1
|
Zhong Y, Li S, Chen Y, Tang Y, Xiao X, Nie T. Combining PLGA microspheres loaded with Liver X receptor agonist GW3965 with a chitosan nerve conduit can promote the healing and regeneration of the wounded sciatic nerve. J Biomed Mater Res B Appl Biomater 2024; 112:e35378. [PMID: 38356051 DOI: 10.1002/jbm.b.35378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/06/2024] [Indexed: 02/16/2024]
Abstract
Globally, peripheral nerve injury (PNI) is a common clinical issue. Successfully repairing severe PNIs has posed a major challenge for clinicians. GW3965 is a highly selective LXR agonist, and previous studies have demonstrated its positive protective effects in both central and peripheral nerve diseases. In this work, we examined the potential reparative effects of GW3965-loaded polylactic acid co-glycolic acid microspheres in conjunction with a chitosan nerve conduit for peripheral nerve damage. The experiment revealed that GW3965 promoted Schwann cell proliferation and neurotrophic factor release in vitro. In vivo experiments conducted on rats showed that GW3965 facilitated the restoration of motor function, promoted axon and myelin regeneration in the sciatic nerve, and enhanced the microenvironment of nerve regeneration. These results offer a novel therapeutic approach for the healing of nerve damage. Overall, this work provides valuable insights and presents a promising therapeutic strategy for addressing PNI.
Collapse
Affiliation(s)
- Yuanwu Zhong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shiqi Li
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanzhen Chen
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuan Tang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xinmao Xiao
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tao Nie
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Zhang N, Lin J, Chin JS, Wiraja C, Xu C, McGrouther DA, Chew SY. Delivery of Wnt inhibitor WIF1 via engineered polymeric microspheres promotes nerve regeneration after sciatic nerve crush. J Tissue Eng 2022; 13:20417314221087417. [PMID: 35422984 PMCID: PMC9003641 DOI: 10.1177/20417314221087417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/27/2022] [Indexed: 01/09/2023] Open
Abstract
Injuries within the peripheral nervous system (PNS) lead to sensory and motor deficits, as well as neuropathic pain, which strongly impair the life quality of patients. Although most current PNS injury treatment approaches focus on using growth factors/small molecules to stimulate the regrowth of the injured nerves, these methods neglect another important factor that strongly hinders axon regeneration-the presence of axonal inhibitory molecules. Therefore, this work sought to explore the potential of pathway inhibition in promoting sciatic nerve regeneration. Additionally, the therapeutic window for using pathway inhibitors was uncovered so as to achieve the desired regeneration outcomes. Specifically, we explored the role of Wnt signaling inhibition on PNS regeneration by delivering Wnt inhibitors, sFRP2 and WIF1, after sciatic nerve transection and sciatic nerve crush injuries. Our results demonstrate that WIF1 promoted nerve regeneration (p < 0.05) after sciatic nerve crush injury. More importantly, we revealed the therapeutic window for the treatment of Wnt inhibitors, which is 1 week post sciatic nerve crush when the non-canonical receptor tyrosine kinase (Ryk) is significantly upregulated.
Collapse
Affiliation(s)
- Na Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Junquan Lin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jiah Shin Chin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, China
| | - Duncan Angus McGrouther
- Department of Hand and Reconstructive Microsurgery, Singapore General Hospital, Singapore, Singapore
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
3
|
Baskozos G, Dawes JM, Austin JS, Antunes-Martins A, McDermott L, Clark AJ, Trendafilova T, Lees JG, McMahon SB, Mogil JS, Orengo C, Bennett DL. Comprehensive analysis of long noncoding RNA expression in dorsal root ganglion reveals cell-type specificity and dysregulation after nerve injury. Pain 2019; 160:463-485. [PMID: 30335683 PMCID: PMC6343954 DOI: 10.1097/j.pain.0000000000001416] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/26/2016] [Accepted: 10/09/2018] [Indexed: 12/19/2022]
Abstract
Dorsal root ganglion (DRG) neurons provide connectivity between peripheral tissues and the spinal cord. Transcriptional plasticity within DRG sensory neurons after peripheral nerve injury contributes to nerve repair but also leads to maladaptive plasticity, including the development of neuropathic pain. This study presents tissue and neuron-specific expression profiling of both known and novel long noncoding RNAs (LncRNAs) in the rodent DRG after nerve injury. We have identified a large number of novel LncRNAs expressed within the rodent DRG, a minority of which were syntenically conserved between the mouse, rat, and human, and including, both intergenic and antisense LncRNAs. We have also identified neuron type-specific LncRNAs in the mouse DRG and LncRNAs that are expressed in human IPS cell-derived sensory neurons. We show significant plasticity in LncRNA expression after nerve injury, which in mice is strain and gender dependent. This resource is publicly available and will aid future studies of DRG neuron identity and the transcriptional landscape in both the naive and injured DRG. We present our work regarding novel antisense and intergenic LncRNAs as an online searchable database, accessible from PainNetworks (http://www.painnetworks.org/). We have also integrated all annotated gene expression data in PainNetworks, so they can be examined in the context of their protein interactions.
Collapse
Affiliation(s)
- Georgios Baskozos
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - John M. Dawes
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Jean S. Austin
- Departments of Psychology and
- Anesthesia, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Ana Antunes-Martins
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Lucy McDermott
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alex J. Clark
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Teodora Trendafilova
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Jon G. Lees
- Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Stephen B. McMahon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Jeffrey S. Mogil
- Departments of Psychology and
- Anesthesia, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Christine Orengo
- Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
An S, Zhou M, Li Z, Feng M, Cao G, Lu S, Liu L. Administration of CoCl 2 Improves Functional Recovery in a Rat Model of Sciatic Nerve Transection Injury. Int J Med Sci 2018; 15:1423-1432. [PMID: 30443161 PMCID: PMC6216053 DOI: 10.7150/ijms.27867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/29/2018] [Indexed: 12/28/2022] Open
Abstract
Peripheral nerve injury is known to activate the hypoxia-inducible factor-1α (HIF-1α) pathway as one of pro-regenerative transcriptional programs, which could stimulate multiple injury-induced gene expression and contribute to axon regeneration and functional recovery. However, the role of HIF-1α in peripheral nerve regeneration remains to be fully elucidated. In this study, rats were divided into three groups and treated with sham surgery, surgery with cobalt chloride (CoCl2) and surgery with saline, respectively. Sciatic functional index, morphologic evaluations of muscle fibers, and never conduction velocity were performed to measure the functional recovery at 12 weeks postoperatively. In addition, the effects of CoCl2 on the expression of HIF-1α, glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) were determined at mRNA levels; as well as HIF-1α, the dual leucine zipper kinase (DLK), the c-Jun N-terminal kinase (JNK), phosphorylated JNK (p-JNK), BDNF and NGF were measured at protein level at 4 weeks postoperatively. Systemic administration of CoCl2 (15 mg/kg/day intraperitoneally) significantly promoted functional recovery of rats with sciatic nerve transection injury. This study demonstrated in rats treated with CoCl2, the expression of HIF-1α, GDNF, BDNF and NGF was significantly increased at mRNA level, while HIF-1α, DLK, p-JNK, BDNF and NGF was significantly increased at protein level.
Collapse
Affiliation(s)
- Shuai An
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University
| | - Meng Zhou
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University
| | - Zheng Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University
| | - Mingli Feng
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University
| | - Guanglei Cao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University
| | - Limin Liu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University
| |
Collapse
|