1
|
Walker KA, Rhodes ST, Liberman DA, Gore AC, Bell MR. Microglial responses to inflammatory challenge in adult rats altered by developmental exposure to polychlorinated biphenyls in a sex-specific manner. Neurotoxicology 2024; 104:95-115. [PMID: 39038526 PMCID: PMC11548868 DOI: 10.1016/j.neuro.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Polychlorinated biphenyls are ubiquitous environmental contaminants linkedc with peripheral immune and neural dysfunction. Neuroimmune signaling is critical to brain development and later health; however, effects of PCBs on neuroimmune processes are largely undescribed. This study extends our previous work in neonatal or adolescent rats by investigating longer-term effects of perinatal PCB exposure on later neuroimmune responses to an inflammatory challenge in adulthood. Male and female Sprague-Dawley rats were exposed to a low-dose, environmentally relevant, mixture of PCBs (Aroclors 1242, 1248, and 1254, 1:1:1, 20 μg / kg dam BW per gestational day) or oil control during gestation and via lactation. Upon reaching adulthood, rats were given a mild inflammatory challenge with lipopolysaccharide (LPS, 50 μg / kg BW, ip) or saline control and then euthanized 3 hours later for gene expression analysis or 24 hours later for immunohistochemical labeling of Iba1+ microglia. PCB exposure did not alter gene expression or microglial morphology independently, but instead interacted with the LPS challenge in brain region- and sex-specific ways. In the female hypothalamus, PCB exposure blunted LPS responses of neuroimmune and neuromodulatory genes without changing microglial morphology. In the female prefrontal cortex, PCBs shifted Iba1+ cells from reactive to hyperramified morphology in response to LPS. Conversely, in the male hypothalamus, PCBs shifted cell phenotypes from hyperramified to reactive morphologies in response to LPS. The results highlight the potential for long-lasting effects of environmental contaminants that are differentially revealed over a lifetime, sometimes only after a secondary challenge. These neuroimmune endpoints are possible mechanisms for PCB effects on a range of neural dysfunction in adulthood, including mental health and neurodegenerative disorders. The findings suggest possible interactions with other environmental challenges that also influence neuroimmune systems.
Collapse
Affiliation(s)
- Katherine A Walker
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Simone T Rhodes
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Deborah A Liberman
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, College of Pharmacy and Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Margaret R Bell
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA; Division of Pharmacology and Toxicology, College of Pharmacy and Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
2
|
Kuttiyarthu Veetil N, Cedraz de Oliveira H, Gomez-Samblas M, Divín D, Melepat B, Voukali E, Świderská Z, Krajzingrová T, Těšický M, Jung F, Beneš V, Madsen O, Vinkler M. Peripheral inflammation-induced changes in songbird brain gene expression: 3' mRNA transcriptomic approach. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105106. [PMID: 38013114 DOI: 10.1016/j.dci.2023.105106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Species-specific neural inflammation can be induced by profound immune signalling from periphery to brain. Recent advances in transcriptomics offer cost-effective approaches to study this regulation. In a population of captive zebra finch (Taeniopygia guttata), we compare the differential gene expression patterns in lipopolysaccharide (LPS)-triggered peripheral inflammation revealed by RNA-seq and QuantSeq. The RNA-seq approach identified more differentially expressed genes but failed to detect any inflammatory markers. In contrast, QuantSeq results identified specific expression changes in the genes regulating inflammation. Next, we adopted QuantSeq to relate peripheral and brain transcriptomes. We identified subtle changes in the brain gene expression during the peripheral inflammation (e.g. up-regulation in AVD-like and ACOD1 expression) and detected co-structure between the peripheral and brain inflammation. Our results suggest benefits of the 3'end transcriptomics for association studies between peripheral and neural inflammation in genetically heterogeneous models and identify potential targets for the future brain research in birds.
Collapse
Affiliation(s)
- Nithya Kuttiyarthu Veetil
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic.
| | - Haniel Cedraz de Oliveira
- Wageningen University and Research, Department of Animal Sciences, Animal Breeding and Genomics, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands; Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil.
| | - Mercedes Gomez-Samblas
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic; Granada University, Science faculty, Department of Parasitology, CP:18071, Granada, Granada, Spain.
| | - Daniel Divín
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic.
| | - Balraj Melepat
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic.
| | - Eleni Voukali
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic.
| | - Zuzana Świderská
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic.
| | - Tereza Krajzingrová
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic.
| | - Martin Těšický
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic.
| | - Ferris Jung
- EMBL, Genomics Core Facility, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| | - Vladimír Beneš
- EMBL, Genomics Core Facility, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| | - Ole Madsen
- Wageningen University and Research, Department of Animal Sciences, Animal Breeding and Genomics, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands.
| | - Michal Vinkler
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic.
| |
Collapse
|
3
|
Wang S, Zhang B, Chang X, Zhao H, Zhang H, Zhao T, Qi H. Potential use of seaweed polysaccharides as prebiotics for management of metabolic syndrome: a review. Crit Rev Food Sci Nutr 2023; 64:7707-7727. [PMID: 36971135 DOI: 10.1080/10408398.2023.2191135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Seaweed polysaccharides (SPs) obtained from seaweeds are a class of functional prebiotics. SPs can regulate glucose and lipid anomalies, affect appetite, reduce inflammation and oxidative stress, and therefore have great potential for managing metabolic syndrome (MetS). SPs are poorly digested by the human gastrointestinal tract but are available to the gut microbiota to produce metabolites and exert a series of positive effects, which may be the mechanism by which SPs render their anti-MetS effects. This article reviews the potential of SPs as prebiotics in the management of MetS-related metabolic disturbances. The structure of SPs and studies related to the process of their degradation by gut bacteria and their therapeutic effects on MetS are highlighted. In summary, this review provides new perspectives on SPs as prebiotics to prevent and treat MetS.
Collapse
Affiliation(s)
- Shaopeng Wang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, PR China
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Bo Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Xintao Chang
- Department of Pharmacy, People's Hospital of Zhangqiu District, Jinan, Shandong, PR China
| | - Hailing Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Haojun Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Tingting Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Huimin Qi
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, PR China
| |
Collapse
|
4
|
Lopes PC, Faber-Hammond JJ, Siemonsma C, Patel S, Renn SCP. The social environment alters neural responses to a lipopolysaccharide challenge. Brain Behav Immun 2023; 110:162-174. [PMID: 36878331 DOI: 10.1016/j.bbi.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Sick animals display drastic changes in their behavioral patterns, including decreased activity, decreased food and water intake, and decreased interest in social interactions. These behaviors, collectively called "sickness behaviors", can be socially modulated. For example, when provided with mating opportunities, males of several species show reduced sickness behaviors. While the behavior is known to change, how the social environment affects neural molecular responses to sickness is not known. Here, we used a species, the zebra finch, Taeniopygia guttata, where males have been shown to decrease sickness behaviors when presented with novel females. Using this paradigm, we obtained samples from three brain regions (the hypothalamus, the bed nucleus of the stria terminalis, and the nucleus taeniae) from lipopolysaccharide (LPS) or control treated males housed under four different social environments. Manipulation of the social environment rapidly changed the strength and co-expression patterns of the neural molecular responses to the immune challenge in all brain regions tested, therefore suggesting that the social environment plays a significant role in determining the neural responses to an infection. In particular, brains of males paired with a novel female showed muted immune responses to LPS, as well as altered synaptic signaling. Neural metabolic activity in response to the LPS challenge was also affected by the social environment. Our results provide new insights into the effects of the social environment on brain responses to an infection, thereby improving our understanding of how the social environment can affect health.
Collapse
Affiliation(s)
- Patricia C Lopes
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA.
| | | | - Chandler Siemonsma
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Sachin Patel
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Suzy C P Renn
- Department of Biology, Reed College, Portland, OR, USA
| |
Collapse
|
5
|
Gormally BMG, Bridgette K, Emmi A, Schuerman D, Lopes PC. Female presence does not increase testosterone but still ameliorates sickness behaviours in male Japanese quail. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220450. [PMID: 35620017 PMCID: PMC9128847 DOI: 10.1098/rsos.220450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 05/03/2023]
Abstract
Infections can dramatically modify animal behaviour. The extent of these changes depends on an animal's environment. It has been proposed that testosterone modulates the suppression of behavioural symptoms of sickness under certain reproductive contexts. To further understand the role played by testosterone in modulating sickness behaviours under reproductive contexts, we studied a species, the Japanese quail, in which female exposure rapidly decreases circulating testosterone in males. Males received either an immune challenge (lipopolysaccharide - LPS) or a control injection and their behaviours, mass change and testosterone levels were quantified in the presence or absence of a female. Both the presence of a female and LPS treatment reduced testosterone levels. LPS-treated males maintained in isolation expressed expected sickness behaviours, including increased resting (quantified as crouching) and decreased food and water intake. Despite the reduction in testosterone, when paired with females LPS-treated males showed similar amounts of mating behaviours to controls and reduced crouching. In sum, even under very low levels of testosterone, male quail had reduced sickness behaviours when exposed to females, indicating that testosterone may not be key in modulating sickness behaviours, at least in this species.
Collapse
Affiliation(s)
- Brenna M. G. Gormally
- Department of Biology, Chapman University, Orange, 1 University Drive, CA 92866, USA
| | - Kaelyn Bridgette
- Department of Biology, Chapman University, Orange, 1 University Drive, CA 92866, USA
| | - Aubrey Emmi
- Department of Biology, Chapman University, Orange, 1 University Drive, CA 92866, USA
| | - Delilah Schuerman
- Department of Biology, Chapman University, Orange, 1 University Drive, CA 92866, USA
| | - Patricia C. Lopes
- Department of Biology, Chapman University, Orange, 1 University Drive, CA 92866, USA
| |
Collapse
|
6
|
Inflammation Induced by Natural Neuronal Death and LPS Regulates Neural Progenitor Cell Proliferation in the Healthy Adult Brain. eNeuro 2020; 7:ENEURO.0023-20.2020. [PMID: 32424053 PMCID: PMC7333977 DOI: 10.1523/eneuro.0023-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/28/2022] Open
Abstract
Inflammation is typically considered a negative response to injury or insult; however, recent advances demonstrate that inflammatory cells regulate development, plasticity, and homeostasis through anticytotoxic, progenerative responses. Here, we extend analyses of neuroinflammation to natural neurodegenerative and homeostatic states by exploiting seasonal plasticity in cytoarchitecture of the avian telencephalic song control nucleus, high vocal center [HVC (proper name)], in the songbird Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii). We report that local injection of the endotoxin lipopolysaccharide into HVC of birds in both breeding (high circulating testosterone level) and nonbreeding (low circulating testosterone level) conditions increased neural progenitor cell proliferation in the nearby but distinct ventricular zone. Additionally, we found that oral administration of the anti-inflammatory drug minocycline during seasonal regression of HVC reduced microglia activation in HVC and prevented the normal proliferative response in the ventricular zone to apoptosis in HVC. Our results suggest that local neuroinflammation positively regulates neural progenitor cell proliferation and, in turn, contributes to the previously described repatterning of HVC cytoarchitecture following seasonally induced neuronal loss.
Collapse
|
7
|
Yilmaz C, Karali K, Fodelianaki G, Gravanis A, Chavakis T, Charalampopoulos I, Alexaki VI. Neurosteroids as regulators of neuroinflammation. Front Neuroendocrinol 2019; 55:100788. [PMID: 31513776 DOI: 10.1016/j.yfrne.2019.100788] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/12/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is a physiological protective response in the context of infection and injury. However, neuroinflammation, especially if chronic, may also drive neurodegeneration. Neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD) and traumatic brain injury (TBI), display inflammatory activation of microglia and astrocytes. Intriguingly, the central nervous system (CNS) is a highly steroidogenic environment synthesizing steroids de novo, as well as metabolizing steroids deriving from the circulation. Neurosteroid synthesis can be substantially affected by neuroinflammation, while, in turn, several steroids, such as 17β-estradiol, dehydroepiandrosterone (DHEA) and allopregnanolone, can regulate neuroinflammatory responses. Here, we review the role of neurosteroids in neuroinflammation in the context of MS, AD, PD and TBI and describe underlying molecular mechanisms. Moreover, we introduce the concept that synthetic neurosteroid analogues could be potentially utilized for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Canelif Yilmaz
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Kanelina Karali
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Georgia Fodelianaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Vasileia Ismini Alexaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany.
| |
Collapse
|
8
|
Gould CJ, Saldanha CJ, Connaughton VP. Acute exposure to 4-OH-A, not PCB 1254, alters brain aromatase activity but does not adversely affect growth in zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 68:133-140. [PMID: 30889543 PMCID: PMC6516860 DOI: 10.1016/j.etap.2019.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Acute developmental exposure to pharmaceuticals or environmental contaminants can have deleterious, long lasting effects. Many of these compounds are endocrine disruptors (EDCs) that target estrogen signaling, with effects on reproductive and non-reproductive tissues. We recently reported that zebrafish larvae transiently exposed to the pharmaceutical EDC 4-OH-A display visual deficits as adults. Here, we examine whether these long-term effects are due to compound-induced morphological and/or cellular changes. Zebrafish aged 24 h, 48 h, 72 h, or 7 days post-fertilization (larvae) or 3-4mos (adults) were exposed to either 4-OH-A or PCB1254 for 24 h. After that time, notochord length, eye diameter, inter-eye distance, and heart rate were measured from larvae; and aromatase (estrogen synthase) activity was measured in homogenates of adult brain tissue. In general, indices of larval growth and development were not altered by 24 h exposure to either compound. 4-OH-A potently inhibited aromatase activity, while PCB1254 did not, with inhibition continuing even after removal from treatment. These results support differential function of EDCs and indicate that developmental exposure to 4-OH-A causes sustained inhibition of aromatase, which could be associated with altered adult behaviors.
Collapse
Affiliation(s)
- Cassie J Gould
- Department of Biology, American University, Washington, DC, United States; Behavior, Cognition & Neuroscience Program, American University, Washington, DC, United States; Center for Behavioral Neuroscience, American University, Washington, DC, United States.
| | - Colin J Saldanha
- Department of Biology, American University, Washington, DC, United States; Behavior, Cognition & Neuroscience Program, American University, Washington, DC, United States; Center for Behavioral Neuroscience, American University, Washington, DC, United States
| | - Victoria P Connaughton
- Department of Biology, American University, Washington, DC, United States; Behavior, Cognition & Neuroscience Program, American University, Washington, DC, United States; Center for Behavioral Neuroscience, American University, Washington, DC, United States
| |
Collapse
|
9
|
Detection of estradiol in rat brain tissues: Contribution of local versus systemic production. Psychoneuroendocrinology 2019; 102:84-94. [PMID: 30529907 DOI: 10.1016/j.psyneuen.2018.11.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/22/2018] [Accepted: 11/25/2018] [Indexed: 11/24/2022]
Abstract
Estrogens play important roles in regulating brain development, brain function, and behavior. Many studies have evaluated these effects using ovariectomized (OVX) rats or mice with different doses of estrogen replacement, assuming that estradiol levels in all regions of the brain are the same as levels achieved in the serum. It is well known, however, that the brain contains all the enzymes necessary to produce estrogens, and that estrogen levels in the brain are determined by both systemic and local production and are region-specific. The present study conducted a detailed analysis of the relationship between systemic levels of 17-β-estradiol (E2) achieved by estrogen replacement and levels achieved in specific regions of the brain. Levels of E2 were measured in both brain and serum in OVX rats treated with different doses of estradiol benzoate (EB) using a novel and recently validated UPLC-MS/MS method. Results confirmed significantly higher levels of E2 in the brain than in serum in brain regions known to contain aromatase (ARO) activity, both in OVX controls and in rats treated with physiological doses of EB. Additional studies compared the level of E2 and testosterone (T) in the brain and serum between testosterone propionate (TP) treated OVX and male. This demonstrated higher levels of E2 in certain brain regions of males than in TP treated OVX females even though T levels in the brain and serum were similar between the two groups. Studies also demonstrated that the differences between serum and brain levels of E2 can be eliminated by letrozole (ARO inhibitor) treatment, which indicates that the differences are due to local ARO activity. Collectively the results provide a detailed analysis of brain region-specific E2 concentrations in OVX, E2-, and T-treated rats and demonstrate the degree to which these concentrations are ARO-dependent.
Collapse
|