1
|
Jiang J, Li X, Wang J, Chen S, Chen L. SLC25A19 drives colorectal cancer progression by regulating p53. Cancer Med 2024; 13:e70253. [PMID: 39344563 PMCID: PMC11440145 DOI: 10.1002/cam4.70253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Investigating the molecular mechanism of colorectal cancer (CRC), a common lethal malignancies worldwide, is of great clinical significance. Solute carrier family 25 member 19 (SLC25A19) is a member of the solute carrier family that contribute to cellular functions, including tumor biology. Recently, many studies have attention on uncovering the relationship of SLC25A19 with malignant cancers, but its precise involvement in the regulation of CRC has not been thoroughly understood. This study sought to uncover the role and mechanism of SLC25A19 in CRC development. METHODS The GEPIA database and immunohistochemical staining were utilized to detect the expression of SLC25A19 in CRC tissues. The functional influences of SLC25A19 on CRC cell phenotypes were evaluated through a series of assays including celigo cell count, colony formation, CCK-8, flow cytometry, wound healing, and transwell assays following knocking down SLC25A19. Subsequently, the xenograft tumor model was constructed to evaluate the effect of SLC25A19 on tumor growth in vivo. The underlying mechanisms of SLC25A19 silencing were investigated using the human phospho-kinase array. RESULTS This study demonstrated the upregulation of SLC25A19 in CRC and its significant correlation with unfavorable prognosis in CRC patients. Suppression of SLC25A19 resulted in significant inhibition of cell proliferation, colony formation, and cell migration, alongside a boost in cell apoptosis. In vivo experiments revealed that silenced SLC25A19 displayed reduced growth rates and formed smaller xenografts. Mechanistically, the p53 pathway was found to be upregulated by SLC25A19 knockdown and mediated the function of SLC25A19. CONCLUSIONS Consequently, SLC25A19 was identified as a novel molecule with key regulatory ability in CRC development.
Collapse
Affiliation(s)
- Jinbo Jiang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xuemei Li
- Advanced Medical Research Institute, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Jiayong Wang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Shaofei Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Liu S, Zhang P, Wu Y, Zhou H, Wu H, Jin Y, Wu D, Wu G. SLC25A19 is a novel prognostic biomarker related to immune invasion and ferroptosis in HCC. Int Immunopharmacol 2024; 136:112367. [PMID: 38823177 DOI: 10.1016/j.intimp.2024.112367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
SLC25A19 is a mitochondrial thiamine pyrophosphate (TPP) carrier that mediates TPP entry into the mitochondria. SLC25A19 has been recognized to play a crucial role in many metabolic diseases, but its role in cancer has not been clearly reported. Based on clinical data from The Cancer Genome Atlas (TCGA), the following parameters were analyzed among HCC patients: SLC25A19 expression, enrichment analyses, immune infiltration, ferroptosis and prognosis analyses. In vitro, the SLC25A19 high expression was validated by qRT-PCR and Immunohistochemistry. Subsequently, a series of cell function experiments, including CCK8, EdU, clone formation, trans-well and scratch assays, were conducted to illustrate the effect of SLC25A19 on the growth and metastasis of cancer cells. Meanwhile, indicators related to ferroptosis were also detected. SCL25A19 is highly expressed in HCC and predicts a poor prognosis. Elevated SLC25A19 expression in HCC patients was markedly associated with T stage, pathological status (PS), tumor status (TS), histologic grade (HG), and AFP. Our results indicate that SLC25A19 has a generally good prognosis predictive and diagnostic ability. The results of gene enrichment analyses showed that SLC25A19 is significantly correlated with immune infiltration, fatty acid metabolism, and ferroptosis marker genes. In vitro experiments have confirmed that silencing SLC25A19 can significantly inhibit the proliferation and migration ability of cancer cells and induce ferroptosis in HCC. In conclusion, these findings indicate that SLC25A19 is novel prognostic biomarker related to immune invasion and ferroptosis in HCC, and it is an excellent candidate for therapeutic target against HCC.
Collapse
Affiliation(s)
- Shiqi Liu
- Hepatobiliary Surgery Department, First Hospital of China Medical, University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning, Province, PR China; Key Laboratory of General Surgery of Liaoning Province, the First Affiliated Hospital of China Medical University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning Province, PR China
| | - Pengjie Zhang
- Hepatobiliary Surgery Department, First Hospital of China Medical, University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning, Province, PR China; Key Laboratory of General Surgery of Liaoning Province, the First Affiliated Hospital of China Medical University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning Province, PR China
| | - Yubo Wu
- Hepatobiliary Surgery Department, First Hospital of China Medical, University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning, Province, PR China; Key Laboratory of General Surgery of Liaoning Province, the First Affiliated Hospital of China Medical University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning Province, PR China
| | - Haonan Zhou
- Hepatobiliary Surgery Department, First Hospital of China Medical, University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning, Province, PR China; Key Laboratory of General Surgery of Liaoning Province, the First Affiliated Hospital of China Medical University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning Province, PR China
| | - Haomin Wu
- Hepatobiliary Surgery Department, First Hospital of China Medical, University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning, Province, PR China; Key Laboratory of General Surgery of Liaoning Province, the First Affiliated Hospital of China Medical University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning Province, PR China
| | - Yifan Jin
- Hepatobiliary Surgery Department, First Hospital of China Medical, University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning, Province, PR China; Key Laboratory of General Surgery of Liaoning Province, the First Affiliated Hospital of China Medical University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning Province, PR China
| | - Di Wu
- Hepatobiliary Surgery Department, First Hospital of China Medical, University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning, Province, PR China; Key Laboratory of General Surgery of Liaoning Province, the First Affiliated Hospital of China Medical University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning Province, PR China
| | - Gang Wu
- Hepatobiliary Surgery Department, First Hospital of China Medical, University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning, Province, PR China; Key Laboratory of General Surgery of Liaoning Province, the First Affiliated Hospital of China Medical University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning Province, PR China.
| |
Collapse
|
3
|
Wang G, Zhang Z, Li J, Han J, Lu C. The PTB and PRR domains of numb regulate neurite outgrowth by influencing voltage-gated calcium channel expression and kinetics. Brain Res Bull 2024; 207:110876. [PMID: 38215950 DOI: 10.1016/j.brainresbull.2024.110876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Numb is an evolutionarily conserved protein that regulates the differentiation of neuronal progenitor cells through unknown mechanisms. Numb has four alternative splice variants with different lengths of phosphotyrosine-binding (PTB) and proline-rich regions (PRR) domains. In this study, we demonstrated that Numb expression was increased in the primary cultures of rat cortical and hippocampal neurons over time in vitro, and Numb antisense inhibited neurite outgrowth. We verified that cells overexpressing short PTB (SPTB) or long PTB (LPTB) domains exhibited differentiation or proliferation, respectively. SPTB-mediated differentiation was related to the PRR domains, as cells expressing SPTB/LPRR had longer dendrites and more branched dendrites than cells expressing SPTB/SPRR. The differentiation of both cell types was completely blocked by the Ca2+ chelator. Western blot analysis revealed the increased total protein expression of voltage-gated calcium channel (VGCC) subunit α1C and α1D in cells expressing SPTB and LPTB Numb. The increased expression of the VGCC β3 subunit was only observed in cells expressing SPTB Numb. Immunocytochemistry further showed that SPTB-mediated cell differentiation was associated with increased membrane expression of VGCC subunits α1C, α1D and β3, which corresponded to the higher Ca2+ current (ICa) densities. Furthermore, we found that VGCC of cells transfected with SPTB/SPRR or SPTB/LPRR Numb isoforms exhibit steady-state inactivation (SSI) in both differentiated and undifferentiated phenotypes. A similar SSI of VGCC was observed in the differentiated cells transfected with SPTB/SPRR or SPTB/LPRR Numb isoforms, whereas a left shift SSI of VGCC in cells expressing SPTB/LPRR was detected in the undifferentiated cells. Collectively, these data indicate that SPTB domain is essential for neurite outgrowth involving in membrane expression of VGCC subunits, and LPRR plays a role in neuronal branching and the regulation of VGCC inactivation kinetics.
Collapse
Affiliation(s)
- Guodong Wang
- International-Joint Lab for Non-Invasive Neural Modulation of Henan Province, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang 453003, China; School of Nursing, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhengyan Zhang
- International-Joint Lab for Non-Invasive Neural Modulation of Henan Province, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang 453003, China; The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Junmei Li
- International-Joint Lab for Non-Invasive Neural Modulation of Henan Province, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jinhong Han
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Chengbiao Lu
- International-Joint Lab for Non-Invasive Neural Modulation of Henan Province, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
4
|
Suo H, Shishir MRI, Wang Q, Wang M, Chen F, Cheng KW. Red Wine High-Molecular-Weight Polyphenolic Complex Ameliorates High-Fat Diet-Induced Metabolic Dysregulation and Perturbation in Gut Microbiota in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6882-6893. [PMID: 37126594 DOI: 10.1021/acs.jafc.2c06459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Red wine polyphenolic complexes have attracted increasing attention as potential modulators of human metabolic disease risk. Our previous study discovered that red wine high-molecular-weight polymeric polyphenolic complexes (HPPCs) could inhibit key metabolic syndrome-associated enzymes and favorably modulate human gut microbiota (GM) in simulated colonic fermentation assay in vitro. In this work, the efficacy of HPPC supplementation (150 and 300 mg/kg/day, respectively) against high-fat diet (HFD)-induced metabolic disturbance in mice was investigated. HPPCs effectively attenuated HFD-induced obesity, insulin resistance, and lipid and glucose metabolic dysregulation and ameliorated inflammatory response and hepatic and colonic damage. It also improved the relative abundance of Bacteroidetes and Firmicutes, consistent with an anti-obesity phenotype. The favorable modulation of GM was further supported by improvement in the profile of fecal short-chain fatty acids. The higher dosage generally had a better performance in these effects than the low dosage. Moreover, serum metabolite profiling and pathway enrichment analysis revealed that HPPCs significantly modulated vitamin B metabolism-associated pathways and identified N-acetylneuraminic acid and 2-methylbutyroylcarnitine as potential biomarkers of the favorable effect on HFD-induced metabolic dysregulation. These findings highlight that dietary supplementation with red wine HPPCs is a promising strategy for the management of weight gain and metabolic dysregulation associated with HFD.
Collapse
Affiliation(s)
- Hao Suo
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Mohammad Rezaul Islam Shishir
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Qi Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Ka Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
5
|
Ramamoorthy K, Yoshimura R, Al-Juburi S, Anandam KY, Kapadia R, Alachkar A, Abbott GW, Said HM. Alzheimer's disease is associated with disruption in thiamin transport physiology: A potential role for neuroinflammation. Neurobiol Dis 2022; 171:105799. [PMID: 35750148 PMCID: PMC9744268 DOI: 10.1016/j.nbd.2022.105799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 06/17/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by Amyloid-β peptide (Aβ) containing plaques and cognitive deficits. The pathophysiology of AD also involves neuroinflammation. Vitamin B1 (thiamin) is indispensable for normal cellular energy metabolism. Thiamin homeostasis is altered in AD, and its deficiency is known to aggravate AD pathology. Little, however, is known about possible alterations in level of expression of thiamin transporters-1 and -2 (THTR-1 and -2) in the brain of AD, and whether pro-inflammatory cytokines affect thiamin uptake by brain cells. We addressed these issues using brain tissue samples [prefrontal cortex (PFC) and hippocampus (HIP)] from AD patients and from 5XFAD mouse model of AD, together with cultured human neuroblastoma SH-SY5Y cells as model. Our results revealed a significantly lower expression of both THTR-1 and THTR-2 in the PFC and HIP of AD patients and 5XFAD mouse model of AD compared to appropriate normal controls. Further, we found that exposure of the SH-SY5Y cells to pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) led to a significant inhibition in thiamin uptake. Focusing on IL-1β, we found the inhibition in thiamin uptake to be time-dependent and reversible; it was also associated with a substantial reduction in expression of THTR-1 (but not THTR-2) protein and mRNA as well as a decrease in promoter activity of the SLC19A2 gene (which encodes THTR-1). Finally, using transcriptomic analysis, we found that thiamin availability in SH-SY5Y cells caused changes in the expression of genes relevant to AD pathways. These studies demonstrate, for the first time, that thiamin transport physiology/molecular biology parameters are negatively impacted in AD brain and that pro-inflammatory cytokines inhibit thiamin uptake by neuroblastoma cells. The results also support a possible role for thiamin in the pathophysiology of AD.
Collapse
Affiliation(s)
- Kalidas Ramamoorthy
- Departments of Physiology & Biophysics, University of California, Irvine, CA 92697, United States of America
| | - Ryan Yoshimura
- Departments of Physiology & Biophysics, University of California, Irvine, CA 92697, United States of America
| | - Saleh Al-Juburi
- Departments of Physiology & Biophysics, University of California, Irvine, CA 92697, United States of America
| | - Kasin Y Anandam
- Departments of Physiology & Biophysics, University of California, Irvine, CA 92697, United States of America
| | - Rubina Kapadia
- Medicine, School of Medicine, University of California, Irvine, CA 92697, United States of America
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States of America
| | - Geoffrey W Abbott
- Departments of Physiology & Biophysics, University of California, Irvine, CA 92697, United States of America
| | - Hamid M Said
- Departments of Physiology & Biophysics, University of California, Irvine, CA 92697, United States of America; Medicine, School of Medicine, University of California, Irvine, CA 92697, United States of America; Department of Veteran Affairs, VA Medical Center, Long Beach, CA 90822, United States of America.
| |
Collapse
|
6
|
Divya MB, Kubera NS, Jha N, Jha AK, Thabah MM. Atypical neurological manifestations in Wernicke's encephalopathy due to hyperemesis gravidarum. Nutr Neurosci 2021; 25:2051-2056. [PMID: 34042559 DOI: 10.1080/1028415x.2021.1931781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Hyperemesis gravidarum is known to induce nutritional, water and electrolyte deficiencies which can be fatal if not treated urgently. Thiamine deficiency may lead to a constellation of neurological symptoms that include Wernicke encephalopathy. Moreover, Wernicke encephalopathy is typically manifested as ocular paresis, ataxia and confusion. METHODS Retrospective review of 6 women who developed neurological abnormalities following hyperemesis gravidarum and were treated with varying dosage of parenteral thiamine. RESULTS Five women developed atypical neurological symptoms, namely, slurred speech, visual loss, seizure and aggressive behaviour while one woman developed typical clinical triad of Wernicke encephalopathy after hyperemesis gravidarum. Magnetic Resonance Imaging (MRI) scans revealed abnormalities suggestive of Wernicke encephalopathy in three women only. All women improved after parenteral thiamine administration during hospital stay and had a complete neurological recovery during 2 months follow up. DISCUSSION Wernicke encephalopathy may not be necessarily associated with the typical neurological triad and may not have noticeable hyperintensity signal in dorsomedial thalami, mammillary bodies, hippocampus and periaqueductal region during magnetic resonance imaging. Atypical neurological signs and symptoms following hyperemesis gravidarum would invariably respond immediately to appropriate dosage of parenteral thiamine. A lower loading dosage of thiamine (100 mg thrice daily) appeared adequate for management in women with normal MRI scans.
Collapse
Affiliation(s)
- M B Divya
- Department of Obstetrics and Gynaecology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - N S Kubera
- Department of Obstetrics and Gynaecology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Nivedita Jha
- Department of Obstetrics and Gynaecology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Ajay Kumar Jha
- Department of Anaesthesiology and Critical Care, Jawaharlal Institute of Medical Education and Research, Pondicherry, India
| | - Molly Mary Thabah
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
7
|
Xu LJ, Gao F, Cheng S, Zhou ZX, Li F, Miao Y, Niu WR, Yuan F, Sun XH, Wang Z. Activated ephrinA3/EphA4 forward signaling induces retinal ganglion cell apoptosis in experimental glaucoma. Neuropharmacology 2020; 178:108228. [PMID: 32745487 DOI: 10.1016/j.neuropharm.2020.108228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
Abstract
Previous studies have demonstrated that EphA4 participates in neuronal injury, and there is a strong interaction between ephrinA3 and EphA4. In this study, we showed that in a rat chronic ocular hypertension (COH) experimental glaucoma model, expression of EphA4 and ephrinA3 proteins was increased in retinal cells, including retinal ganglion cells (RGCs) and Müller cells, which may result in ephrinA3/EphA4 forward signaling activation on RGCs, as evidenced by increased p-EphA4/EphA4 ratio. Intravitreal injection of ephrinA3-Fc, an activator of EphA4, mimicked the effect of COH on p-EphA4/EphA4 and induced an increase in TUNEL-positive signals in normal retinas, which was accompanied by dendritic spine retraction and thinner dendrites in RGCs. Furthermore, Intravitreal injection of ephrinA3-Fc increased the levels of phosphorylated src and GluA2 (p-src and p-GluA2). Co-immunoprecipitation assay demonstrated interactions between EphA4, p-src and GluA2. Intravitreal injection of ephrinA3-Fc reduced the expression of GluA2 proteins on the surface of normal retinal cells, which was prevented by intravitreal injection of PP2, an inhibitor of src-family tyrosine kinases. Pre-injection of PP2 or the Ca2+-permeable GluA2-lacking AMPA receptor inhibitor Naspm significantly and partially reduced the number of TUNEL-positive RGCs in the ephrinA3-Fc-injected and COH retinas. Our results suggest that activated ephrinA3/EphA4 forward signaling promoted GluA2 endocytosis, then resulted in dendritic spine retraction of RGCs, thus contributing to RGC apoptosis in COH rats. Attenuation of the strength of ephrinA/EphA signaling in an appropriate manner may be an effective way for preventing the loss of RGCs in glaucoma.
Collapse
Affiliation(s)
- Lin-Jie Xu
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Feng Gao
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Key Laboratory of Visual Impairment and Restoration, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200031, China
| | - Shuo Cheng
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhi-Xin Zhou
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fang Li
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanying Miao
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei-Ran Niu
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fei Yuan
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xing-Huai Sun
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Key Laboratory of Visual Impairment and Restoration, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200031, China.
| | - Zhongfeng Wang
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Oral benfotiamine reverts cognitive deficit and increase thiamine diphosphate levels in the brain of a rat model of neurodegeneration. Exp Gerontol 2020; 141:111097. [PMID: 32987117 DOI: 10.1016/j.exger.2020.111097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
It is well known that patients with Alzheimer's disease (AD) have imbalances in blood thiamine concentrations and lower activity of thiamine-dependent enzymes. Benfotiamine, a more bioavailable thiamine analog, has been proposed as an alternative to counteract these changes related to thiamine metabolism. Thus, our study aimed to analyze the effects of benfotiamine supplementation on brain thiamine absorption, as well as on parameters related to neuronal energy metabolism and disease progression in an experimental model of sporadic AD induced by intracerebroventricular injection of streptozotocin (STZ) in rats. The supplementation with 150 mg/kg of benfotiamine for 30 days increased the concentrations of thiamine diphosphate in the hippocampus and entorhinal cortex. This led to an improvement in mitochondria enzymes and insulin signaling pathway, with inactivation of GSK3α/β and ERK1/2, which are two tau-kinases related to the progression of AD, which could decrease tau hyperphosphorylation and apoptosis signaling. Besides, we observed an increased amount of Glun2b subunit of NMDA receptors, decreased inflammation, and improvement of cognitive deficit. Together, these results suggest that benfotiamine could be a potential therapeutic approach in the treatment of sporadic AD.
Collapse
|
9
|
Selemon LD, Begovic A. Reduced Midbrain Dopamine Neuron Number in the Adult Non-human Primate Brain after Fetal Radiation Exposure. Neuroscience 2020; 442:193-201. [PMID: 32659340 DOI: 10.1016/j.neuroscience.2020.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/17/2020] [Accepted: 07/02/2020] [Indexed: 11/19/2022]
Abstract
Early gestation is a neurodevelopmental period that is especially vulnerable to environmental insult and one in which neurogenesis features prominently. Prenatal perturbation during early gestation has been linked to neuropsychiatric illnesses such as autism and schizophrenia, and severe environmental insult during this period can result in profound mental impairment. Midbrain dopamine neurons are generated during early gestation and play a key role in the motor, cognitive and reward circuitries implicated in neuropsychiatric disease and addiction. This study examined the impact of curtailing neurogenesis in early gestation on neuron number in the midbrain dopamine group, i.e., the substantia nigra and contiguous ventral tegmental area. Rhesus macaque monkeys were exposed in utero on embryonic days 39-41 to x-irradiation (3-4 exposures of 50 cGy over 3-7 days totalling <200 cGy) and allowed to mature to full adulthood. Stereologic cell counts of tyrosine hydroxylase-positive neurons in the midbrain dopamine group were performed in adult monkeys, as were measurements of somal size. Mean total neuron number in the irradiated monkeys was significantly reduced on average by 33% compared to that of the control group. Somal size did not differ between the groups, suggesting that the integrity of survivor populations was not impacted. Reduced midbrain dopamine neuron number in fetally irradiated, adult monkeys indicates that radiation exposure during the critical period of neurogenesis results in an enduring reduction of this population and underscores the susceptibility of early neurodevelopmental processes to irreversible damage from environmental exposures.
Collapse
Affiliation(s)
- Lynn D Selemon
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States.
| | - Anita Begovic
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
10
|
Banerjee P, Carmelo VAO, Kadarmideen HN. Genome-Wide Epistatic Interaction Networks Affecting Feed Efficiency in Duroc and Landrace Pigs. Front Genet 2020; 11:121. [PMID: 32184802 PMCID: PMC7058701 DOI: 10.3389/fgene.2020.00121] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Interactions among genomic loci have often been overlooked in genome-wide association studies, revealing the combinatorial effects of variants on phenotype or disease manifestation. Unexplained genetic variance, interactions among causal genes of small effects, and biological pathways could be identified using a network biology approach. The main objective of this study was to determine the genome-wide epistatic variants affecting feed efficiency traits [feed conversion ratio (FCR) and residual feed intake (RFI)] based on weighted interaction SNP hub (WISH-R) method. Herein, we detected highly interconnected epistatic SNP modules, pathways, and potential biomarkers for the FCR and RFI in Duroc and Landrace purebreds considering the whole population, and separately for low and high feed efficient groups. Highly interacting SNP modules in Duroc (1,247 SNPs) and Landrace (1,215 SNPs) across the population and for low feed efficient (Duroc-80 SNPs, Landrace-146 SNPs) and high feed efficient group (Duroc-198 SNPs, Landrace-232 SNPs) for FCR and RFI were identified. Gene and pathway analyses identified ABL1, MAP3K4, MAP3K5, SEMA6A, KITLG, and KAT2B from chromosomes 1, 2, 5, and 13 underlying ErbB, Ras, Rap1, thyroid hormone, axon guidance pathways in Duroc. GABBR2, GNA12, and PRKCG genes from chromosomes 1, 3, and 6 pointed towards thyroid hormone, cGMP-PKG and cAMP pathways in Landrace. From Duroc low feed efficient group, the TPK1 gene was found involved with thiamine metabolism, whereas PARD6G, DLG2, CRB1 were involved with the hippo signaling pathway in high feed efficient group. PLOD1 and SETD7 genes were involved with lysine degradation in low feed efficient group in Landrace, while high feed efficient group pointed to genes underpinning valine, leucine, isoleucine degradation, and fatty acid elongation. Some SNPs and genes identified are known for their association with feed efficiency, others are novel and potentially provide new avenues for further research. Further validation of epistatic SNPs and genes identified here in a larger cohort would help to establish a framework for modelling epistatic variance in future methods of genomic prediction, increasing the accuracy of estimated genetic merit for FE and helping the pig breeding industry.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Victor Adriano Okstoft Carmelo
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Haja N Kadarmideen
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
11
|
Marcé-Grau A, Martí-Sánchez L, Baide-Mairena H, Ortigoza-Escobar JD, Pérez-Dueñas B. Genetic defects of thiamine transport and metabolism: A review of clinical phenotypes, genetics, and functional studies. J Inherit Metab Dis 2019; 42:581-597. [PMID: 31095747 DOI: 10.1002/jimd.12125] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/19/2023]
Abstract
Thiamine is a crucial cofactor involved in the maintenance of carbohydrate metabolism and participates in multiple cellular metabolic processes within the cytosol, mitochondria, and peroxisomes. Currently, four genetic defects have been described causing impairment of thiamine transport and metabolism: SLC19A2 dysfunction leads to diabetes mellitus, megaloblastic anemia and sensory-neural hearing loss, whereas SLC19A3, SLC25A19, and TPK1-related disorders result in recurrent encephalopathy, basal ganglia necrosis, generalized dystonia, severe disability, and early death. In order to achieve early diagnosis and treatment, biomarkers play an important role. SLC19A3 patients present a profound decrease of free-thiamine in cerebrospinal fluid (CSF) and fibroblasts. TPK1 patients show decreased concentrations of thiamine pyrophosphate in blood and muscle. Thiamine supplementation has been shown to improve diabetes and anemia control in Rogers' syndrome patients due to SLC19A2 deficiency. In a significant number of patients with SLC19A3, thiamine improves clinical outcome and survival, and prevents further metabolic crisis. In SLC25A19 and TPK1 defects, thiamine has also led to clinical stabilization in single cases. Moreover, thiamine supplementation leads to normal concentrations of free-thiamine in the CSF of SLC19A3 patients. Herein, we present a literature review of the current knowledge of the disease including related clinical phenotypes, treatment approaches, update of pathogenic variants, as well as in vitro and in vivo functional models that provide pathogenic evidence and propose mechanisms for thiamine deficiency in humans.
Collapse
Affiliation(s)
- Anna Marcé-Grau
- Pediatric Neurology Research Group, Hospital Vall d'Hebron and Research Institute (VHIR), Barcelona, Spain
| | - Laura Martí-Sánchez
- Department of Clinical Biochemistry, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Heidy Baide-Mairena
- Pediatric Neurology Research Group, Hospital Vall d'Hebron and Research Institute (VHIR), Barcelona, Spain
| | | | - Belén Pérez-Dueñas
- Pediatric Neurology Research Group, Hospital Vall d'Hebron and Research Institute (VHIR), Barcelona, Spain
- Centre for Biochemical Research in Rare Diseases (CIBERER), Valencia, Spain
| |
Collapse
|
12
|
Dhir S, Tarasenko M, Napoli E, Giulivi C. Neurological, Psychiatric, and Biochemical Aspects of Thiamine Deficiency in Children and Adults. Front Psychiatry 2019; 10:207. [PMID: 31019473 PMCID: PMC6459027 DOI: 10.3389/fpsyt.2019.00207] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/22/2019] [Indexed: 01/19/2023] Open
Abstract
Thiamine (vitamin B1) is an essential nutrient that serves as a cofactor for a number of enzymes, mostly with mitochondrial localization. Some thiamine-dependent enzymes are involved in energy metabolism and biosynthesis of nucleic acids whereas others are part of the antioxidant machinery. The brain is highly vulnerable to thiamine deficiency due to its heavy reliance on mitochondrial ATP production. This is more evident during rapid growth (i.e., perinatal periods and children) in which thiamine deficiency is commonly associated with either malnutrition or genetic defects. Thiamine deficiency contributes to a number of conditions spanning from mild neurological and psychiatric symptoms (confusion, reduced memory, and sleep disturbances) to severe encephalopathy, ataxia, congestive heart failure, muscle atrophy, and even death. This review discusses the current knowledge on thiamine deficiency and associated morbidity of neurological and psychiatric disorders, with special emphasis on the pediatric population, as well as the putative beneficial effect of thiamine supplementation in autism spectrum disorder (ASD) and other neurological conditions.
Collapse
Affiliation(s)
- Shibani Dhir
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Maya Tarasenko
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
13
|
Rac1 Modulates Excitatory Synaptic Transmission in Mouse Retinal Ganglion Cells. Neurosci Bull 2019; 35:673-687. [PMID: 30888607 DOI: 10.1007/s12264-019-00353-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/21/2018] [Indexed: 10/26/2022] Open
Abstract
Ras-related C3 botulinum toxin substrate 1 (Rac1), a member of the Rho GTPase family which plays important roles in dendritic spine morphology and plasticity, is a key regulator of cytoskeletal reorganization in dendrites and spines. Here, we investigated whether and how Rac1 modulates synaptic transmission in mouse retinal ganglion cells (RGCs) using selective conditional knockout of Rac1 (Rac1-cKO). Rac1-cKO significantly reduced the frequency of AMPA receptor-mediated miniature excitatory postsynaptic currents, while glycine/GABAA receptor-mediated miniature inhibitory postsynaptic currents were not affected. Although the total GluA1 protein level was increased in Rac1-cKO mice, its expression in the membrane component was unchanged. Rac1-cKO did not affect spine-like branch density in single dendrites, but significantly reduced the dendritic complexity, which resulted in a decrease in the total number of dendritic spine-like branches. These results suggest that Rac1 selectively affects excitatory synaptic transmission in RGCs by modulating dendritic complexity.
Collapse
|
14
|
Henley R, Chandrasekaran V, Giulivi C. Computing neurite outgrowth and arborization in superior cervical ganglion neurons. Brain Res Bull 2018; 144:194-199. [PMID: 30529562 DOI: 10.1016/j.brainresbull.2018.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/30/2018] [Accepted: 12/04/2018] [Indexed: 11/18/2022]
Abstract
Dendrites are the primary site of synaptic activity in neurons and changes in synapses are often the first pathological stage in neurodegenerative diseases. Molecular studies of these changes rely on morphological analysis of the imaging of somas and dendritic arbors of cultured or primary neurons. As research on preventing or reversing synaptic degeneration develops, demands increase for user-friendly 2D neurite analyzers without undermining accuracy and reproducibility. The most common method of 2D neurite analysis is manual by using ImageJ. This method relies completely on the user's ability to distinguish the shape and size of dendrites and trace morphology with a series of straight connected lines. Semi-automatic methods have also been developed, such as the NeuronJ plugin for ImageJ. These methods still rely on the user to identify the start and end of the dendrites, but automatically determine the shape, reducing the likelihood of user bias and speeding the process. Some automatic methods have been developed through image processing software, like ImagePro. These programs tend to be expensive, but have been shown to be fast and effective, limiting user interaction. In this study, we compare three methods of neurite analysis-ImageJ, NeuronJ, and ImagePro-in measuring the soma size, number of dendrites, and length of dendrites per cell of embryonic sympathetic rat neurons with BMP-7-induced dendritic growth. Our results indicate that ImageJ and NeuronJ measurements were of similar effectiveness and consistent throughout various images and multiple trials. NeuronJ required less user interaction in measuring the length of dendrites than the manual method and therefore, was faster and less labor intensive. Conversely, ImagePro tended to be inconsistent across images, overestimating both soma size and the number of dendrites per cell while underestimating the length of dendrites. Overall, NeuronJ, in conjunction with ImageJ, is the most reliable and efficient method of 2D neurite analysis tested in the present study.
Collapse
Affiliation(s)
- Rachel Henley
- Department of Biology, Saint Mary's College of California, Moraga, CA, 94575, United States
| | - Vidya Chandrasekaran
- Department of Biology, Saint Mary's College of California, Moraga, CA, 94575, United States
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, United States; Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, CA 95817, United States.
| |
Collapse
|