1
|
Jayapurna I, Ruan Z, Eres M, Jalagam P, Jenkins S, Xu T. Sequence Design of Random Heteropolymers as Protein Mimics. Biomacromolecules 2023; 24:652-660. [PMID: 36638823 PMCID: PMC9930114 DOI: 10.1021/acs.biomac.2c01036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Random heteropolymers (RHPs) have been computationally designed and experimentally shown to recapitulate protein-like phase behavior and function. However, unlike proteins, RHP sequences are only statistically defined and cannot be sequenced. Recent developments in reversible-deactivation radical polymerization allowed simulated polymer sequences based on the well-established Mayo-Lewis equation to more accurately reflect ground-truth sequences that are experimentally synthesized. This led to opportunities to perform bioinformatics-inspired analysis on simulated sequences to guide the design, synthesis, and interpretation of RHPs. We compared batches on the order of 10000 simulated RHP sequences that vary by synthetically controllable and measurable RHP characteristics such as chemical heterogeneity and average degree of polymerization. Our analysis spans across 3 levels: segments along a single chain, sequences within a batch, and batch-averaged statistics. We discuss simulator fidelity and highlight the importance of robust segment definition. Examples are presented that demonstrate the use of simulated sequence analysis for in-silico iterative design to mimic protein hydrophobic/hydrophilic segment distributions in RHPs and compare RHP and protein sequence segments to explain experimental results of RHPs that mimic protein function. To facilitate the community use of this workflow, the simulator and analysis modules have been made available through an open source toolkit, the RHPapp.
Collapse
Affiliation(s)
- Ivan Jayapurna
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Zhiyuan Ruan
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Marco Eres
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Prajna Jalagam
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Spencer Jenkins
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Ting Xu
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Magi Meconi G, Sasselli IR, Bianco V, Onuchic JN, Coluzza I. Key aspects of the past 30 years of protein design. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086601. [PMID: 35704983 DOI: 10.1088/1361-6633/ac78ef] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Proteins are the workhorse of life. They are the building infrastructure of living systems; they are the most efficient molecular machines known, and their enzymatic activity is still unmatched in versatility by any artificial system. Perhaps proteins' most remarkable feature is their modularity. The large amount of information required to specify each protein's function is analogically encoded with an alphabet of just ∼20 letters. The protein folding problem is how to encode all such information in a sequence of 20 letters. In this review, we go through the last 30 years of research to summarize the state of the art and highlight some applications related to fundamental problems of protein evolution.
Collapse
Affiliation(s)
- Giulia Magi Meconi
- Computational Biophysics Lab, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia-San Sebastián, Spain
| | - Ivan R Sasselli
- Computational Biophysics Lab, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia-San Sebastián, Spain
| | | | - Jose N Onuchic
- Center for Theoretical Biological Physics, Department of Physics & Astronomy, Department of Chemistry, Department of Biosciences, Rice University, Houston, TX 77251, United States of America
| | - Ivan Coluzza
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Bld. Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, 48940 Leioa, Spain
- Basque Foundation for Science, Ikerbasque, 48009, Bilbao, Spain
| |
Collapse
|
3
|
Takahashi T, Chikenji G, Tokita K. Lattice protein design using Bayesian learning. Phys Rev E 2021; 104:014404. [PMID: 34412286 DOI: 10.1103/physreve.104.014404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/11/2021] [Indexed: 01/01/2023]
Abstract
Protein design is the inverse approach of the three-dimensional (3D) structure prediction for elucidating the relationship between the 3D structures and amino acid sequences. In general, the computation of the protein design involves a double loop: A loop for amino acid sequence changes and a loop for an exhaustive conformational search for each amino acid sequence. Herein, we propose a novel statistical mechanical design method using Bayesian learning, which can design lattice proteins without the exhaustive conformational search. We consider a thermodynamic hypothesis of the evolution of proteins and apply it to the prior distribution of amino acid sequences. Furthermore, we take the water effect into account in view of the grand canonical picture. As a result, on applying the 2D lattice hydrophobic-polar (HP) model, our design method successfully finds an amino acid sequence for which the target conformation has a unique ground state. However, the performance was not as good for the 3D lattice HP models compared to the 2D models. The performance of the 3D model improves on using a 20-letter lattice proteins. Furthermore, we find a strong linearity between the chemical potential of water and the number of surface residues, thereby revealing the relationship between protein structure and the effect of water molecules. The advantage of our method is that it greatly reduces computation time, because it does not require long calculations for the partition function corresponding to an exhaustive conformational search. As our method uses a general form of Bayesian learning and statistical mechanics and is not limited to lattice proteins, the results presented here elucidate some heuristics used successfully in previous protein design methods.
Collapse
Affiliation(s)
- Tomoei Takahashi
- Graduate School of Informatics, Nagoya University, Nagoya 464-8601, Japan
| | - George Chikenji
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Kei Tokita
- Graduate School of Informatics, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
4
|
Blazquez-Martín A, Verde-Sesto E, Moreno AJ, Arbe A, Colmenero J, Pomposo JA. Advances in the Multi-Orthogonal Folding of Single Polymer Chains into Single-Chain Nanoparticles. Polymers (Basel) 2021; 13:293. [PMID: 33477597 PMCID: PMC7831314 DOI: 10.3390/polym13020293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 11/16/2022] Open
Abstract
The folding of certain proteins (e.g., enzymes) into perfectly defined 3D conformations via multi-orthogonal interactions is critical to their function. Concerning synthetic polymers chains, the "folding" of individual polymer chains at high dilution via intra-chain interactions leads to so-called single-chain nanoparticles (SCNPs). This review article describes the advances carried out in recent years in the folding of single polymer chains into discrete SCNPs via multi-orthogonal interactions using different reactive chemical species where intra-chain bonding only occurs between groups of the same species. First, we summarize results from computer simulations of multi-orthogonally folded SCNPs. Next, we comprehensively review multi-orthogonally folded SCNPs synthesized via either non-covalent bonds or covalent interactions. Finally, we conclude by summarizing recent research about multi-orthogonally folded SCNPs prepared through both reversible (dynamic) and permanent bonds.
Collapse
Affiliation(s)
- Agustín Blazquez-Martín
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (A.B.-M.); (E.V.-S.); (A.J.M.); (A.A.); (J.C.)
| | - Ester Verde-Sesto
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (A.B.-M.); (E.V.-S.); (A.J.M.); (A.A.); (J.C.)
| | - Angel J. Moreno
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (A.B.-M.); (E.V.-S.); (A.J.M.); (A.A.); (J.C.)
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (A.B.-M.); (E.V.-S.); (A.J.M.); (A.A.); (J.C.)
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| | - Juan Colmenero
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (A.B.-M.); (E.V.-S.); (A.J.M.); (A.A.); (J.C.)
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, University of the Basque Country (UPV/EHU), PO Box 1072, E-20800 San Sebastián, Spain
| | - José A. Pomposo
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (A.B.-M.); (E.V.-S.); (A.J.M.); (A.A.); (J.C.)
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, University of the Basque Country (UPV/EHU), PO Box 1072, E-20800 San Sebastián, Spain
- IKERBASQUE—Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| |
Collapse
|
5
|
Hilburg SL, Ruan Z, Xu T, Alexander-Katz A. Behavior of Protein-Inspired Synthetic Random Heteropolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shayna L. Hilburg
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zhiyuan Ruan
- Department of Materials Science & Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Ting Xu
- Department of Materials Science & Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Tsinghua−Berkeley Shenzhen Institute, University of California Berkeley, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Bianco V, Espinosa JR, Vega C. Antifreeze proteins and homogeneous nucleation: On the physical determinants impeding ice crystal growth. J Chem Phys 2020; 153:091102. [PMID: 32891082 DOI: 10.1063/5.0023211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Antifreeze proteins (AFPs) are biopolymers capable of interfering with ice growth. Their antifreeze action is commonly understood considering that the AFPs, by pinning the ice surface, force the crystal-liquid interface to bend forming an ice meniscus, causing an increase in the surface free energy and resulting in a decrease in the freezing point ΔTmax. Here, we present an extensive computational study for a model protein adsorbed on a TIP4P/Ice crystal, computing ΔTmax as a function of the average distance d between AFPs, with simulations spanning over 1 µs. First, we show that the lower the d, the larger the ΔTmax. Then, we find that the water-ice-protein contact angle along the line ΔTmax(d) is always larger than 0°, and we provide a theoretical interpretation. We compute the curvature radius of the stable solid-liquid interface at a given supercooling ΔT ≤ ΔTmax, connecting it with the critical ice nucleus at ΔT. Finally, we discuss the antifreeze capability of AFPs in terms of the protein-water and protein-ice interactions. Our findings establish a unified description of the AFPs in the contest of homogeneous ice nucleation, elucidating key aspects of the antifreeze mechanisms and paving the way for the design of novel ice-controlling materials.
Collapse
Affiliation(s)
- Valentino Bianco
- Faculty of Chemistry, Chemical Physics Department, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, Madrid 28040, Spain
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0H3, United Kingdom
| | - Carlos Vega
- Faculty of Chemistry, Chemical Physics Department, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, Madrid 28040, Spain
| |
Collapse
|
7
|
Nerattini F, Tubiana L, Cardelli C, Bianco V, Dellago C, Coluzza I. Protein design under competing conditions for the availability of amino acids. Sci Rep 2020; 10:2684. [PMID: 32060385 PMCID: PMC7021711 DOI: 10.1038/s41598-020-59401-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 12/08/2019] [Indexed: 11/09/2022] Open
Abstract
Isolating the properties of proteins that allow them to convert sequence into the structure is a long-lasting biophysical problem. In particular, studies focused extensively on the effect of a reduced alphabet size on the folding properties. However, the natural alphabet is a compromise between versatility and optimisation of the available resources. Here, for the first time, we include the impact of the relative availability of the amino acids to extract from the 20 letters the core necessary for protein stability. We present a computational protein design scheme that involves the competition for resources between a protein and a potential interaction partner that, additionally, gives us the chance to investigate the effect of the reduced alphabet on protein-protein interactions. We devise a scheme that automatically identifies the optimal reduced set of letters for the design of the protein, and we observe that even alphabets reduced down to 4 letters allow for single protein folding. However, it is only with 6 letters that we achieve optimal folding, thus recovering experimental observations. Additionally, we notice that the binding between the protein and a potential interaction partner could not be avoided with the investigated reduced alphabets. Therefore, we suggest that aggregation could have been a driving force in the evolution of the large protein alphabet.
Collapse
Affiliation(s)
- Francesca Nerattini
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Luca Tubiana
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Chiara Cardelli
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Valentino Bianco
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Christoph Dellago
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Ivan Coluzza
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, 20014, San Sebastian, Spain. .,IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
| |
Collapse
|
8
|
Bianco V, Franzese G, Coluzza I. In Silico Evidence That Protein Unfolding is a Precursor of Protein Aggregation. Chemphyschem 2020; 21:377-384. [DOI: 10.1002/cphc.201900904] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/01/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Valentino Bianco
- Faculty of Chemistry, Chemical Physics Department, Universidad Complutense de Madrid, Plaza de las Ciencias Ciudad Universitaria Madrid 28040 Spain
| | - Giancarlo Franzese
- Secció de Física Estadística i Interdisciplinària-Departament de Física de la Matèria Condensada, Facultat de Física & Institute of Nanoscience and Nanotechnology (IN2UB) Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
| | - Ivan Coluzza
- CIC biomaGUNE Paseo Miramon 182 20014 San Sebastian Spain
- IKERBASQUE, Basque Foundation for Science 48013 Bilbao Spain
| |
Collapse
|
9
|
Kaushik AC, Mehmood A, Khan MT, Kumar A, Dai X, Wei DQ. RETRACTED ARTICLE: Protein blueprint and their interactions while approachability struggle for amino acids. J Biomol Struct Dyn 2020; 39:i-ix. [PMID: 31914855 DOI: 10.1080/07391102.2020.1713894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Aamir Mehmood
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Ajay Kumar
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung City, Taiwan
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Dong-Qing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Falk MJ, Duwel A, Colwell LJ, Brenner MP. Collagen-Inspired Self-Assembly of Twisted Filaments. PHYSICAL REVIEW LETTERS 2019; 123:238102. [PMID: 31868483 DOI: 10.1103/physrevlett.123.238102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Collagen consists of three peptides twisted together through a periodic array of hydrogen bonds. Here we use this as inspiration to find design rules for programmed specific interactions for self-assembling synthetic collagenlike triple helices, starting from disordered configurations. The assembly generically nucleates defects in the triple helix, the characteristics of which can be manipulated by spatially varying the enthalpy of helix formation. Defect formation slows assembly, evoking kinetic pathologies that have been observed to mutations in the primary collagen amino acid sequence. The controlled formation and interaction between defects gives a route for hierarchical self-assembly of bundles of twisted filaments.
Collapse
Affiliation(s)
- Martin J Falk
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02138, USA
| | - Amy Duwel
- Charles Stark Draper Laboratory, Cambridge, Massachusetts 02138, USA
| | - Lucy J Colwell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Michael P Brenner
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
11
|
Bianco V, Alonso-Navarro M, Di Silvio D, Moya S, Cortajarena AL, Coluzza I. Proteins are Solitary! Pathways of Protein Folding and Aggregation in Protein Mixtures. J Phys Chem Lett 2019; 10:4800-4804. [PMID: 31373499 DOI: 10.1021/acs.jpclett.9b01753] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present a computational and experimental study on the folding and aggregation in solutions of multiple protein mixtures at different concentrations. We show how in protein mixtures each component is capable of maintaining its folded state at densities greater than the one at which they would precipitate in single-species solutions. We demonstrate the generality of our observation over many different proteins using computer simulations capable of fully characterizing the cross-aggregation phase diagram of all the mixtures. Dynamic light scattering experiments were performed to evaluate the aggregation of two proteins, bovine serum albumin (BSA) and consensus tetratricopeptide repeat (CTPR), in solutions of one or both proteins. The experiments confirm our hypothesis and the simulations. These findings elucidate critical aspects of the cross-regulation of expression and aggregation of proteins exerted by the cell and on the evolutionary selection of folding and non-aggregating protein sequences, paving the way for new experimental tests.
Collapse
Affiliation(s)
- Valentino Bianco
- Faculty of Chemistry, Chemical Physics Deprtment, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, Madrid 28040, Spain
| | | | | | - Sergio Moya
- CIC biomaGUNE, Paseo Miramon 182, 20014 San Sebastian, Spain
| | - Aitziber L Cortajarena
- CIC biomaGUNE, Paseo Miramon 182, 20014 San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Ivan Coluzza
- CIC biomaGUNE, Paseo Miramon 182, 20014 San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
12
|
Cardelli C, Nerattini F, Tubiana L, Bianco V, Dellago C, Sciortino F, Coluzza I. General Methodology to Identify the Minimum Alphabet Size for Heteropolymer Design. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chiara Cardelli
- Faculty of PhysicsUniversity of ViennaBoltzmanngasse 5 1090 Vienna Austria
| | | | - Luca Tubiana
- Faculty of PhysicsUniversity of ViennaBoltzmanngasse 5 1090 Vienna Austria
| | - Valentino Bianco
- Faculty of ChemistryChemical Physics DepartmentUniversidad Complutense de Madrid, Plaza de las Ciencias, Ciudad UniversitariaMadrid 28040 Spain
| | - Christoph Dellago
- Faculty of PhysicsUniversity of ViennaBoltzmanngasse 5 1090 Vienna Austria
| | - Francesco Sciortino
- Dipartimento di FisicaSapienza Università di RomaPiazzale Aldo Moro 2 00185 Rome Italy
| | - Ivan Coluzza
- CIC biomaGUNEPaseo Miramon 182 20014 San Sebastian Spain
- IKERBASQUEBasque Foundation for Science48013 Bilbao Spain
| |
Collapse
|
13
|
Watanabe K, Tajima Y, Shimura T, Ishii H, Nagao D. Depletion-interaction-driven assembly of golf ball-like particles for development of colloidal macromolecules. J Colloid Interface Sci 2019; 534:81-87. [DOI: 10.1016/j.jcis.2018.08.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
|
14
|
Cardelli C, Tubiana L, Bianco V, Nerattini F, Dellago C, Coluzza I. Heteropolymer Design and Folding of Arbitrary Topologies Reveals an Unexpected Role of Alphabet Size on the Knot Population. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chiara Cardelli
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Luca Tubiana
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Valentino Bianco
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Francesca Nerattini
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Christoph Dellago
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Ivan Coluzza
- CIC biomaGUNE, Paseo Miramon 182, 20014 San Sebastian, Spain
- IKERBASQUE,
Basque
Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
15
|
Dijkstra M, Fokkink W, Heringa J, van Dijk E, Abeln S. The characteristics of molten globule states and folding pathways strongly depend on the sequence of a protein. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1496290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- M.J.J. Dijkstra
- Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - W.J. Fokkink
- Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - J. Heringa
- Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - E. van Dijk
- Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - S. Abeln
- Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Bianchi E, Capone B, Coluzza I, Rovigatti L, van Oostrum PDJ. Limiting the valence: advancements and new perspectives on patchy colloids, soft functionalized nanoparticles and biomolecules. Phys Chem Chem Phys 2017; 19:19847-19868. [DOI: 10.1039/c7cp03149a] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Artistic representation of limited valance units consisting of a soft core (in blue) and a small number of flexible bonding patches (in orange).
Collapse
Affiliation(s)
- Emanuela Bianchi
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
- Institute for Theoretical Physics
| | - Barbara Capone
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
- Dipartimento di Scienze
| | - Ivan Coluzza
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
| | - Lorenzo Rovigatti
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
- Rudolf Peierls Centre for Theoretical Physics
| | - Peter D. J. van Oostrum
- Department of Nanobiotechnology
- Institute for Biologically Inspired Materials
- University of Natural Resources and Life Sciences
- A-1190 Vienna
- Austria
| |
Collapse
|