1
|
Tian C, Chen L, Zhang Y, Zhu L, Hu W, Pan Y, Wang Z, Zhang F, Zhang L, Dong H, Zhou W. Relaxation Oscillations of an Exciton-Polariton Condensate Driven by Parametric Scattering. NANO LETTERS 2022; 22:3026-3032. [PMID: 35343702 DOI: 10.1021/acs.nanolett.2c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report the observation of coherent oscillations in the relaxation dynamics of an exciton-polariton condensate that were driven by parametric scattering processes. As a result of the interbranch scattering scheme and the nonlinear polariton-polariton interactions, such parametric scatterings exhibit a high scattering efficiency that leads to the fast depletion of the polariton condensate and the periodic shut-off of the bosonic stimulation processes, eventually causing relaxation oscillations. Employing polariton-reservoir interactions, the oscillation dynamics in the time domain can be projected onto the energy space. In theory, our simulations using the open-dissipative Gross-Pitaevskii equation are in excellent agreement with experimental observations. Surprisingly, the oscillation patterns, including many excitation pulses, are clearly visible in our time-integrated images, implying the high stability of the relaxation oscillations driven by polariton parametric scatterings.
Collapse
Affiliation(s)
- Chuan Tian
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Linqi Chen
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, Shanghai 201800, China
| | - Yingjun Zhang
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, Hainan 570100, China
| | - Liqing Zhu
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wenping Hu
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yichun Pan
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zheng Wang
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Fangxin Zhang
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Long Zhang
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, Shanghai 201800, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Hongxing Dong
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, Shanghai 201800, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Weihang Zhou
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
2
|
Cristofolini P, Hatzopoulos Z, Savvidis PG, Baumberg JJ. Generation of Quantized Polaritons below the Condensation Threshold. PHYSICAL REVIEW LETTERS 2018; 121:067401. [PMID: 30141674 DOI: 10.1103/physrevlett.121.067401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Exciton polaritons in high quality semiconductor microcavities can travel long macroscopic distances (>100 μm) due to their ultralight effective mass. The polaritons are repelled from optically pumped exciton reservoirs where they are formed; however, their spatial dynamics is not as expected for pointlike particles. Instead we show polaritons emitted into waveguides travel orthogonally to the repulsive potential gradient and can only be explained if they are emitted as macroscopic delocalized quantum particles, even before they form Bose condensates.
Collapse
Affiliation(s)
- Peter Cristofolini
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | | | - Pavlos G Savvidis
- FORTH, IESL, 71110 Heraklion, Crete, Greece
- Department of Materials Science and Technology, University of Crete, 71003 Heraklion, Crete, Greece
- Spin Optics Laboratory, Saint-Petersburg State University, 198504, St-Petersburg, Russia
| | - Jeremy J Baumberg
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| |
Collapse
|