1
|
Omidvarnia F, Sarhadi A. Nature-Inspired Designs in Wind Energy: A Review. Biomimetics (Basel) 2024; 9:90. [PMID: 38392136 PMCID: PMC10886931 DOI: 10.3390/biomimetics9020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
The field of wind energy stands at the forefront of sustainable and renewable energy solutions, playing a pivotal role in mitigating environmental concerns and addressing global energy demands. For many years, the convergence of nature-inspired solutions and wind energy has emerged as a promising avenue for advancing the efficiency and sustainability of wind energy systems. While several research endeavors have explored biomimetic principles in the context of wind turbine design and optimization, a comprehensive review encompassing this interdisciplinary field is notably absent. This review paper seeks to rectify this gap by cataloging and analyzing the multifaceted body of research that has harnessed biomimetic approaches within the realm of wind energy technology. By conducting an extensive survey of the existing literature, we consolidate and scrutinize the insights garnered from diverse biomimetic strategies into design and optimization in the wind energy domain.
Collapse
Affiliation(s)
- Farzaneh Omidvarnia
- Department of Wind and Energy Systems, Technical University of Denmark (DTU), Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Ali Sarhadi
- Department of Wind and Energy Systems, Technical University of Denmark (DTU), Frederiksborgvej 399, 4000 Roskilde, Denmark
| |
Collapse
|
2
|
Baban NS, Orozaliev A, Stubbs CJ, Song YA. Understanding interfacial fracture behavior between microinterlocked soft layers using physics-based cohesive zone modeling. Phys Rev E 2020; 102:012801. [PMID: 32794903 DOI: 10.1103/physreve.102.012801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/16/2020] [Indexed: 12/23/2022]
Abstract
We examine the underlying fracture mechanics of the human skin dermal-epidermal layer's microinterlocks using a physics-based cohesive zone finite-element model. Using microfabrication techniques, we fabricated highly dense arrays of spherical microstructures of radius ≈50μm without and with undercuts, which occur in an open spherical cavity whose centroid lies below the microstructure surface to create microinterlocks in polydimethylsiloxane layers. From experimental peel tests, we find that the maximum density microinterlocks without and with undercuts enable the respective ≈4-fold and ≈5-fold increase in adhesion strength as compared to the plain layers. Critical visualization of the single microinterlock fracture from the cohesive zone model reveals a contact interaction-based phenomena where the primary propagating crack is arrested and the secondary crack is initiated in the microinterlocked area. Strain energy energetics confirmed significantly lower strain energy dissipation for the microinterlock with the undercut as compared to its nonundercut counterpart. These phenomena are completely absent in a plain interface fracture where the fracture propagates catastrophically without any arrests. These events confirm the difference in the experimental results corroborated by the Cook-Gordon mechanism. The findings from the cohesive zone simulation provide deeper insights into soft microinterlock fracture mechanics that could prominently help in the rational designing of sutureless skin grafts and electronic skin.
Collapse
Affiliation(s)
- Navajit S Baban
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Department of Mechanical and Aerospace Engineering, New York University, New York, New York 11201, USA
| | - Ajymurat Orozaliev
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Christopher J Stubbs
- Department of Mechanical Engineering, University of Idaho, Moscow, Idaho 83848, USA
| | - Yong Ak Song
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Department of Chemical and Biomolecular Engineering, New York University, New York, New York 11201, USA
| |
Collapse
|
3
|
Zhou ZF, Chen SJ, Zheng CX, Jing HW, Duan WH. Grid-based electron-solid interaction simulation for characterizing high-dimensional microstructures. Ultramicroscopy 2020; 217:113070. [PMID: 32688231 DOI: 10.1016/j.ultramic.2020.113070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/16/2020] [Accepted: 06/29/2020] [Indexed: 11/18/2022]
Abstract
Three-dimensional (3D) micro- and nanostructural characterization using scanning electron microscope (SEM) and electron-solid interaction simulations (ESIS) has attracted broad interest in various research fields. However, 3D SEM-ESIS still faces key challenges in characterizing and modelling complex microstructures. In this paper, a new grid-based simulation scheme is developed to enable ESIS of complex microstructures. In contrast to the widely used region-based approach, the scheme presented here uses a grid of points to represent the spatial distribution of sample compositions, which allows numerical investigation of the effect of various geometric features such as interfacial diffusion zones and complex pores in the samples. The simulation results suggest that the interfacial diffusion zone and porosity significantly influence the scattering signals. It is believed that the presented scheme acts as a useful interpretation tool in understanding a wide range of materials and paves the way to SEM-based 3D reconstruction.
Collapse
Affiliation(s)
- Ze Fu Zhou
- State Key Laboratory of Geomechanics and Deep Underground Engineering, University of Mining and Technology, Xuzhou 221008, China
| | - Shu Jian Chen
- School of Civil Engineering, University of Queensland, St Lucia 4072, Australia.
| | - Chang Xi Zheng
- School of Science, Westlake University, Hangzhou 310024, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Hong Wen Jing
- State Key Laboratory of Geomechanics and Deep Underground Engineering, University of Mining and Technology, Xuzhou 221008, China
| | - Wen Hui Duan
- Department of Civil Engineering, Monash University, Clayton 3068, Australia.
| |
Collapse
|
4
|
Jung YH, Park B, Kim JU, Kim TI. Bioinspired Electronics for Artificial Sensory Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803637. [PMID: 30345558 DOI: 10.1002/adma.201803637] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/01/2018] [Indexed: 05/23/2023]
Abstract
Humans have a myriad of sensory receptors in different sense organs that form the five traditionally recognized senses of sight, hearing, smell, taste, and touch. These receptors detect diverse stimuli originating from the world and turn them into brain-interpretable electrical impulses for sensory cognitive processing, enabling us to communicate and socialize. Developments in biologically inspired electronics have led to the demonstration of a wide range of electronic sensors in all five traditional categories, with the potential to impact a broad spectrum of applications. Here, recent advances in bioinspired electronics that can function as potential artificial sensory systems, including prosthesis and humanoid robots are reviewed. The mechanisms and demonstrations in mimicking biological sensory systems are individually discussed and the remaining future challenges that must be solved for their versatile use are analyzed. Recent progress in bioinspired electronic sensors shows that the five traditional senses are successfully mimicked using novel electronic components and the performance regarding sensitivity, selectivity, and accuracy have improved to levels that outperform human sensory organs. Finally, neural interfacing techniques for connecting artificial sensors to the brain are discussed.
Collapse
Affiliation(s)
- Yei Hwan Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Byeonghak Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jong Uk Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
5
|
Yang Y, Song X, Li X, Chen Z, Zhou C, Zhou Q, Chen Y. Recent Progress in Biomimetic Additive Manufacturing Technology: From Materials to Functional Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706539. [PMID: 29920790 DOI: 10.1002/adma.201706539] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/25/2018] [Indexed: 05/11/2023]
Abstract
Nature has developed high-performance materials and structures over millions of years of evolution and provides valuable sources of inspiration for the design of next-generation structural materials, given the variety of excellent mechanical, hydrodynamic, optical, and electrical properties. Biomimicry, by learning from nature's concepts and design principles, is driving a paradigm shift in modern materials science and technology. However, the complicated structural architectures in nature far exceed the capability of traditional design and fabrication technologies, which hinders the progress of biomimetic study and its usage in engineering systems. Additive manufacturing (three-dimensional (3D) printing) has created new opportunities for manipulating and mimicking the intrinsically multiscale, multimaterial, and multifunctional structures in nature. Here, an overview of recent developments in 3D printing of biomimetic reinforced mechanics, shape changing, and hydrodynamic structures, as well as optical and electrical devices is provided. The inspirations are from various creatures such as nacre, lobster claw, pine cone, flowers, octopus, butterfly wing, fly eye, etc., and various 3D-printing technologies are discussed. Future opportunities for the development of biomimetic 3D-printing technology to fabricate next-generation functional materials and structures in mechanical, electrical, optical, and biomedical engineering are also outlined.
Collapse
Affiliation(s)
- Yang Yang
- Epstein Department of Industrial and Systems Engineering, Viterbi School of Engineering, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089-0192, USA
| | - Xuan Song
- Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Center for Computer-Aided Design, University of Iowa, Iowa City, IA, 52242, USA
| | - Xiangjia Li
- Epstein Department of Industrial and Systems Engineering, Viterbi School of Engineering, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089-0192, USA
| | - Zeyu Chen
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA, 90089, USA
| | - Chi Zhou
- Department of Industrial and Systems Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA, 90089, USA
| | - Yong Chen
- Epstein Department of Industrial and Systems Engineering, Viterbi School of Engineering, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089-0192, USA
| |
Collapse
|
6
|
Saraf R, Pu L, Maheshwari V. A Light Harvesting, Self-Powered Monolith Tactile Sensor Based on Electric Field Induced Effects in MAPbI 3 Perovskite. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30. [PMID: 29333705 DOI: 10.1002/adma.201705778] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Organolead trihalide perovskite MAPbI3 shows a distinctive combination of properties such as being ferroelectric and semiconducting, with ion migration effects under poling by electric fields. The combination of its ferroelectric and semiconducting nature is used to make a light harvesting, self-powered tactile sensor. This sensor interfaces ZnO nanosheets as a pressure-sensitive drain on the MAPbI3 film and once poled is operational for at least 72 h with just light illumination. The sensor is monolithic in structure, has linear response till 76 kPa, and is able to operate continuously as the energy harvesting mechanism is decoupled from its pressure sensing mechanism. It has a sensitivity of 0.57 kPa-1 , which can be modulated by the strength of the poling field. The understanding of these effects in perovskite materials and their application in power source free devices are of significance to a wide array of fields where these materials are being researched and applied.
Collapse
Affiliation(s)
- Rohit Saraf
- Department of Chemistry, Waterloo Institute of Nanotechnology, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada
| | - Long Pu
- Department of Chemistry, Waterloo Institute of Nanotechnology, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada
| | - Vivek Maheshwari
- Department of Chemistry, Waterloo Institute of Nanotechnology, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|