1
|
Ma K, Song J, Li D, Li T, Ma Y. Genetic Diversity and Selection Signal Analysis of Hu Sheep Based on SNP50K BeadChip. Animals (Basel) 2024; 14:2784. [PMID: 39409733 PMCID: PMC11476051 DOI: 10.3390/ani14192784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
This research is designed to examine the genetic diversity and kinship among Hu sheep, as well as to discover genes associated with crucial economic traits. A selection of 50 unrelated adult male Hu sheep underwent genotyping with the SNP50K BeadChip. Seven indicators of genetic diversity were assessed based on high-quality SNP data: effective population size (Ne), polymorphic information content (PIC), polymorphic marker ratio (PN), expected heterozygosity (He), observed heterozygosity (Ho), effective number of alleles, and minor allele frequency (MAF). Plink software was employed to compute the IBS genetic distance matrix and detect runs of homozygosity (ROHs), while the G matrix and principal component analysis were performed using GCTA software. Selective sweep analysis was carried out using ROH, Pi, and Tajima's D methodologies. This study identified a total of 64,734 SNPs, of which 56,522 SNPs remained for downstream analysis after quality control. The population displayed relatively high genetic diversity. The 50 Hu sheep were ultimately grouped into 12 distinct families, with families 6, 8, and 10 having the highest numbers of individuals, each consisting of 6 sheep. Furthermore, a total of 294 ROHs were detected, with the majority having lengths between 1 and 5 Mb, and the inbreeding coefficient FROH was 0.01. In addition, 41, 440, and 994 candidate genes were identified by ROH, Pi, and Tajima's D methods, respectively, with 3 genes overlapping (BMPR1B, KCNIP4, and FAM13A). These results offer valuable insights for future Hu sheep breeding, genetic assessment, and population management.
Collapse
Affiliation(s)
| | | | | | | | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (K.M.); (J.S.); (D.L.); (T.L.)
| |
Collapse
|
2
|
Li J, Sun L, Sun J, Jiang H. Genome-wide association research on the reproductive traits of Qianhua Mutton Merino sheep. Anim Biosci 2024; 37:1535-1547. [PMID: 38575125 PMCID: PMC11366534 DOI: 10.5713/ab.23.0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/01/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVE Qianhua Mutton Merino sheep is a new breed of meat wool sheep cultivated independently in China. In 2018, it was approved by the state and brought into the national list of livestock and poultry genetic resources. Qianhua Mutton Merino sheep have the common characteristics of typical meat livestock varieties with rapid growth and development in the early stage and high meat production performance. The objective of this research is to investigate the Genome-wide association of the reproductive traits of Qianhua Mutton Merino sheep. METHODS Qianhua Mutton Merino sheep from the breeding core group were selected as the research object, genome-wide association analysis was conducted on genes associated with the reproductive traits (singleton or twins, birth weight, age [in days] for sexual maturity, weaning weight, and daily gain from birth to weaning) of Qianhua mutton merino. RESULTS Our study findings showed that 151 loci of single-nucleotide polymorphisms (SNPs) were detected, among which 3 SNPs related to birth weight and weaning weight occupied a significant portion of the wide genome. The candidate genes preliminarily obtained were SYNE1, SLC12A4, BMP2K, CAMK2D, IMMP2L, DMD, and BCL2. CONCLUSION We found 151 SNP loci for five traits related to reproduction (including singleton or twins, birth weight, age [in days] at sexual maturity, weaning weight, and daily weight gain from birth to weaning). The functions of these candidate genes were mainly enriched in nucleotide metabolism, metal ion binding, oxytocin signaling pathway, and neurotrophin signaling pathway.
Collapse
Affiliation(s)
- Jiarong Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130000, China
| | - Limin Sun
- Institute of Animal Husbandry and Veterinary, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130000, China
| | - Jiazhi Sun
- Anhua Agricultural Insurance Co., Ltd. Changchun Central Branch, Changchun, 130000, China
| | - Huaizhi Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130000, China
| |
Collapse
|
3
|
Wang H, Wang X, Yang Y, Zhu Y, Wang S, Chen Q, Yan D, Dong X, Li M, Lu S. Genome-wide identification of quantitative trait loci and candidate genes for seven carcass traits in a four-way intercross porcine population. BMC Genomics 2024; 25:582. [PMID: 38858624 PMCID: PMC11165779 DOI: 10.1186/s12864-024-10484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/30/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Carcass traits are essential economic traits in the commercial pig industry. However, the genetic mechanism of carcass traits is still unclear. In this study, we performed a genome-wide association study (GWAS) based on the specific-locus amplified fragment sequencing (SLAF-seq) to study seven carcass traits on 223 four-way intercross pigs, including dressing percentage (DP), number of ribs (RIB), skin thinkness (ST), carcass straight length (CSL), carcass diagonal length (CDL), loin eye width (LEW), and loin eye thickness (LET). RESULTS A total of 227,921 high-quality single nucleotide polymorphisms (SNPs) were detected to perform GWAS. A total of 30 SNPs were identified for seven carcass traits using the mixed linear model (MLM) (p < 1.0 × 10- 5), of which 9 SNPs were located in previously reported quantitative trait loci (QTL) regions. The phenotypic variation explained (PVE) by the significant SNPs was from 2.43 to 16.32%. Furthermore, 11 candidate genes (LYPLAL1, EPC1, MATN2, ZFAT, ZBTB10, ZNF704, INHBA, SMYD3, PAK1, SPTBN2, and ACTN3) were found for carcass traits in pigs. CONCLUSIONS The GWAS results will improve our understanding of the genetic basis of carcass traits. We hypothesized that the candidate genes associated with these discovered SNPs would offer a biological basis for enhancing the carcass quality of pigs in swine breeding.
Collapse
Affiliation(s)
- Huiyu Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Faculty of Animal Science, Xichang University, Xichang, Sichuan, 615000, China
| | - Xiaoyi Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Yongli Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Yixuan Zhu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Shuyan Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Qiang Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Dawei Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xinxing Dong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Mingli Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| |
Collapse
|
4
|
Ma KY, Song JJ, Li DP, Wu Y, Wang CH, Liu ZL, Li TT, Ma YJ. Genomic structure analysis and construction of DNA fingerprint for four sheep populations. Animal 2024; 18:101116. [PMID: 38484632 DOI: 10.1016/j.animal.2024.101116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 04/20/2024] Open
Abstract
The Yongdeng Qishan sheep (QS) is a sheep population found locally in China. To gain in-depth knowledge of its population characteristics, three control groups were chosen, comprising the Lanzhou fat-tailed sheep (LFT), TAN sheep (TAN), and Minxian black fur sheep (MBF), inhabiting the nearby environments. This study genotyped a total of 120 individuals from four sheep populations: QS, LFT, TAN, and MBF. Using Specific-Locus Amplified Fragment Sequencing, we conducted genetic diversity, population structure, and selective sweep analysis, and constructed the fingerprint of each population. In total, there were 782 535 single nucleotide polymorphism (SNP) variations identified, with most being situated within regions that are intergenic or intronic. The genetic diversity analysis revealed that the QS population exhibited lower genetic diversity compared to the other three populations. Consistent results were obtained from the principal component, phylogenetic tree, and population structure analysis, indicating significant genetic differences between QS and the other three populations. However, a certain degree of differentiation was observed within the QS population. The linkage disequilibrium (LD) patterns among the four populations showed clear distinctions, with the QS group demonstrating the most rapid LD decline. Kinship analysis supported the findings of population structure, dividing the 90 QS individuals into two subgroups consisting of 23 and 67 individuals. Selective sweep analysis identified a range of genes associated with reproduction, immunity, and adaptation to high-altitude hypoxia. These genes hold potential as candidate genes for marker-assisted selection breeding. Additionally, a total of 86 523 runs of homozygosity (ROHs) were detected, showing non-uniform distribution across chromosomes, with chromosome 1 having the highest coverage percentage and chromosome 26 the lowest. In the high-frequency ROH islands, 79 candidate genes were associated with biological processes such as reproduction and fat digestion and absorption. Furthermore, a DNA fingerprint was constructed for the four populations using 349 highly polymorphic SNPs. In summary, our research delves into the genetic diversity and population structure of QS population. The construction of DNA fingerprint profiles for each population can provide valuable references for the identification of sheep breeds both domestically and internationally.
Collapse
Affiliation(s)
- Ke-Yan Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Juan-Juan Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Deng-Pan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yi Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Chun-Hui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Zi-Long Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Tao-Tao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - You-Ji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China.
| |
Collapse
|
5
|
Hu M, Shi L, Yi W, Li F, Yan S. Identification of genomic diversity and selection signatures in Luxi cattle using whole-genome sequencing data. Anim Biosci 2024; 37:461-470. [PMID: 38271971 PMCID: PMC10915192 DOI: 10.5713/ab.23.0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/13/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE The objective of this study was to investigate the genetic diversity, population structure and whole-genome selection signatures of Luxi cattle to reveal its genomic characteristics in terms of meat and carcass traits, skeletal muscle development, body size, and other traits. METHODS To further analyze the genomic characteristics of Luxi cattle, this study sequenced the whole-genome of 16 individuals from the core conservation farm in Shandong region, and collected 174 published genomes of cattle for conjoint analysis. Furthermore, three different statistics (pi, Fst, and XP-EHH) were used to detect potential positive selection signatures related to selection in Luxi cattle. Moreover, gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analyses were performed to reveal the potential biological function of candidate genes harbored in selected regions. RESULTS The results showed that Luxi cattle had high genomic diversity and low inbreeding levels. Using three complementary methods (pi, Fst, and XP-EHH) to detect the signatures of selection in the Luxi cattle genome, there were 2,941, 2,221 and 1,304 potentially selected genes identified, respectively. Furthermore, there were 45 genes annotated in common overlapping genomic regions covered 0.723 Mb, including PLAG1 zinc finger (PLAG1), dedicator of cytokinesis 3 (DOCK3), ephrin A2 (EFNA2), DAZ associated protein 1 (DAZAP1), Ral GTPase activating protein catalytic subunit alpha 1 (RALGAPA1), mediator complex subunit 13 (MED13), and decaprenyl diphosphate synthase subunit 2 (PDSS2), most of which were enriched in pathways related to muscle growth and differentiation and immunity. CONCLUSION In this study, we provided a series of genes associated with important economic traits were found in positive selection regions, and a scientific basis for the scientific conservation and genetic improvement of Luxi cattle.
Collapse
Affiliation(s)
- Mingyue Hu
- Department of Animal Science, Jilin University, Changchun 130062,
China
| | - Lulu Shi
- Department of Animal Science, Jilin University, Changchun 130062,
China
| | - Wenfeng Yi
- Department of Animal Science, Jilin University, Changchun 130062,
China
| | - Feng Li
- Shandong Binzhou Animal Science & Veterinary Medicine Academy, Binzhou, 256600,
China
| | - Shouqing Yan
- Department of Animal Science, Jilin University, Changchun 130062,
China
| |
Collapse
|
6
|
Wang H, Wang X, Li M, Sun H, Chen Q, Yan D, Dong X, Pan Y, Lu S. Genome-wide association study reveals genetic loci and candidate genes for meat quality traits in a four-way crossbred pig population. Front Genet 2023; 14:1001352. [PMID: 36814900 PMCID: PMC9939654 DOI: 10.3389/fgene.2023.1001352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Meat quality traits (MQTs) have gained more attention from breeders due to their increasing economic value in the commercial pig industry. In this genome-wide association study (GWAS), 223 four-way intercross pigs were genotyped using the specific-locus amplified fragment sequencing (SLAF-seq) and phenotyped for PH at 45 min post mortem (PH45), meat color score (MC), marbling score (MA), water loss rate (WL), drip loss (DL) in the longissimus muscle, and cooking loss (CL) in the psoas major muscle. A total of 227, 921 filtered single nucleotide polymorphisms (SNPs) evenly distributed across the entire genome were detected to perform GWAS. A total of 64 SNPs were identified for six meat quality traits using the mixed linear model (MLM), of which 24 SNPs were located in previously reported QTL regions. The phenotypic variation explained (PVE) by the significant SNPs was from 2.43% to 16.32%. The genomic heritability estimates based on SNP for six meat-quality traits were low to moderate (0.07-0.47) being the lowest for CL and the highest for DL. A total of 30 genes located within 10 kb upstream or downstream of these significant SNPs were found. Furthermore, several candidate genes for MQTs were detected, including pH45 (GRM8), MC (ANKRD6), MA (MACROD2 and ABCG1), WL (TMEM50A), CL (PIP4K2A) and DL (CDYL2, CHL1, ABCA4, ZAG and SLC1A2). This study provided substantial new evidence for several candidate genes to participate in different pork quality traits. The identification of these SNPs and candidate genes provided a basis for molecular marker-assisted breeding and improvement of pork quality traits.
Collapse
Affiliation(s)
- Huiyu Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China,Faculty of Animal Science, Xichang University, Xichang, Sichuan, China
| | - Xiaoyi Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Mingli Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hao Sun
- Faculty of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dawei Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xinxing Dong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yuchun Pan
- Faculty of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Yuchun Pan, ; Shaoxiong Lu,
| | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China,*Correspondence: Yuchun Pan, ; Shaoxiong Lu,
| |
Collapse
|
7
|
Mamat M, Shan W, Dong P, Zhou S, Liu P, Meng Y, Nie W, Teng P, Zhang Y. Population genetics analysis of Tolai hares (Lepus tolai) in Xinjiang, China using genome-wide SNPs from SLAF-seq and mitochondrial markers. Front Genet 2022; 13:1018632. [PMID: 37006991 PMCID: PMC10064446 DOI: 10.3389/fgene.2022.1018632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
The main topic of population genetics and evolutionary biology is the influence of the ecological environment, geographical isolation, and climatic factors on population structure and history. Here, we estimated the genetic diversity, genetic structure, and population history of two subspecies of Tolai hares (Lepus tolai Pallas, 1778), L. t. lehmanni inhabiting Northern and Northwest Xinjiang and L. t. centrasiaticus inhabiting Central and Eastern Xinjiang using SNP of specific-length amplified fragment sequencing (SLAF-seq) and four mitochondrial DNA (mtDNA). Our results showed a relatively high degree of genetic diversity for Tolai hares, and the diversity of L. t. lehmanni was slightly higher than that of L. t. centrasiaticus, likely due to the more favorable ecological environment, such as woodlands and plains. Phylogenetic analysis from SNP and mtDNA indicated a rough phylogeographical distribution pattern among Tolai hares. Strong differentiation was found between the two subspecies and the two geographical groups in L. t. centrasiaticus, possibly due to the geographical isolation of mountains, basins, and deserts. However, gene flow was also detected between the two subspecies, which might be attributed to the Tianshan Corridor and the strong migration ability of hares. Tolai hare population differentiation occurred at approximately 1.2377 MYA. Population history analysis based on SNP and mtDNA showed that the Tolai hare population has a complex history and L. t. lehmanni was less affected by the glacial event, possibly because its geographic location and terrain conditions weaken the drastic climate fluctuations. In conclusion, our results indicated that the joint effect of ecological environment, geographic events, and climatic factors might play important roles in the evolutionary process of L. t. lehmanni and L. t. centrasiaticus, thus resulting in differentiation, gene exchange, and different population history.
Collapse
|
8
|
Wang H, Wang X, Li M, Sun H, Chen Q, Yan D, Dong X, Pan Y, Lu S. Genome-Wide Association Study of Growth Traits in a Four-Way Crossbred Pig Population. Genes (Basel) 2022; 13:1990. [PMID: 36360227 PMCID: PMC9689869 DOI: 10.3390/genes13111990] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 04/29/2025] Open
Abstract
Growth traits are crucial economic traits in the commercial pig industry and have a substantial impact on pig production. However, the genetic mechanism of growth traits is not very clear. In this study, we performed a genome-wide association study (GWAS) based on the specific-locus amplified fragment sequencing (SLAF-seq) to analyze ten growth traits on 223 four-way intercross pigs. A total of 227,921 highly consistent single nucleotide polymorphisms (SNPs) uniformly dispersed throughout the entire genome were used to conduct GWAS. A total of 53 SNPs were identified for ten growth traits using the mixed linear model (MLM), of which 18 SNPs were located in previously reported quantitative trait loci (QTL) regions. Two novel QTLs on SSC4 and SSC7 were related to average daily gain from 30 to 60 kg (ADG30-60) and body length (BL), respectively. Furthermore, 13 candidate genes (ATP5O, GHRHR, TRIM55, EIF2AK1, PLEKHA1, BRAP, COL11A2, HMGA1, NHLRC1, SGSM1, NFATC2, MAML1, and PSD3) were found to be associated with growth traits in pigs. The GWAS findings will enhance our comprehension of the genetic architecture of growth traits. We suggested that these detected SNPs and corresponding candidate genes might provide a biological foundation for improving the growth and production performance of pigs in swine breeding.
Collapse
Affiliation(s)
- Huiyu Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Faculty of Animal Science, Xichang University, Xichang 615000, China
| | - Xiaoyi Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Mingli Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Hao Sun
- Faculty of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dawei Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xinxing Dong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yuchun Pan
- Faculty of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
9
|
Wang H, Wang X, Yan D, Sun H, Chen Q, Li M, Dong X, Pan Y, Lu S. Genome-wide association study identifying genetic variants associated with carcass backfat thickness, lean percentage and fat percentage in a four-way crossbred pig population using SLAF-seq technology. BMC Genomics 2022; 23:594. [PMID: 35971078 PMCID: PMC9380336 DOI: 10.1186/s12864-022-08827-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/05/2022] [Indexed: 12/12/2022] Open
Abstract
Background Carcass backfat thickness (BFT), carcass lean percentage (CLP) and carcass fat percentage (CFP) are important to the commercial pig industry. Nevertheless, the genetic architecture of BFT, CLP and CFP is still elusive. Here, we performed a genome-wide association study (GWAS) based on specific-locus amplified fragment sequencing (SLAF-seq) to analyze seven fatness-related traits, including five BFTs, CLP, and CFP on 223 four-way crossbred pigs. Results A total of 227, 921 highly consistent single nucleotide polymorphisms (SNPs) evenly distributed throughout the genome were used to perform GWAS. Using the mixed linear model (MLM), a total of 20 SNP loci significantly related to these traits were identified on ten Sus scrofa chromosomes (SSC), of which 10 SNPs were located in previously reported quantitative trait loci (QTL) regions. On SSC7, two SNPs (SSC7:29,503,670 and rs1112937671) for average backfat thickness (ABFT) exceeded 1% and 10% Bonferroni genome-wide significance levels, respectively. These two SNP loci were located within an intron region of the COL21A1 gene, which was a protein-coding gene that played an important role in the porcine backfat deposition by affecting extracellular matrix (ECM) remodeling. In addition, based on the other three significant SNPs on SSC7, five candidate genes, ZNF184, ZNF391, HMGA1, GRM4 and NUDT3 were proposed to influence BFT. On SSC9, two SNPs for backfat thickness at 6–7 ribs (67RBFT) and one SNP for CLP were in the same locus region (19 kb interval). These three SNPs were located in the PGM2L1 gene, which encoded a protein that played an indispensable role in glycogen metabolism, glycolysis and gluconeogenesis as a key enzyme. Finally, one significant SNP on SSC14 for CLP was located within the PLBD2 gene, which participated in the lipid catabolic process. Conclusions A total of two regions on SSC7 and SSC9 and eight potential candidate genes were found for fatness-related traits in pigs. The results of this GWAS based on SLAF-seq will greatly advance our understanding of the genetic architecture of BFT, CLP, and CFP traits. These identified SNP loci and candidate genes might serve as a biological basis for improving the important fatness-related traits of pigs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08827-8.
Collapse
Affiliation(s)
- Huiyu Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, No. 95 of Jinhei Road, Kunming, 650201, Yunnan, China.,Faculty of Animal Science, Xichang University, Xichang, 615000, Sichuan, China
| | - Xiaoyi Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, No. 95 of Jinhei Road, Kunming, 650201, Yunnan, China
| | - Dawei Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, No. 95 of Jinhei Road, Kunming, 650201, Yunnan, China
| | - Hao Sun
- Faculty of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiang Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, No. 95 of Jinhei Road, Kunming, 650201, Yunnan, China
| | - Mingli Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, No. 95 of Jinhei Road, Kunming, 650201, Yunnan, China
| | - Xinxing Dong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, No. 95 of Jinhei Road, Kunming, 650201, Yunnan, China
| | - Yuchun Pan
- Faculty of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, No. 95 of Jinhei Road, Kunming, 650201, Yunnan, China.
| |
Collapse
|
10
|
Du Z, D’Alessandro E, Asare E, Zheng Y, Wang M, Chen C, Wang X, Song C. Retrotransposon Insertion Polymorphisms (RIPs) in Pig Reproductive Candidate Genes. Genes (Basel) 2022; 13:genes13081359. [PMID: 36011270 PMCID: PMC9407582 DOI: 10.3390/genes13081359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Retrotransposons account for more than one-third of the pig reference genome. On account of the genome variability in different breeds, structural variation (SV) caused by retrotranspos-on-generated deletion or insertion (indel) may have a function in the genome. Litter size is one of the most important reproductive traits and significantly impacts profitability in terms of pig production. We used the method of bioinformatics, genetics, and molecular biology to make an analysis among different pig genomes. Predicted 100 SVs were annotated as retrotransposon indel in 20 genes related to reproductive performance. The PCR detection based on these predicted SVs revealed 20 RIPs in 20 genes, that most RIPs (12) were generated by SINE indel, and eight RIPs were generated by the ERV indel. We selected 12 RIPs to make the second round PCR detection in 24 individuals among nine pig breeds. The PCR detection results revealed that the RIP-A1CF-4 insertion in the breed of Bama, Large White, and Meishan only had the homozygous genotype but low to moderately polymorphisms were present in other breeds. We found that RIP-CWH43-9, RIP-IDO2-9, RIP-PRLR-6, RIP-VMP1-12, and RIP-OPN-1 had a rich polymorphism in the breed of Large White pigs. The statistical analysis revealed that RIP-CWH43-9 had a SINE insertion profitable to the reproductive traits of TNB and NBA but was significantly affected (p < 0.01) and (p < 0.05) in the reproductive traits of litter birthweight (LW) in Large White. On the other hand, the SINE insertion in IDO2-9 may be a disadvantage to the reproductive traits of LW, which was significantly affected (p < 0.05) in Large White. These two RIPs are significant in pig genome research and could be useful molecular markers in the breeding system.
Collapse
Affiliation(s)
- Zhanyu Du
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (E.A.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Enrico D’Alessandro
- Department of Veterinary Sciences, University of Messina, Via Palatucci snc, 98168 Messina, Italy;
| | - Emmanuel Asare
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (E.A.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Yao Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (E.A.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Mengli Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (E.A.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Cai Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (E.A.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Xiaoyan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (E.A.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (E.A.); (Y.Z.); (M.W.); (C.C.); (X.W.)
- Correspondence:
| |
Collapse
|
11
|
Du X, Liu L, Wu W, Li P, Pan Z, Zhang L, Liu J, Li Q. SMARCA2 is regulated by NORFA-miR-29c, a novel pathway that controls granulosa cell apoptosis and is related to female fertility. J Cell Sci 2020; 133:jcs249961. [PMID: 33148612 DOI: 10.1242/jcs.249961] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
SMARCA2, an evolutionarily conserved catalytic ATPase subunit of SWI/SNF complexes, has been implicated in development and diseases; however, its role in mammalian ovarian function and female fertility is unknown. Here, we identified and characterized the 3'-UTR of the porcine SMARCA2 gene and identified a novel adenylate number variation. Notably, this mutation was significantly associated with sow litter size traits and SMARCA2 levels, due to its influence on the stability of SMARCA2 mRNA in ovarian granulosa cells (GCs). Immunohistochemistry and functional analysis showed that SMARCA2 is involved in the regulation of follicular atresia by inhibiting GC apoptosis. In addition, miR-29c, a pro-apoptotic factor, was identified as a functional miRNA that targets SMARCA2 in GCs and mediates regulation of SMARCA2 expression via the NORFA-SMAD4 axis. Although a potential miR-29c-responsive element was identified within NORFA, negative regulation of miR-29c expression by NORFA was not due to activity as a competing endogenous RNA. In conclusion, our findings demonstrate that SMARCA2 is a candidate gene for sow litter size traits, because it regulates follicular atresia and GC apoptosis. Additionally, we have defined a novel candidate pathway for sow fertility, the NORFA-TGFBR2-SMAD4-miR-29c-SMARCA2 pathway.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Pinghua Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiying Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Yang X, Deng F, Wu Z, Chen SY, Shi Y, Jia X, Hu S, Wang J, Cao W, Lai SJ. A Genome-Wide Association Study Identifying Genetic Variants Associated with Growth, Carcass and Meat Quality Traits in Rabbits. Animals (Basel) 2020; 10:E1068. [PMID: 32575740 PMCID: PMC7341332 DOI: 10.3390/ani10061068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
Growth, carcass characteristics and meat quality are the most important traits used in the rabbit industry. Identification of the candidate markers and genes significantly associated with these traits will be beneficial in rabbit breeding. In this study, we enrolled 465 rabbits, including 16 male Californian rabbits and 17 female Kangda5 line rabbits as the parental generation, along with their offspring (232 male and 200 female), in a genome-wide association study (GWAS) based on SLAF-seq technology. Bodyweight at 35, 42, 49, 56, 63 and 70 d was recorded for growth traits; and slaughter liveweight (84 d) and dressing out percentage were measured as carcass traits; and cooking loss and drip loss were measured as meat quality traits. A total of 5,223,720 SLAF markers were obtained by digesting the rabbit genome using RsaI + EcoRV-HF® restriction enzymes. After quality control, a subset of 317,503 annotated single-nucleotide polymorphisms (SNPs) was retained for subsequent analysis. A total of 28, 81 and 10 SNPs for growth, carcass and meat quality traits, respectively, were identified based on genome-wide significance (p < 3.16 × 10-7). Additionally, 16, 71 and 9 candidate genes were identified within 100 kb upstream or downstream of these SNPs. Further analysis is required to determine the biological roles of these candidate genes in determining rabbit growth, carcass traits and meat quality.
Collapse
Affiliation(s)
- Xue Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (F.D.); (Z.W.); (S.-Y.C.); (Y.S.); (X.J.); (S.H.); (J.W.); (W.C.)
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China
| | - Feilong Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (F.D.); (Z.W.); (S.-Y.C.); (Y.S.); (X.J.); (S.H.); (J.W.); (W.C.)
- Special Key Laboratory of Microbial Resources and Drug Development, Research Center for Medicine and Biology, Zunyi Medical University, Zunyi 563000, China
| | - Zhoulin Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (F.D.); (Z.W.); (S.-Y.C.); (Y.S.); (X.J.); (S.H.); (J.W.); (W.C.)
| | - Shi-Yi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (F.D.); (Z.W.); (S.-Y.C.); (Y.S.); (X.J.); (S.H.); (J.W.); (W.C.)
| | - Yu Shi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (F.D.); (Z.W.); (S.-Y.C.); (Y.S.); (X.J.); (S.H.); (J.W.); (W.C.)
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (F.D.); (Z.W.); (S.-Y.C.); (Y.S.); (X.J.); (S.H.); (J.W.); (W.C.)
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (F.D.); (Z.W.); (S.-Y.C.); (Y.S.); (X.J.); (S.H.); (J.W.); (W.C.)
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (F.D.); (Z.W.); (S.-Y.C.); (Y.S.); (X.J.); (S.H.); (J.W.); (W.C.)
| | - Wei Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (F.D.); (Z.W.); (S.-Y.C.); (Y.S.); (X.J.); (S.H.); (J.W.); (W.C.)
| | - Song-Jia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (F.D.); (Z.W.); (S.-Y.C.); (Y.S.); (X.J.); (S.H.); (J.W.); (W.C.)
| |
Collapse
|
13
|
Yang Z, Deng J, Li D, Sun T, Xia L, Xu W, Zeng L, Jiang H, Yang X. Analysis of Population Structure and Differentially Selected Regions in Guangxi Native Breeds by Restriction Site Associated with DNA Sequencing. G3 (BETHESDA, MD.) 2020; 10:379-386. [PMID: 31744899 PMCID: PMC6945025 DOI: 10.1534/g3.119.400827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
Guangxi indigenous chicken breeds play a very important role in promoting the high-quality development of the broiler industry in China. However, studies on genomic information of Guangxi indigenous chicken to date remain poorly explored. To decipher the population genetic structure and differentially selected regions (DSRs) in Guangxi indigenous chickens, we dug into numerous SNPs from seven Guangxi native chickens (GX) by employing the restriction site associated with DNA sequencing (RAD-seq) technology. Another three breeds, Cobb, White Leghorn, and Chahua (CH) chicken, were used as a control. After quality control, a total of 185,117 autosomal SNPs were kept for further analysis. The results showed a significant difference in population structure, and the control breeds were distinctly separate from the Guangxi native breeds, which was also strongly supported by the phylogenetic tree. Distribution of FST indicated that there were three SNPs with big genetic differentiation (FST value all reach to 0. 9427) in GX vs. CH group, which were located on chr1-96,859,720,chr4-86,139,601, and chr12-8,128,322, respectively. Besides, we identified 717 DSRs associated with 882 genes in GX vs. Cobb group, 769 DSRs with 476 genes in GX vs. Leghorn group, and 556 DSRs with 779 genes in GX vs. CH group. GO enrichment showed that there were two significant terms, namely GPI-linked ephrin receptor activity and BMP receptor binding, which were enriched in GX vs. Leghorn group. In conclusion, this study suggests that Guangxi native chickens have a great differentiation with Cobb and Leghorn. Our findings would be beneficial to fully evaluate the genomic information on Guangxi native chicken and facilitate the application of these resources in chicken breeding.
Collapse
Affiliation(s)
- Zhuliang Yang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China,
| | - Jixian Deng
- Guangxi Institute of Animal Science, Nanning, 530001, China, and
| | - Dongfeng Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tiantian Sun
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Li Xia
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Wenwen Xu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Linghu Zeng
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hesheng Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiurong Yang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China,
| |
Collapse
|
14
|
Joaquim LB, Chud TCS, Marchesi JAP, Savegnago RP, Buzanskas ME, Zanella R, Cantão ME, Peixoto JO, Ledur MC, Irgang R, Munari DP. Genomic structure of a crossbred Landrace pig population. PLoS One 2019; 14:e0212266. [PMID: 30818344 PMCID: PMC6394975 DOI: 10.1371/journal.pone.0212266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 01/30/2019] [Indexed: 11/21/2022] Open
Abstract
Single nucleotide polymorphism (SNP) markers are used to study population structure and conservation genetics, which permits assessing similarities regarding the linkage disequilibrium and information about the relationship among individuals. To investigate the population genomic structure of 300 females and 25 males from a commercial maternal pig line we analyzed linkage disequilibrium extent, inbreeding coefficients using genomic and conventional pedigree data, and population stratification. The average linkage disequilibrium (r2) was 0.291 ± 0.312 for all adjacent SNPs, distancing less than 100 Kb (kilobase) between markers. The average inbreeding coefficients obtained from runs of homozygosity (ROH) and pedigree analyses were 0.119 and 0.0001, respectively. Low correlation was observed between the inbreeding coefficients possibly as a result of genetic recombination effect accounted for the ROH estimates or caused by pedigree identification errors. A large number of long ROHs might indicate recent inbreeding events in the studied population. A total of 36 homozygous segments were found in more than 30% of the population and these ROH harbor genes associated with reproductive traits. The population stratification analysis indicated that this population was possibly originated from two distinct populations, which is a result from crossings between the eastern and western breeds used in the formation of the line. Our findings provide support to understand the genetic structure of swine populations and may assist breeding companies to avoid a high level of inbreeding coefficients to maintain genetic diversity, showing the effectiveness of using genome-wide SNP information for quantifying inbreeding when the pedigree was incomplete or incorrect.
Collapse
Affiliation(s)
- Letícia Borges Joaquim
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Ciências Exatas, Jaboticabal, São Paulo, Brazil
| | - Tatiane Cristina Seleguim Chud
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Ciências Exatas, Jaboticabal, São Paulo, Brazil
| | - Jorge Augusto Petroli Marchesi
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Ciências Exatas, Jaboticabal, São Paulo, Brazil
| | - Rodrigo Pelicioni Savegnago
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Ciências Exatas, Jaboticabal, São Paulo, Brazil
| | - Marcos Eli Buzanskas
- Universidade Federal da Paraíba (UFPB), Departamento de Zootecnia, Areia, Paraíba, Brazil
| | - Ricardo Zanella
- Universidade de Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul, Brazil
| | | | | | | | - Renato Irgang
- Universidade Federal de Santa Catarina (UFSC), Departamento de Zootecnia e Desenvolvimento Rural, Centro de Ciências Agrárias, Florianópolis, Santa Catarina, Brazil
| | - Danísio Prado Munari
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Ciências Exatas, Jaboticabal, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
15
|
Deng T, Liang A, Liu J, Hua G, Ye T, Liu S, Campanile G, Plastow G, Zhang C, Wang Z, Salzano A, Gasparrini B, Cassandro M, Riaz H, Liang X, Yang L. Genome-Wide SNP Data Revealed the Extent of Linkage Disequilibrium, Persistence of Phase and Effective Population Size in Purebred and Crossbred Buffalo Populations. Front Genet 2019; 9:688. [PMID: 30671082 PMCID: PMC6332145 DOI: 10.3389/fgene.2018.00688] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/11/2018] [Indexed: 02/04/2023] Open
Abstract
Linkage disequilibrium (LD) is a useful parameter for guiding the accuracy and power of both genome-wide association studies (GWAS) and genomic selection (GS) among different livestock species. The present study evaluated the extent of LD, persistence of phase and effective population size (Ne) for the purebred (Mediterranean buffalo; n = 411) and crossbred [Mediterranean × Jianghan × Nili-Ravi buffalo, n = 9; Murrah × Nili-Ravi × local (Xilin or Fuzhong) buffalo, n = 36] buffalo populations using the 90K Buffalo SNP genotyping array. The results showed that the average square of correlation coefficient (r 2) between adjacent SNP was 0.13 ± 0.19 across all autosomes for purebred and 0.09 ± 0.13 for crossbred, and the most rapid decline in LD was observed over the first 200 kb. Estimated r 2 ≥ 0.2 extended up to ~50 kb in crossbred and 170 kb in purebred populations, while average r 2 values ≥0.3 were respectively observed in the ~10 and 60 kb in the crossbred and purebred populations. The largest phase correlation (R P, C = 0.47) was observed at the distance of 100 kb, suggesting that this phase was not actively preserved between the two populations. Estimated Ne for the purebred and crossbred population at the current generation was 387 and 113 individuals, respectively. These findings may provide useful information to guide the GS and GWAS in buffaloes.
Collapse
Affiliation(s)
- Tingxian Deng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Aixin Liang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jiajia Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Guohua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Tingzhu Ye
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Shenhe Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Graham Plastow
- Department of Agricultural, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Chunyan Zhang
- Department of Agricultural, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Zhiquan Wang
- Department of Agricultural, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Angela Salzano
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Bianca Gasparrini
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Martino Cassandro
- Department of Agronomy Food Natural Resources Animal Environmental, University of Padova, Legnaro, Italy
| | - Hasan Riaz
- Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Xianwei Liang
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Liguo Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|