1
|
Cai Y, Sarkar S, Peng Y, König TAF, Vana P. Ultrasonic Control of Polymer-Capped Plasmonic Molecules. ACS NANO 2024; 18:31360-31371. [PMID: 39478368 PMCID: PMC11562790 DOI: 10.1021/acsnano.4c10912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/13/2024]
Abstract
Plasmonic molecules (PMs) composed of polymer-capped nanoparticles represent an emerging material class with precise optical functionalities. However, achieving controlled structural changes in metallic nanoparticle aggregation at the nanoscale, similar to the modification of atomic structures, remains challenging. This study demonstrates the 2D/3D isomerization of such plasmonic molecules induced by a controlled ultrasound process. We used two types of gold nanoparticles, each functionalized with hydrogen bonding (HB) donor or acceptor polymers, to self-assemble into different ABN-type complexes via interparticle polymer bundles acting as molecular bonds. Post-ultrasonication treatment significantly shortens these bonds from approximately 14 to 2 nm by enhancing HB cross-linking within the bundles. This drastic change in the bond length increases the stiffness of the resulting clusters, facilitating the transition from 2D to 3D configurations in 100% yield during drop-casting onto substrates. Our results advance the precise control of PMs' nanoarchitectures and provide insights for their broad applications in sensing, optoelectronics, and metamaterials.
Collapse
Affiliation(s)
- Yingying Cai
- Institut
für Physikalische Chemie, Georg-August-Universität
Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Swagato Sarkar
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Yuwen Peng
- Institut
für Physikalische Chemie, Georg-August-Universität
Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Tobias A. F. König
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Center
for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtzstraße 18, 01069 Dresden, Germany
- Faculty
of Chemistry and Food Chemistry, Technische
Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Philipp Vana
- Institut
für Physikalische Chemie, Georg-August-Universität
Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
2
|
Pregowska A, Roszkiewicz A, Osial M, Giersig M. How scanning probe microscopy can be supported by artificial intelligence and quantum computing? Microsc Res Tech 2024; 87:2515-2539. [PMID: 38864463 DOI: 10.1002/jemt.24629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
The impact of Artificial Intelligence (AI) is rapidly expanding, revolutionizing both science and society. It is applied to practically all areas of life, science, and technology, including materials science, which continuously requires novel tools for effective materials characterization. One of the widely used techniques is scanning probe microscopy (SPM). SPM has fundamentally changed materials engineering, biology, and chemistry by providing tools for atomic-precision surface mapping. Despite its many advantages, it also has some drawbacks, such as long scanning times or the possibility of damaging soft-surface materials. In this paper, we focus on the potential for supporting SPM-based measurements, with an emphasis on the application of AI-based algorithms, especially Machine Learning-based algorithms, as well as quantum computing (QC). It has been found that AI can be helpful in automating experimental processes in routine operations, algorithmically searching for optimal sample regions, and elucidating structure-property relationships. Thus, it contributes to increasing the efficiency and accuracy of optical nanoscopy scanning probes. Moreover, the combination of AI-based algorithms and QC may have enormous potential to enhance the practical application of SPM. The limitations of the AI-QC-based approach were also discussed. Finally, we outline a research path for improving AI-QC-powered SPM. RESEARCH HIGHLIGHTS: Artificial intelligence and quantum computing as support for scanning probe microscopy. The analysis indicates a research gap in the field of scanning probe microscopy. The research aims to shed light into ai-qc-powered scanning probe microscopy.
Collapse
Affiliation(s)
- Agnieszka Pregowska
- Department of Information and Computational Science, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Roszkiewicz
- Department of Information and Computational Science, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Osial
- Department of Information and Computational Science, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Michael Giersig
- Department of Information and Computational Science, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Nguyen TM, Cho Y, Huh JH, Ahn H, Kim N, Rho KH, Lee J, Kwon M, Park SH, Kim C, Kim K, Kim YS, Lee S. Ultralow-Loss Substrate for Nanophotonic Dark-Field Microscopy. NANO LETTERS 2023; 23:1546-1554. [PMID: 36757958 DOI: 10.1021/acs.nanolett.2c05030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
For the colloidal nanophotonic structures, a transmission electron microscope (TEM) grid has been widely used as a substrate of dark-field microscopy because a nanometer-scale feature can be effectively determined by TEM imaging following dark-field microscopic studies. However, an optically lossy carbon layer has been implemented in conventional TEM grids. A broadband scattering from the edges of the TEM grid further restricted an accessible signal-to-noise ratio. Herein, we demonstrate that the freely suspended, ultrathin, and wide-scale transparent nanomembrane can address such challenges. We developed a 1 mm by 600 μm scale and 20 nm thick poly(vinyl formal) nanomembrane, whose area is around 180 times wider than a conventional TEM grid, so that the possible broadband scattering at the edges of the grid was effectively excluded. Also, such nanomembranes can be formed without the assistance of carbon support; allowing us to achieve the highest signal-to-background ratio of scattering among other substrates.
Collapse
Affiliation(s)
- Thang Minh Nguyen
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - YongDeok Cho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Ji-Hyeok Huh
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Hayun Ahn
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - NaYeoun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Kyung Hun Rho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Jaewon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Min Kwon
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Republic of Korea
| | - Sung Hun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - ChaeEon Kim
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Republic of Korea
| | - Kwangjin Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Young-Seok Kim
- Display Research Center, Korea Electronic Technology Institute (KETI), Gyeonggi-do 13509, Republic of Korea
| | - Seungwoo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Republic of Korea
- Department of Integrative Energy Engineering (College of Engineering) and KU Photonics Center, Korea University, Seoul 02841, Republic of Korea
- Center for Optoelectronic Materials and Devices, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| |
Collapse
|
4
|
Optical Properties of Plasma Dimer Nanoparticles for Solar Energy Absorption. NANOMATERIALS 2021; 11:nano11102722. [PMID: 34685162 PMCID: PMC8540588 DOI: 10.3390/nano11102722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 09/29/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022]
Abstract
Plasmonic nanofluids have excellent optical properties in solar energy absorption and have been widely studied in solar thermal conversion technology. The absorption of the visible region of solar energy by ordinary metal nanoparticles is usually limited to a narrow resonance band, so it is necessary to enhance the coupling effect of nanoparticles in the visible spectrum region to improve absorption efficiency. However, it is still a difficult task to improve solar energy absorption by adjusting the structure and performance of nanoparticles. In this paper, a plasma dimer Ag nanoparticle is proposed to excite localized surface plasmon resonance (LSPR). Compared with an ordinary Ag nanoparticle in the visible region, the plasmonic Ag dimer nanoparticle produces more absorption peaks and broader absorption bands, which can broaden solar energy absorption. By analyzing the electromagnetic field of the nanoparticle, the resonance mode of the plasma dimer is discussed. The effects of the geometric dimensions of the nanoparticle and the embedding of two spheres on the optical properties are studied. In addition, the effects of a trimer and its special structure on the optical properties are also analyzed. The results show that the proposed plasma dimer Ag nanoparticle has broad prospects for application in solar thermal conversion technology.
Collapse
|
5
|
Tanjeem N, Chomette C, Schade NB, Ravaine S, Duguet E, Tréguer-Delapierre M, Manoharan VN. Polyhedral plasmonic nanoclusters through multi-step colloidal chemistry. MATERIALS HORIZONS 2021; 8:565-570. [PMID: 34821272 DOI: 10.1039/d0mh01311k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We describe a new approach to making plasmonic metamolecules with well-controlled resonances at optical wavelengths. Metamolecules are highly symmetric, subwavelength-scale clusters of metal and dielectric. They are of interest for metafluids, isotropic optical materials with applications in imaging and optical communications. For such applications, the morphology must be precisely controlled: the optical response is sensitive to nanometer-scale variations in the thickness of metal coatings and the distances between metal surfaces. To achieve this precision, we use a multi-step colloidal synthesis approach. Starting from highly monodisperse silica seeds, we grow octahedral clusters of polystyrene spheres using seeded-growth emulsion polymerization. We then overgrow the silica and remove the polystyrene to create a dimpled template. Finally, we attach six silica satellites to the template and coat them with gold. Using single-cluster spectroscopy, we show that the plasmonic resonances are reproducible from cluster to cluster. By comparing the spectra to theory, we show that the multi-step synthesis approach can control the distances between metallic surfaces to nanometer-scale precision. More broadly, our approach shows how metamolecules can be produced in bulk by combining different, high-yield colloidal synthesis steps, analogous to how small molecules are produced by multi-step chemical reactions.
Collapse
Affiliation(s)
- Nabila Tanjeem
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Huh JH, Kim K, Im E, Lee J, Cho Y, Lee S. Exploiting Colloidal Metamaterials for Achieving Unnatural Optical Refractions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001806. [PMID: 33079414 DOI: 10.1002/adma.202001806] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/27/2020] [Indexed: 05/28/2023]
Abstract
The scaling down of meta-atoms or metamolecules (collectively denoted as metaunits) is a long-lasting issue from the time when the concept of metamaterials was first suggested. According to the effective medium theory, which is the foundational concept of metamaterials, the structural sizes of meta-units should be much smaller than the working wavelengths (e.g., << 1/5 wavelength). At relatively low frequency regimes (e.g., microwave and terahertz), the conventional monolithic lithography can readily address the materialization of metamaterials. However, it is still challenging to fabricate optical metamaterials (metamaterials working at optical frequencies such as the visible and near-infrared regimes) through the lithographic approaches. This serves as the rationale for using colloidal self-assembly as a strategy for the realization of optical metamaterials. Colloidal self-assembly can address various critical issues associated with the materialization of optical metamaterials, such as achieving nanogaps over a large area, increasing true 3D structural complexities, and cost-effective processing, which all are difficult to attain through monolithic lithography. Nevertheless, colloidal self-assembly is still a toolset underutilized by optical engineers. Here, the design principle of the colloidally self-assembled optical metamaterials exhibiting unnatural refractions, the practical challenge of relevant experiments, and the future opportunities are critically reviewed.
Collapse
Affiliation(s)
- Ji-Hyeok Huh
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Kwangjin Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Eunji Im
- Department of Biomicrosystem Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jaewon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - YongDeok Cho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Seungwoo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Biomicrosystem Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering (IEE) and KU Photonics Center, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
7
|
Chen Y, Ai B, Wong ZJ. Soft optical metamaterials. NANO CONVERGENCE 2020; 7:18. [PMID: 32451734 PMCID: PMC7248166 DOI: 10.1186/s40580-020-00226-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/28/2020] [Indexed: 05/22/2023]
Abstract
Optical metamaterials consist of artificially engineered structures exhibiting unprecedented optical properties beyond natural materials. Optical metamaterials offer many novel functionalities, such as super-resolution imaging, negative refraction and invisibility cloaking. However, most optical metamaterials are comprised of rigid materials that lack tunability and flexibility, which hinder their practical applications. This limitation can be overcome by integrating soft matters within the metamaterials or designing responsive metamaterial structures. In addition, soft metamaterials can be reconfigured via optical, electrical, thermal and mechanical stimuli, thus enabling new optical properties and functionalities. This paper reviews different types of soft and reconfigurable optical metamaterials and their fabrication methods, highlighting their exotic properties. Future directions to employ soft optical metamaterials in next-generation metamaterial devices are identified.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Aerospace Engineering, Texas A&M University, College Station, Texas, 77843, USA
| | - Bin Ai
- Department of Aerospace Engineering, Texas A&M University, College Station, Texas, 77843, USA
| | - Zi Jing Wong
- Department of Aerospace Engineering, Texas A&M University, College Station, Texas, 77843, USA.
| |
Collapse
|
8
|
Wang P, Huh JH, Lee J, Kim K, Park KJ, Lee S, Ke Y. Magnetic Plasmon Networks Programmed by Molecular Self-Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901364. [PMID: 31148269 DOI: 10.1002/adma.201901364] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Nanoscale manipulation of magnetic fields has been a long-term pursuit in plasmonics and metamaterials, as it can enable a range of appealing optical properties, such as high-sensitivity circular dichroism, directional scattering, and low-refractive-index materials. Inspired by the natural magnetism of aromatic molecules, the cyclic ring cluster of plasmonic nanoparticles (NPs) has been suggested as a promising architecture with induced unnatural magnetism, especially at visible frequencies. However, it remains challenging to assemble plasmonic NPs into complex networks exhibiting strong visible magnetism. Here, a DNA-origami-based strategy is introduced to realize molecular self-assembly of NPs forming complex magnetic architectures, exhibiting emergent properties including anti-ferromagnetism, purely magnetic-based Fano resonances, and magnetic surface plasmon polaritons. The basic building block, a gold NP (AuNP) ring consisting of six AuNP seeds, is arranged on a DNA origami frame with nanometer precision. The subsequent hierarchical assembly of the AuNP rings leads to the formation of higher-order networks of clusters and polymeric chains. Strong emergent plasmonic properties are induced by in situ growth of silver upon the AuNP seeds. This work may facilitate the development of a tunable and scalable DNA-based strategy for the assembly of optical magnetic circuitry, as well as plasmonic metamaterials with high fidelity.
Collapse
Affiliation(s)
- Pengfei Wang
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ji-Hyeok Huh
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jaewon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Kwangjin Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Kyung Jin Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Seungwoo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Biomicrosystem Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
9
|
Kim K, Huh JH, Yu D, Lee S. Fundamental and Practical Limits of Achieving Artificial Magnetism and Effective Optical Medium by Using Self-Assembly of Metallic Colloidal Clusters. Macromol Res 2018. [DOI: 10.1007/s13233-018-6154-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Kim JM, Jung DW, Lee G, Yi GR. Close-Packed Colloidal Monolayers of Ultra-Smooth Gold Nanospheres by Controlled Trapping onto Polymer Thin Films. Macromol Res 2018. [DOI: 10.1007/s13233-018-6077-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Kolle M, Lee S. Progress and Opportunities in Soft Photonics and Biologically Inspired Optics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1702669. [PMID: 29057519 DOI: 10.1002/adma.201702669] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/13/2017] [Indexed: 05/24/2023]
Abstract
Optical components made fully or partially from reconfigurable, stimuli-responsive, soft solids or fluids-collectively referred to as soft photonics-are poised to form the platform for tunable optical devices with unprecedented functionality and performance characteristics. Currently, however, soft solid and fluid material systems still represent an underutilized class of materials in the optical engineers' toolbox. This is in part due to challenges in fabrication, integration, and structural control on the nano- and microscale associated with the application of soft components in optics. These challenges might be addressed with the help of a resourceful ally: nature. Organisms from many different phyla have evolved an impressive arsenal of light manipulation strategies that rely on the ability to generate and dynamically reconfigure hierarchically structured, complex optical material designs, often involving soft or fluid components. A comprehensive understanding of design concepts, structure formation principles, material integration, and control mechanisms employed in biological photonic systems will allow this study to challenge current paradigms in optical technology. This review provides an overview of recent developments in the fields of soft photonics and biologically inspired optics, emphasizes the ties between the two fields, and outlines future opportunities that result from advancements in soft and bioinspired photonics.
Collapse
Affiliation(s)
- Mathias Kolle
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Seungwoo Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering and School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|