1
|
Martínez-Flores D, Sampieri A, Juárez-Barragán A, Hernández-García A, Vaca L. A secondary structure within small peptides guiding spontaneous self-aggregation and nanoparticle formation. NANOSCALE ADVANCES 2024; 7:269-280. [PMID: 39600823 PMCID: PMC11587146 DOI: 10.1039/d4na00614c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Polyhedrin from Autographa californica baculovirus is a protein that self-aggregates forming a crystal structure known as polyhedra. Baculovirus occluded inside the crystal withstand for years at room temperature retaining infectivity. By investigating the smallest fragment from polyhedrin retaining the self-aggregation properties we identified a 29 amino acid sequence that spontaneously forms nanoparticles. This small sequence contains a β-sheet followed by an α-helix. We synthesized a variety of peptides with different amino acid sequences but similar secondary structure and discovered that the peptides self-aggregate forming nanoparticles of different geometries and sizes. Furthermore, peptides containing only the β-sheet or the α-helix aggregate also. This study led to the discovery of secondary structures that spontaneously self-aggregate forming nanoparticles even when fused to the green fluorescent protein.
Collapse
Affiliation(s)
- Daniel Martínez-Flores
- Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico Ciudad de México Mexico
| | - Alicia Sampieri
- Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico Ciudad de México Mexico
| | - Alan Juárez-Barragán
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Armando Hernández-García
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Luis Vaca
- Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico Ciudad de México Mexico
| |
Collapse
|
2
|
Bridging the electrode-neuron gap: finite element modeling of in vitro neurotrophin gradients to optimize neuroelectronic interfaces in the inner ear. Acta Biomater 2022; 151:360-378. [PMID: 36007779 DOI: 10.1016/j.actbio.2022.08.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022]
Abstract
Although cochlear implant (CI) technology has allowed for the partial restoration of hearing over the last few decades, persistent challenges (e.g., poor performance in noisy environments and limited ability to decode intonation and music) remain. The "electrode-neuron gap" is inherent to these challenges and poses the most significant obstacle to advancing past the current plateau in CI performance. We propose the development of a "neuro-regenerative nexus"-a biological interface that doubly preserves native spiral ganglion neurons (SGNs) while precisely directing the growth of neurites arising from transplanted human pluripotent stem cell (hPSC)-derived otic neuronal progenitors (ONPs) toward the native SGN population. We hypothesized that the Polyhedrin Delivery System (PODS®-recombinant human brain-derived neurotrophic factor [rhBDNF]) could stably provide the adequate BDNF concentration gradient to hPSC-derived late-stage ONPs to facilitate otic neuronal differentiation and directional neurite outgrowth. To test this hypothesis, a finite element model (FEM) was constructed to simulate BDNF concentration profiles generated by PODS®-rhBDNF based on initial concentration and culture device geometry. For biological validation of the FEM, cell culture experiments assessing survival, differentiation, neurite growth direction, and synaptic connections were conducted using a multi-chamber microfluidic device. We were able to successfully generate the optimal BDNF concentration gradient to enable survival, neuronal differentiation toward SGNs, directed neurite extension of hPSC-derived SGNs, and synaptogenesis between two hPSC-derived SGN populations. This proof-of-concept study provides a step toward the next generation of CI technology. STATEMENT OF SIGNIFICANCE: Our study demonstrates that the generation of in vitro neurotrophin concentration gradients facilitates survival, neuronal differentiation toward auditory neurons, and directed neurite extension of human pluripotent stem cell-derived auditory neurons. These findings are indispensable to designing a bioactive cochlear implant, in which stem cell-derived neurons are integrated into a cochlear implant electrode strip, as the strategy will confer directional neurite growth from the transplanted cells in the inner ear. This study is the first to present the concept of a "neuro-regenerative nexus" congruent with a bioactive cochlear implant to eliminate the electrode-neuron gapthe most significant barrier to next-generation cochlear implant technology.
Collapse
|
3
|
Shen R, Lü D, Cao Z, Huang J, Zhang Y, Shen Z, Tang X. Involvement of the neddylation modification system in Bombyx mori nucleopolyhedrovirus replication. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21907. [PMID: 35396759 DOI: 10.1002/arch.21907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Neddylation is a posttranslational modification that is similar to ubiquitination, and involved in some critical biological processes, such as DNA repair, transcription regulation, and ubiquitin-proteasome pathway. Recently, it was found that neddylation inhibitor MLN4924 has potent antiviral activity against human viruses including herpes simplex virus (HSV)-1, HSV-2, and influenza viruses. Here, we report that MLN4924 could dramatically and dose-dependently inhibits the propagation, formation of budding virus (BV) and occlusion body (OB) of a lepidopteran virus-Bombyx mori nucleopolyhedrovirus (BmNPV), impaired OB assembly. In addition, the neddylation modification protein NEDD8 is colocalized with aggresome and autophagosome. Our findings suggest that inhibiting neddylation could be an antibaculovirus strategy and MLN4924 may be used as candidate drug for that purpose.
Collapse
Affiliation(s)
- Rui Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Dingding Lü
- School of Nursing, Zhenjiang College, Zhenjiang, China
| | - Zhijun Cao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jinshan Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Yiling Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Zhongyuan Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Xudong Tang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
4
|
Bombyx mori nucleopolyhedrovirus F-like protein Bm14 is a type I integral membrane protein that facilitates ODV attachment to the midgut epithelial cells. J Gen Virol 2020; 101:309-321. [DOI: 10.1099/jgv.0.001389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
5
|
López MG, Diez M, Alfonso V, Taboga O. Biotechnological applications of occlusion bodies of Baculoviruses. Appl Microbiol Biotechnol 2018; 102:6765-6774. [DOI: 10.1007/s00253-018-9130-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 11/29/2022]
|
6
|
Shen Y, Wang H, Xu W, Wu X. Bombyx mori nucleopolyhedrovirus orf133 and orf134 are involved in the embedding of occlusion-derived viruses into polyhedra. J Gen Virol 2018; 99:717-729. [PMID: 29624165 DOI: 10.1099/jgv.0.001058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) orf133 (bm133) and orf134 (bm134), the orthologues of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac4 and ac5, are two adjacent genes with opposite transcriptional orientations and are highly conserved in all sequenced group I nucleopolyhedroviruses (NPVs). A double bm133-bm134 knockout bacmid was generated to enable the functional study of each gene independently or together. Compared with wild-type and double-repair viruses, deletion of both bm133 and bm134 did not affect budded virus (BV) production or viral DNA replication in transfected BmN cells. Electron microscopy revealed that the double knockout did not affect nucleocapsid assembly, virus-induced intranuclear microvesicle formation or occlusion-derived virus (ODV) production, but the number of virions embedded in the polyhedra decreased significantly. Further investigations showed that disruption of either gene was unable to recover the defect of ODV occlusion, suggesting that Bm133 and Bm134 are indispensable to the embedding of ODVs into polyhedra. Confocal microscopy analysis showed that Bm133 and Bm134 distributed throughout the whole cell during viral infection and Bm134 concentrated on the mature polyhedra in lysed cells. These results suggest that although Bm133 and Bm134 are not essential for BV or ODV development, they play vital roles in polyhedra morphogenesis.
Collapse
Affiliation(s)
- Yunwang Shen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Haiping Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weifan Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
7
|
Wang X, Chen C, Zhang N, Li J, Deng F, Wang H, Vlak JM, Hu Z, Wang M. The group I alphabaculovirus-specific protein, AC5, is a novel component of the occlusion body but is not associated with ODVs or the PIF complex. J Gen Virol 2018; 99:585-595. [PMID: 29465345 DOI: 10.1099/jgv.0.001031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autographa californica nucleopolyhedrovirus (AcMNPV) orf5 (ac5) is a group I alphabaculovirus-specific gene of unknown function, although the protein (AC5) was previously reported to be associated with the per os infectivity factor (PIF) complex. The purpose of this study was to study the dynamics of AC5 during AcMNPV infection and to verify whether it is indeed a component of the PIF complex. Transcription and expression analyses suggested that ac5 is a late viral gene. An ac5-deleted recombinant AcMNPV was generated by homologous recombination. A one-step growth curve assay indicated that ac5 was not required for budded virus (BV) production in Sf9 cells. Scanning electron microscopy and transmission electron microscopy demonstrated that the deletion of ac5 did not affect occlusion body (OB) morphology, and nor did it affect the insertion of occlusion-derived virus (ODV) into OBs. Partially denaturing SDS-PAGE and a co-immunoprecipitation assay clearly showed that AC5 was not a component of the PIF complex, while the deletion of ac5 did not affect the formation and presence of the PIF complex. Further analyses showed, however, that AC5 was an OB-specific protein, but it was not detected as a component of BVs or ODVs. Bioassay experiments showed that the oral infectivity of ac5-deleted AcMNPV to third instar Spodoptera exigua larvae was not significantly different from that of the ac5-repaired virus. In conclusion, AC5 is an intrinsic protein of OBs, instead of being a component of the PIF complex, and is not essential for either BV or ODV infection. AC5 is awaiting the assignment of another hitherto unknown function.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Cheng Chen
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Nan Zhang
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiang Li
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Fei Deng
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Hualin Wang
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Just M Vlak
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Zhihong Hu
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Manli Wang
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| |
Collapse
|