-1-phenylethanol coupled with cofactor regeneration, the four fusion proteins displayed different positive and negative effects on the recycling efficiency of the oxidized cofactor. The two fusion proteins composed of NOX at the N-terminus exhibited higher total turnover numbers than the corresponding mixtures of individual enzymes with equal activities, particularly at low cofactor concentrations. These findings suggest high cofactor recycling efficiencies of the fusion proteins with appropriate design and their potential application in the biosynthesis of chiral alcohols.
Collapse
Affiliation(s)
- Xi Wu
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| | - Chong Zhang
- Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Xin-Hui Xing
- Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Zhenyu Yun
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| | - Lin Zhao
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| | - Qi Wu
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| |
Collapse
|
8
|
Qiu S, Xu SY, Li SF, Meng KM, Cheng F, Wang YJ, Zheng YG. Fluorescence-based screening for engineered aldo-keto reductase KmAKR with improved catalytic performance and extended substrate scope. Biotechnol J 2021; 16:e2100130. [PMID: 34125995 DOI: 10.1002/biot.202100130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Aldo-keto reductases-catalyzed transformations of ketones to chiral alcohols have become an established biocatalytic process step in the pharmaceutical industry. Previously, we have discovered an aldo-keto reductase (AKR) from Kluyveromyces marxianus that is active to the aliphatic tert-butyl 6-substituted (5R/S)-hydroxy-3-oxohexanoates, but it is inactive to aromatic ketones. In order to acquire an excellent KmAKRmutant for ensuring the simultaneous improvement of activity-thermostability toward tert-butyl 6-cyano-(5R)-hydroxy-3-oxohexanoate ((5R)-1) and broadening the universal application prospects toward more substrates covering both aliphatic and aromatic ketones, a fluorescence-based high-throughput (HT) screening technique was established. MAIN METHODS AND MAJOR RESULTS The directed evolution of KmAKR variant M5 (KmAKR-W297H/Y296W/K29H/Y28A/T63M) produced the "best" variant M5-Q213A/T23V. It exhibited enhanced activity-thermostability toward (5R)-1, improved activity toward all 18 test substrates and strict R-stereoselectivity toward 10 substrates in comparison to M5. The enhancement of enzymatic activity and the extension of substrate scope covering aromatic ketones are proposed to be largely attributed to pushing the binding pocket of M5-Q213A/T23V to the enzyme surface, decreasing the steric hindrance at the entrance and enhancing the flexibility of loops surrounding the active center. In addition, combined with 0.94 g dry cell weight (DCW) L-1 glucose dehydrogenase from Exiguobacterium sibiricum (EsGDH) for NADPH regeneration, 2.81 g DCW L-1 M5-Q213A/T23V completely converted (5R)-1 of up to 450 g L-1 at 120 g g-1 substrates/catalysts (S/C), yielding the corresponding optically pure tert-butyl 6-cyano-(3R,5R)-dihydroxyhexanoate ((3R,5R)-2, > 99.5% d.e.p ) with a space-time yield (STY) of 1.08 kg L-1 day-1 . CONCLUSIONS A fluorescence-based HT screening system was developed to tailor KmAKR's activity, thermostability and substrate scope. The "best" variant M5-Q213A/T23V holds great potential application for the synthesis of aliphatic/aromatic R-configuration alcohols.
Collapse
Affiliation(s)
- Shuai Qiu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Shen-Yuan Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Shu-Fang Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Kang-Ming Meng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
9
|
Lu Y, Dai H, Cheng P, Shi H, Tang L, Sun X, Ou Z. Regenerated coenzyme-based preparation of bienzyme-polymer nanoconjugates and their applications for the synthesis of ethyl (R)-2-hydroxy-4-phenylbutyrate. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Cheng F, Chen Y, Qiu S, Zhai QY, Liu HT, Li SF, Weng CY, Wang YJ, Zheng YG. Controlling Stereopreferences of Carbonyl Reductases for Enantioselective Synthesis of Atorvastatin Precursor. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yi Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shuai Qiu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qiu-Yao Zhai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hua-Tao Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shu-Fang Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chun-Yue Weng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
11
|
Co-evolution of activity and thermostability of an aldo-keto reductase KmAKR for asymmetric synthesis of statin precursor dichiral diols. Bioorg Chem 2020; 103:104228. [DOI: 10.1016/j.bioorg.2020.104228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
|
12
|
Shen W, Chen Y, Qiu S, Wang DN, Wang YJ, Zheng YG. Semi-rational engineering of a Kluyveromyces lactis aldo-keto reductase KlAKR for improved catalytic efficiency towards t-butyl 6-cyano-(3R, 5R)-dihydroxyhexanoate. Enzyme Microb Technol 2020; 132:109413. [DOI: 10.1016/j.enzmictec.2019.109413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022]
|
13
|
Tang W, Chen L, Deng J, Kuang Y, Chen C, Yin B, Wang H, Lin J, Wei D. Structure-guided evolution of carbonyl reductase for efficient biosynthesis of ethyl (R)-2-hydroxy-4-phenylbutyrate. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01411g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This study reported an attractive engineered carbonyl reductase from Gluconobacter oxydans through a structure-guided rational design to catalyze the synthesis of high concentration (R)-HPBE.
Collapse
Affiliation(s)
- Wen Tang
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Lulu Chen
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Jian Deng
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Yuyao Kuang
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering
- Biomedical Nanotechnology Center
- School of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
| | - Bo Yin
- National University of Singapore (Suzhou) Research Institute
- Suzhou 215123
- People's Republic of China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Jinping Lin
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| |
Collapse
|
14
|
Zhang C, Min Z, Liu X, Wang C, Wang Z, Shen J, Tang W, Zhang X, Liu D, Xu X. Tolrestat acts atypically as a competitive inhibitor of the thermostable aldo-keto reductase Tm1743 from Thermotoga maritima. FEBS Lett 2019; 594:564-580. [PMID: 31573681 DOI: 10.1002/1873-3468.13630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/17/2019] [Accepted: 09/29/2019] [Indexed: 12/28/2022]
Abstract
Tolrestat and epalrestat have been characterized as noncompetitive inhibitors of aldo-ketone reductase 1B1 (AKR1B1), a leading drug target for the treatment of type 2 diabetes complications. However, clinical applications are limited for most AKR1B1 inhibitors due to adverse effects of cross-inhibition with other AKRs. Here, we report an atypical competitive binding and inhibitory effect of tolrestat on the thermostable AKR Tm1743 from Thermotoga maritima. Analysis of the Tm1743 crystal structure in complex with tolrestat alone and epalrestat-NADP+ shows that tolrestat, but not epalrestat, binding triggers dramatic conformational changes in the anionic site and cofactor binding pocket that prevents accommodation of NADP+ . Enzymatic and molecular dynamics simulation analyses further confirm tolrestat as a competitive inhibitor of Tm1743.
Collapse
Affiliation(s)
- Chenyun Zhang
- School of Medicine, Hangzhou Normal University, China
| | - Zhenzhen Min
- School of Medicine, Hangzhou Normal University, China
| | - Xuemeng Liu
- School of Medicine, Hangzhou Normal University, China
| | - Chao Wang
- School of Medicine, Hangzhou Normal University, China
| | - Zhiguo Wang
- School of Medicine, Hangzhou Normal University, China
| | - Jiejie Shen
- School of Medicine, Hangzhou Normal University, China
| | - Wanrong Tang
- School of Medicine, Hangzhou Normal University, China
| | - Xin Zhang
- School of Medicine, Hangzhou Normal University, China
| | - Dan Liu
- School of Medicine, Hangzhou Normal University, China
| | - Xiaoling Xu
- School of Medicine, Hangzhou Normal University, China.,Institute of Cardiovascular Disease Research, The Affiliated Hospital of Hangzhou Normal University, China
| |
Collapse
|
15
|
Yu H, Qiu S, Cheng F, Cheng YN, Wang YJ, Zheng YG. Improving the catalytic efficiency of aldo-keto reductase KmAKR towards t-butyl 6-cyano-(3R,5R)-dihydroxyhexanoate via semi-rational design. Bioorg Chem 2019; 90:103018. [DOI: 10.1016/j.bioorg.2019.103018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 01/08/2023]
|
16
|
Key sites insight on the stereoselectivity of four mined aldo-keto reductases toward α-keto esters and halogen-substituted acetophenones. Appl Microbiol Biotechnol 2019; 103:6119-6128. [DOI: 10.1007/s00253-019-09932-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/01/2019] [Accepted: 05/20/2019] [Indexed: 01/30/2023]
|
17
|
Wang Z, Chen Z, Li J, Huang J, Zheng C, Liu JP. Combined 3D-QSAR, molecular docking and molecular dynamics study on the benzimidazole inhibitors targeting HCV NS5B polymerase. J Biomol Struct Dyn 2019; 38:1071-1082. [PMID: 30915896 DOI: 10.1080/07391102.2019.1593244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The hepatitis C virus (HCV)-infected population has continued to grow during recent years, and novel HCV antiviral agents are urgently needed. In this work, a combined theoretical study was performed on the HCV non-structural 5B (NS5B) polymerase and 53 benzimidazole inhibitors. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were carried out with ligand-based and receptor-based alignments. Ligand-based QSAR models (cross-validated q2 of 0.918 for CoMFA and 0.825 for CoMSIA) were found to be superior to receptor-based approaches (cross-validated q2 of 0.765 for CoMFA and 0.740 for CoMSIA). Based on the most predictive CoMFA and CoMSIA models, the structural features that were essential for the inhibitory activity of benzimidazoles were characterized. A molecular dynamics study revealed that the induced fit effect between NS5B and its substrate may be responsible for the inferiority of the receptor-based CoMFA and CoMSIA models. The binding-free energy calculated using the MM/PBSA method correlated well with the experimental results and revealed that the van der Waals and electrostatic interactions most contributed to the binding. In addition, energetically favorable NS5B residues were identified by the per-residue decomposition of binding-free energy. The results presented in this work provide meaningful information for the design of novel benzimidazole inhibitors targeting the NS5B polymerase.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zhiguo Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhenming Chen
- Laboratory of Biocatalysis, College of Life & Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jianfeng Li
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jing Huang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Chenni Zheng
- Laboratory of Biocatalysis, College of Life & Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jun-Ping Liu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Department of Immunology, Central Eastern Clinical School, Monash University, Melbourne, Vitoria, Australia.,Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
18
|
Paidimuddala B, Mohapatra SB, Gummadi SN, Manoj N. Crystal structure of yeast xylose reductase in complex with a novel NADP-DTT adduct provides insights into substrate recognition and catalysis. FEBS J 2018; 285:4445-4464. [PMID: 30269423 DOI: 10.1111/febs.14667] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/13/2018] [Accepted: 09/26/2018] [Indexed: 11/30/2022]
Abstract
Aldose reductases (ARs) belonging to the aldo-keto reductase (AKR) superfamily catalyze the conversion of carbonyl substrates into their respective alcohols. Here we report the crystal structures of the yeast Debaryomyces nepalensis xylose reductase (DnXR, AKR2B10) in the apo form and as a ternary complex with a novel NADP-DTT adduct. Xylose reductase, a key enzyme in the conversion of xylose to xylitol, has several industrial applications. The enzyme displayed the highest catalytic efficiency for l-threose (138 ± 7 mm-1 ·s-1 ) followed by d-erythrose (30 ± 3 mm-1 ·s-1 ). The crystal structure of the complex reveals a covalent linkage between the C4N atom of the nicotinamide ring of the cosubstrate and the S1 sulfur atom of DTT and provides the first structural evidence for a protein mediated NADP-low-molecular-mass thiol adduct. We hypothesize that the formation of the adduct is facilitated by an in-crystallo Michael addition of the DTT thiolate to the specific conformation of bound NADPH in the active site of DnXR. The interactions between DTT, a four-carbon sugar alcohol analog, and the enzyme are representative of a near-cognate product ternary complex and provide significant insights into the structural basis of aldose binding and specificity and the catalytic mechanism of ARs. DATABASE: Structural data are available in the PDB under the accession numbers 5ZCI and 5ZCM.
Collapse
Affiliation(s)
- Bhaskar Paidimuddala
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Samar B Mohapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Narayanan Manoj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
19
|
Sun Z, Wu L, Bocola M, Chan HCS, Lonsdale R, Kong XD, Yuan S, Zhou J, Reetz MT. Structural and Computational Insight into the Catalytic Mechanism of Limonene Epoxide Hydrolase Mutants in Stereoselective Transformations. J Am Chem Soc 2017; 140:310-318. [DOI: 10.1021/jacs.7b10278] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Lian Wu
- State
Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Marco Bocola
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - H. C. Stephen Chan
- Laboratory
of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH B3 495 (Bâtiment CH) Station
6, CH-1015 Lausanne, Switzerland
| | - Richard Lonsdale
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Xu-Dong Kong
- State
Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shuguang Yuan
- Laboratory
of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH B3 495 (Bâtiment CH) Station
6, CH-1015 Lausanne, Switzerland
| | - Jiahai Zhou
- State
Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| |
Collapse
|