1
|
Hwang G, Seo H, Park JC. Copine7 deficiency leads to hepatic fat accumulation via mitochondrial dysfunction. Heliyon 2023; 9:e21676. [PMID: 37954344 PMCID: PMC10637907 DOI: 10.1016/j.heliyon.2023.e21676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Objective Mitochondrial dysfunction affects hepatic lipid homeostasis and promotes ROS generation. Copine7 (CPNE7) belongs to the ubiquitous copine family of calcium-dependent phospholipid binding proteins. CPNE7 has a high calcium ion binding affinity and the capacity to scavenge reactive oxygen species (ROS). A recent study reported that abnormalities in fatty acid and lipid metabolism were linked to the gene variant of CPNE7. Therefore, the purpose of this study is to examine the role of Cpne7 in hepatic lipid metabolism based on mitochondrial function. Methods Lipid metabolism, mitochondrial function, and ROS production were investigated in high-fat diet (HFD)-fed Cpne7-/- mice and H2O2-damaged HepG2 hepatocytes following CPNE7 silencing or overexpression. Results Cpne7 deficiency promoted severe hepatic steatosis in the HFD-induced NAFLD model. More importantly, mitochondrial dysfunction was observed along with an imbalance of mitochondrial dynamics in the livers of HFD-fed Cpne7-/-mice, resulting in high ROS levels. Similarly, CPNE7-silenced HepG2 hepatocytes showed high ROS levels, mitochondrial dysfunction, and increased lipid contents. On the contrary, CPNE7-overexpressed HepG2 cells showed low ROS levels, enhanced mitochondrial function and decreased lipid contents under H2O2-induced oxidative stress. Conclusions In the liver, Cpne7 deficiency causes excessive ROS formation and mitochondrial dysfunction, which aggravates lipid metabolism abnormalities. These findings provide evidence that Cpne7 deficiency contributes to the pathogenesis of NAFLD, suggesting Cpne7 as a novel therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Geumbit Hwang
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Regenerative Dental Medicine R & D Center, HysensBio, Co., Ltd., 10 Dwitgol-ro, Gwacheon-si, Gyeonggi-do, Republic of Korea
| | - Hyejin Seo
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Joo-Cheol Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Regenerative Dental Medicine R & D Center, HysensBio, Co., Ltd., 10 Dwitgol-ro, Gwacheon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Elsherbini A, Zhu Z, Quadri Z, Crivelli SM, Ren X, Vekaria HJ, Tripathi P, Zhang L, Zhi W, Bieberich E. Novel Isolation Method Reveals Sex-Specific Composition and Neurotoxicity of Small Extracellular Vesicles in a Mouse Model of Alzheimer's Disease. Cells 2023; 12:1623. [PMID: 37371093 PMCID: PMC10297289 DOI: 10.3390/cells12121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
We developed a new method to isolate small extracellular vesicles (sEVs) from male and female wild-type and 5xFAD mouse brains to investigate the sex-specific functions of sEVs in Alzheimer's disease (AD). A mass spectrometric analysis revealed that sEVs contained proteins critical for EV formation and Aβ. ExoView analysis showed that female mice contained more GFAP and Aβ-labeled sEVs, suggesting that a larger proportion of sEVs from the female brain is derived from astrocytes and/or more likely to bind to Aβ. Moreover, sEVs from female brains had more acid sphingomyelinase (ASM) and ceramide, an enzyme and its sphingolipid product important for EV formation and Aβ binding to EVs, respectively. We confirmed the function of ASM in EV formation and Aβ binding using co-labeling and proximity ligation assays, showing that ASM inhibitors prevented complex formation between Aβ and ceramide in primary cultured astrocytes. Finally, our study demonstrated that sEVs from female 5xFAD mice were more neurotoxic than those from males, as determined by impaired mitochondrial function (Seahorse assays) and LDH cytotoxicity assays. Our study suggests that sex-specific sEVs are functionally distinct markers for AD and that ASM is a potential target for AD therapy.
Collapse
Affiliation(s)
- Ahmed Elsherbini
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Zhihui Zhu
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Zainuddin Quadri
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Simone M. Crivelli
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Xiaojia Ren
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Hemendra J. Vekaria
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA;
- Veterans Affairs Medical Center, Lexington, KY 40502, USA
| | - Priyanka Tripathi
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Liping Zhang
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Wenbo Zhi
- Department of Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA;
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
- Veterans Affairs Medical Center, Lexington, KY 40502, USA
| |
Collapse
|
3
|
Park EH, Na YK, Gug H, Lee DS, Park JC, Park SH, Shon WJ. Development of a new universal adhesive containing CPNE7-derived peptide and its potential role in reducing postoperative sensitivity. Dent Mater J 2023:2022-181. [PMID: 37271544 DOI: 10.4012/dmj.2022-181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Post-operative sensitivity (POS) is the most common clinical dental complaint after tooth preparation and resin-based composite restoration. In our previous study, copine 7 (CPNE7) and CPNE7-derived peptide (CPNE7-DP) induced in vitro odontoblast differentiation and in vivo dentin formation. Here, we incorporated CPNE7-DP into All-Bond Universal (ABU) adhesive, developing ABU/CPNE7-DP. This study aimed to investigate the possibility of reducing POS using ABU/CPNE7-DP. We first determined the stability of CPNE7-DP under low pH. Furthermore, we evaluated its dentinal tubule penetration, in vitro odontogenic differentiation potential, in vivo tertiary dentin formation and its effects on bonding performance. CPNE7-DP was stable at pH 1.2, even lower than ABU's pH of 3.2. ABU/CPNE7-DP can penetrate dentinal tubules, stimulate odontoblast differentiation in vitro and generate tertiary dentin with tubular structure in vivo without interfering with bonding performance. Therefore, ABU/CPNE7-DP may serve as a novel bioactive adhesive for reducing POS.
Collapse
Affiliation(s)
- Eun Hyun Park
- Department of Conservative Dentistry, Dental Research Institute, School of Dentistry, Seoul National University
| | - Yun Kyung Na
- Department of Conservative Dentistry, Dental Research Institute, School of Dentistry, Seoul National University
| | - Hyeri Gug
- Laboratory for The Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, BK 21, Seoul National University
| | - Dong-Seol Lee
- Regenerative Dental Medicine R and D Center, HysensBio Co., Ltd
| | - Joo-Cheol Park
- Laboratory for The Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, BK 21, Seoul National University
| | - So-Hyun Park
- Department of Conservative Dentistry, Dental Research Institute, School of Dentistry, Seoul National University
| | - Won-Jun Shon
- Department of Conservative Dentistry, Dental Research Institute, School of Dentistry, Seoul National University
| |
Collapse
|
4
|
Bai S, Lee JH, Son C, Lee DS, Park JC. CPNE7 regenerates periodontal ligament via TAU-mediated alignment and cementum attachment protein-mediated attachment. J Clin Periodontol 2022; 49:609-620. [PMID: 35373365 DOI: 10.1111/jcpe.13621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/18/2022] [Accepted: 03/18/2022] [Indexed: 10/24/2022]
Abstract
AIM Once the periodontal ligament (PDL) is damaged, it is difficult to regenerate its characteristic structure. Copine7 (CPNE7) reportedly plays a functional role in supporting periodontal attachment and PDL alignment. Here we demonstrate the regulatory mechanism of CPNE7 coordination with cytoskeleton reorganization and cementum attachment protein (CAP)-mediated attachment in PDL regeneration. MATERIALS AND METHODS The expression and localization of CPNE7, α-TUBULIN, ACTIN, and microtubule associated protein tau (TAU) were investigated in vitro. The effects of recombinant CPNE7 (rCPNE7) and CPNE7-derived peptides (CPNE7-DP) on the regulation of CAP were analysed in vitro, and PDL repair capacity was analysed in vivo. RESULTS CPNE7 co-localized with F-ACTIN and induced α-TUBULIN expansion to the edge of human PDL cells (hPDLCs). ACTIN and α-TUBULIN protein expressions were not elevated in rCPNE7-treated hPDLCs. rCPNE7 elevated the protein expression of TAU, which co-localized with F-ACTIN and α-TUBULIN. Replantation studies on mice revealed that well-attached and well-aligned PDLs were repaired in the rCPNE7 group. CPNE7-DP directly up-regulate the expression of CAP in vitro and promote PDL regeneration in three-wall defect canine models in vivo. CONCLUSIONS Our findings suggest that CPNE7 helps in PDL repair by supporting PDL alignment through TAU-mediated cytoskeleton reorganization and direct regulation of CAP-mediated PDL attachments of PDLCs.
Collapse
Affiliation(s)
- Shengfeng Bai
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology and Developmental Biology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hyun Lee
- Regenerative Dental Medicine R and D Center, HysensBio Co., Ltd., Gwacheon-si, Republic of Korea
| | - Chul Son
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology and Developmental Biology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Dong-Seol Lee
- Regenerative Dental Medicine R and D Center, HysensBio Co., Ltd., Gwacheon-si, Republic of Korea
| | - Joo-Cheol Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology and Developmental Biology, School of Dentistry, Seoul National University, Seoul, Republic of Korea.,Regenerative Dental Medicine R and D Center, HysensBio Co., Ltd., Gwacheon-si, Republic of Korea
| |
Collapse
|
5
|
Ma NX, Puls B, Chen G. Transcriptomic analyses of NeuroD1-mediated astrocyte-to-neuron conversion. Dev Neurobiol 2022; 82:375-391. [PMID: 35606902 PMCID: PMC9540770 DOI: 10.1002/dneu.22882] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/30/2022]
Abstract
Ectopic expression of a single neural transcription factor NeuroD1 can reprogram reactive glial cells into functional neurons both in vitro and in vivo, but the underlying mechanisms are not well understood yet. Here, we used RNA-sequencing technology to capture the transcriptomic changes at different time points during the reprogramming process. We found that following NeuroD1 overexpression, astroglial genes (ACTG1, ALDH1A3, EMP1, CLDN6, SOX21) were significantly downregulated, whereas neuronal genes (DCX, RBFOX3/NeuN, CUX2, RELN, SNAP25) were significantly upregulated. NeuroD family members (NeuroD1/2/6) and signaling pathways (Wnt, MAPK, cAMP) as well as neurotransmitter receptors (acetylcholine, somatostatin, dopamine) were also significantly upregulated. Gene co-expression analysis identified many central genes among the NeuroD1-interacting network, including CABP7, KIAA1456, SSTR2, GADD45G, LRRTM2, and INSM1. Compared to chemical conversion, we found that NeuroD1 acted as a strong driving force and triggered fast transcriptomic changes during astrocyte-to-neuron conversion process. Together, this study reveals many important downstream targets of NeuroD1 such as HES6, BHLHE22, INSM1, CHRNA1/3, CABP7, and SSTR2, which may play critical roles during the transcriptomic landscape shift from a glial profile to a neuronal profile.
Collapse
Affiliation(s)
- Ning-Xin Ma
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brendan Puls
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Gong Chen
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA.,GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Lee YS, Park YH, Seo YM, Lee HK, Park JC. Tubular dentin formation by TGF-β/BMP signaling in dental epithelial cells. Oral Dis 2022; 29:1644-1656. [PMID: 35199415 DOI: 10.1111/odi.14170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES This study aimed to identify formation of tubular dentin induced by Transforming growth factor-β (TGF-β) and bone morphogenic protein (BMP) signaling pathway in dental epithelial cells. METHODS We collected conditioned medium (CM) of rTGF-β1/rBMP-2 treated HAT-7 and treated to MDPC-23 cells. The expression levels of odontoblast differentiation markers, KLF4, DMP1, and DSP were evaluated by real-time PCR and western blot analysis. To evaluate whether CM of rTGF-β1/rBMP-2 induces tubular dentin formation, we made a beagle dog tooth defect model. RESULTS Here, we show that Cpne7 is regulated by Smad4-dependent TGF-β1/BMP2 signaling pathway in dental epithelial cells. CM of rTGF-β1/rBMP-2 treated HAT-7, or rCPNE7 raises the expression levels of KLF4, DMP1, and DSP in MDPC-23 cells. When rTGF-β1 or rBMP-2 is directly treated to MDPC-23 cells, however, expression levels of Cpne7-regulated genes remain unchanged. In a beagle dog defect model, application of rTGF-β1/BMP2 treated CM resulted in tubular tertiary dentin mixed with osteodentin at cavity-prepared sites, while rTGF-β1 group exhibited homogenous osteodentin. CONCLUSIONS Taken together, Smad4-dependent TGF-β1/BMP2 signaling regulates Cpne7 in dental epithelial cells, and CPNE7 protein secreted from pre-ameloblasts mediates odontoblast differentiation via epithelial-mesenchymal interaction.
Collapse
Affiliation(s)
- Yoon Seon Lee
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yeoung-Hyun Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea.,Regenerative Dental Medicine R and D Center, Hysensbio Co., Ltd, Seoul, South Korea
| | - You-Mi Seo
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hye-Kyung Lee
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Joo-Cheol Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
7
|
Ji X, Sun T, Xie S, Qian H, Song L, Wang L, Liu H, Feng Q. Upregulation of CPNE7 in mesenchymal stromal cells promotes oral squamous cell carcinoma metastasis through the NF-κB pathway. Cell Death Discov 2021; 7:294. [PMID: 34650058 PMCID: PMC8516970 DOI: 10.1038/s41420-021-00684-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/01/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
A remarkable shift in Mesenchymal stromal cells (MSCs) plays an important role in cancer metastasis, but the molecular mechanism is still unclear. CPNE7, a calcium-dependent phospholipid-binding protein, mediates signal transduction and metastasis in many tumours. Here, we demonstrated that MSCs derived from OSCC (OSCC-MSCs) promoted the metastasis of OSCC cells by transwell assay and animal models through epithelial to mesenchymal transition (EMT) (p < 0.05). RNA-sequencing, ELISA, neutralizing antibody and CXCR2 inhibitor assay confirmed that CXCL8 secreted by OSCC-MSCs was associated with the upregulated expression of CPNE7 by immunohistochemical and western blotting (p < 0.05). This is mechanistically linked to the activation of CPNE7 to NF-κB pathway-induced metastasis, including phosphorylated p65 and IκBa. CPNE7 silencing inhibited metastatic abilities and the expression of CXCL8, phosphorylated p65, IκBa, and p65 nuclear translocation by western blotting and immunofluorescence, while CPNE7 overexpression markedly promoted these events (p < 0.05). We also identified that Nucleolin could be bind CPNE7 and IκBa by co-immunoprecipitation. Together, our results suggest that upregulation of CPNE7 in MSCs interacted with surface receptor -Nucleolin and then combined with IκBa to promoted phosphorylated IκBa and p65 nuclear translocation to active NF-κB pathway, and then regulates CXCL8 secretion to promote the metastasis of OSCC cells. Therefore, CPNE7 in MSCs could be promising therapeutic targets in OSCC.
Collapse
Affiliation(s)
- Xiaoli Ji
- Department of Stomatology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, 250013, Shandong, China. .,Department of Oral Mucosal Diseases, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China. .,Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| | - Tianyong Sun
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Shang Xie
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian, Beijing, 100081, China
| | - Hua Qian
- Department of Stomatology, The Second Hospital of Shandong University, No. 247 Beiyuan Road, Jinan, 250033, China
| | - Lixiang Song
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Lihua Wang
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Hongwei Liu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian, Beijing, 100081, China.
| | - Qiang Feng
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China. .,NHC Key Laboratory of Otorhinolaryngology (Shandong University), No.44-1 Wenhua Road West, Jinan, Shandong, China, 250012.
| |
Collapse
|
8
|
Roopasree OJ, Adivitiya, Chakraborty S, Kateriya S, Veleri S. Centriole is the pivot coordinating dynamic signaling for cell proliferation and organization during early development in the vertebrates. Cell Biol Int 2021; 45:2178-2197. [PMID: 34288241 DOI: 10.1002/cbin.11667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/12/2021] [Indexed: 11/07/2022]
Abstract
Vertebrates have an elaborate and functionally segmented body. It evolves from a single cell by systematic cell proliferation but attains a complex body structure with exquisite precision. This development requires two cellular events: cell cycle and ciliogenesis. For these events, the dynamic molecular signaling is converged at the centriole. The cell cycle helps in cell proliferation and growth of the body and is a highly regulated and integrated process. Its errors cause malignancies and developmental disorders. The cells newly proliferated are organized during organogenesis. For a cellular organization, dedicated signaling hubs are developed in the cells, and most often cilia are utilized. The cilium is generated from one of the centrioles involved in cell proliferation. The developmental signaling pathways hosted in cilia are essential for the elaboration of the body plan. The cilium's compartmental seclusion is ideal for noise-free molecular signaling and is essential for the precision of the body layout. The dysfunctional centrioles and primary cilia distort the development of body layout that manifest as serious developmental disorders. Thus, centriole has a dual role in the growth and cellular organization. It organizes dynamically expressed molecules of cell cycle and ciliogenesis and plays a balancing act to generate new cells and organize them during development. A putative master molecule may regulate and coordinate the dynamic gene expression at the centrioles. The convergence of many critical signaling components at the centriole reiterates the idea that centriole is a major molecular workstation involved in elaborating the structural design and complexity in vertebrates. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- O J Roopasree
- Agroprocessing Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695019 and Academy of CSIR, Uttar Pradesh - 201002, India
| | - Adivitiya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Soura Chakraborty
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Suneel Kateriya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shobi Veleri
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad, 500007, India
| |
Collapse
|
9
|
Zhu P, Qian T, Si C, Liu Y, Cui L, Huang W, Fu L, Deng C, Zeng T. High expression of CPNE5 and CPNE9 predicts positive prognosis in multiple myeloma. Cancer Biomark 2021; 31:77-85. [PMID: 33780365 DOI: 10.3233/cbm-203108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND CPNEs are significant biomarkers which can affect the progression and prognosis of various tumor diseases. However, the prognosis role of CPNEs in multiple myeloma (MM) is still unclear. OBJECTIVES To investigate the prognosis role of CPNEs in MM. METHODS Seven hundred and thirty-five samples from two independent data sets were involved to analyze the clinical and molecular characteristics, and prognosis role of the expression of CPNE1-9 in MM. RESULTS MM patients with higher expressions of CPNE5 and CPNE9 had longer event-free survival (EFS) and overall survival (OS) compared with CPNE5low and CPNE9low expression groups (EFS: P= 0.0054, 0.0065; OS: P= 0.015, 0.016, respectively). Multivariate regression analysis showed that CPNE5 was an independent favorable predictor for EFS and OS (EFS: P= 0.005; OS: P= 0.006), and CPNE9 was an independent positive indicator for EFS (P= 0.002). Moreover, the survival probability and the cumulative event of EFS and OS in CPNE5highCPNE9high group were significantly longer than other groups. CONCLUSIONS High expressions of CPNE5 and CPNE9 might be used as positive indicators for MM, and their combination was a better predictor for the survival of MM patients.
Collapse
Affiliation(s)
- Pei Zhu
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chaozeng Si
- Information Center, China-Japan Friendship Hospital, Beijing, China.,Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yan Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, Henan, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, Henan, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Wenhui Huang
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, Henan, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Cong Deng
- Department of Clinical Laboratory, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tiansheng Zeng
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Park YH, Son C, Seo YM, Lee YS, Har A, Park JC. CPNE7-Induced Autophagy Restores the Physiological Function of Mature Odontoblasts. Front Cell Dev Biol 2021; 9:655498. [PMID: 33981704 PMCID: PMC8107363 DOI: 10.3389/fcell.2021.655498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Dentin, which composes most of the tooth structure, is formed by odontoblasts, long-lived post-mitotic cells maintained throughout the entire life of the tooth. In mature odontoblasts, however, cellular activity is significantly weakened. Therefore, it is important to augment the cellular activity of mature odontoblasts to regenerate physiological dentin; however, no molecule regulating the cellular activity of mature odontoblasts has yet been identified. Here, we suggest that copine-7 (CPNE7) can reactivate the lost functions of mature odontoblasts by inducing autophagy. CPNE7 was observed to elevate the expression of microtubule-associated protein light chain 3-II (LC3-II), an autophagy marker, and autophagosome formation in the pre-odontoblast and mature odontoblast stages of human dental pulp cells. CPNE7-induced autophagy upregulated DSP and DMP-1, odontoblast differentiation and mineralization markers, and augmented dentin formation in mature odontoblasts. Furthermore, CPNE7 also upregulated NESTIN and TAU, which are expressed in the physiological odontoblast process, and stimulated the elongation of the odontoblast process by inducing autophagy. Moreover, lipofuscin, which progressively accumulates in long-lived post-mitotic cells and hinders their proper functions, was observed to be removed in recombinant CPNE7-treated mature odontoblasts. Thus, CPNE7-induced autophagy reactivated the function of mature odontoblasts and promoted the formation of physiological dentin in vivo. On the other hand, the well-known autophagy inducer, rapamycin, promoted odontoblast differentiation in pre-odontoblasts but did not properly reactivate the function of mature odontoblasts. These findings provide evidence that CPNE7 functionally reactivates mature odontoblasts and introduce its potential for dentinal loss-targeted clinical applications.
Collapse
Affiliation(s)
- Yeoung-Hyun Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology and Developmental Biology, School of Dentistry, Seoul National University, Seoul, South Korea.,Regenerative Dental Medicine R and D Center, HysensBio Co., Ltd., Seoul, South Korea
| | - Chul Son
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology and Developmental Biology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - You-Mi Seo
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology and Developmental Biology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Yoon Seon Lee
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology and Developmental Biology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Alix Har
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology and Developmental Biology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Joo-Cheol Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology and Developmental Biology, School of Dentistry, Seoul National University, Seoul, South Korea.,Regenerative Dental Medicine R and D Center, HysensBio Co., Ltd., Seoul, South Korea
| |
Collapse
|
11
|
Abstract
Ferlins are multiple-C2-domain proteins involved in Ca2+-triggered membrane dynamics within the secretory, endocytic and lysosomal pathways. In bony vertebrates there are six ferlin genes encoding, in humans, dysferlin, otoferlin, myoferlin, Fer1L5 and 6 and the long noncoding RNA Fer1L4. Mutations in DYSF (dysferlin) can cause a range of muscle diseases with various clinical manifestations collectively known as dysferlinopathies, including limb-girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy. A mutation in MYOF (myoferlin) was linked to a muscular dystrophy accompanied by cardiomyopathy. Mutations in OTOF (otoferlin) can be the cause of nonsyndromic deafness DFNB9. Dysregulated expression of any human ferlin may be associated with development of cancer. This review provides a detailed description of functions of the vertebrate ferlins with a focus on muscle ferlins and discusses the mechanisms leading to disease development.
Collapse
|
12
|
Park S, Lee Y, Lee D, Park J, Kim R, Shon W. CPNE7 Induces Biological Dentin Sealing in a Dentin Hypersensitivity Model. J Dent Res 2019; 98:1239-1244. [DOI: 10.1177/0022034519869577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Dentin hypersensitivity commonly occurs due to opened dentinal tubules for many reasons. In our previous study, copine 7 (CPNE7) could induce dentin formation for an indirect pulp-capping model in vivo. This study aims to investigate the formation of tertiary dentin when CPNE7 is applied to intentionally exposed dentin with nothing over it in vivo, whether it affects microleakage of the teeth, and the penetration ability of CPNE7 molecules through dentinal tubules in vitro. Cervical dentin areas of 6 maxillary incisors of 5 beagles were exposed to a class V–like lesion, and 1 side of 3 maxillary incisors was adapted with recombinant CPNE7 protein for 5 min as the experimental group. The other side was the control group, and there was no treatment of ethylenediaminetetraacetic acid (EDTA) and CPNE7 after preparation. The defects were exposed without any restorations, and all beagles were sacrificed after 4 wk. The fluid penetration of exposed dentin areas was investigated by a microleakage-testing device and confocal laser scanning microscope. Tertiary dentin formation was confirmed with histological scanning electronic microscopic analysis. Tertiary dentin formation reduces dentinal fluid flow due to occluded tubules or discontinuity with primary or secondary dentin. The in vivo hypersensitivity model with the anterior teeth of beagle dogs showed newly formed tertiary dentin at the dentin-pulp boundary in recombinant CPNE7–treated teeth when compared with the untreated control group in histologic analysis. Scanning electronic microscopic analysis revealed occluded sites with mineral deposition of intratubular dentin. In the permeability test, the mean microleakage value of the CPNE7-treated group was significantly lower than that of the control group ( P < 0.05). The tubular penetration of rhodamine B–combined CPNE7 was confirmed under confocal laser scanning microscope. CPNE7 induces formation of tertiary dentin through shallowly exposed dentinal tubules, which decreases dentin permeability.
Collapse
Affiliation(s)
- S.H. Park
- Department of Conservative Dentistry, Dental Research Institute and School of Dentistry, Seoul National University, Jongno-gu, Seoul, South Korea
| | - Y.S. Lee
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology–Developmental Biology, Dental Research Institute and School of Dentistry, Seoul National University, Jongno-gu, Seoul, South Korea
| | - D.S. Lee
- Department of Oral Histology–Developmental Biology, Dental Research Institute and School of Dentistry, Seoul National University, Jongno-gu, Seoul, South Korea
| | - J.C. Park
- Department of Oral Histology–Developmental Biology, Dental Research Institute and School of Dentistry, Seoul National University, Jongno-gu, Seoul, South Korea
| | - R. Kim
- Division of Constitutive and Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA, USA
| | - W.J. Shon
- Department of Conservative Dentistry, Dental Research Institute and School of Dentistry, Seoul National University, Jongno-gu, Seoul, South Korea
| |
Collapse
|
13
|
Lee D, Park K, Yoon GJ, Lee HJ, Lee J, Park YS, Park J, Lee G, Chung CP, Park YJ. Identification of cell‐penetrating osteogenic peptide from copine‐7 protein and its delivery system for enhanced bone formation. J Biomed Mater Res A 2019; 107:2392-2402. [DOI: 10.1002/jbm.a.36746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/09/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Dongwoo Lee
- Department of Oral BiochemistryDental Regenerative Bioengineering Major and Dental Research Institute, School of Dentistry, Seoul National University Seoul Republic of Korea
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC) Seoul Republic of Korea
| | - Kwang‐Sook Park
- Department of Oral BiochemistryDental Regenerative Bioengineering Major and Dental Research Institute, School of Dentistry, Seoul National University Seoul Republic of Korea
| | - Gook Jin Yoon
- Department of Oral BiochemistryDental Regenerative Bioengineering Major and Dental Research Institute, School of Dentistry, Seoul National University Seoul Republic of Korea
| | - Hyun Jung Lee
- Department of Oral BiochemistryDental Regenerative Bioengineering Major and Dental Research Institute, School of Dentistry, Seoul National University Seoul Republic of Korea
| | - Jue‐Yeon Lee
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC) Seoul Republic of Korea
| | - Yoon Shin Park
- Major in MicrobiologySchool of Biological Sciences, College of Natural Sciences, Chungbuk National University Cheongju Republic of Korea
| | - Joo‐Cheol Park
- Department of Oral Histology‐Developmental Biology and Dental Research InstituteSchool of Dentistry, Seoul National University Seoul Republic of Korea
| | - Gene Lee
- Department of Oral BiochemistryDental Regenerative Bioengineering Major and Dental Research Institute, School of Dentistry, Seoul National University Seoul Republic of Korea
| | - Chong Pyoung Chung
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC) Seoul Republic of Korea
| | - Yoon Jeong Park
- Department of Oral BiochemistryDental Regenerative Bioengineering Major and Dental Research Institute, School of Dentistry, Seoul National University Seoul Republic of Korea
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC) Seoul Republic of Korea
| |
Collapse
|
14
|
Expression of CPNE7 during mouse dentinogenesis. J Mol Histol 2019; 50:179-188. [DOI: 10.1007/s10735-019-09816-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
|
15
|
Chang B, Svoboda KKH, Liu X. Cell polarization: From epithelial cells to odontoblasts. Eur J Cell Biol 2018; 98:1-11. [PMID: 30473389 DOI: 10.1016/j.ejcb.2018.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/04/2018] [Accepted: 11/16/2018] [Indexed: 12/29/2022] Open
Abstract
Cell polarity identifies the asymmetry of a cell. Various types of cells, including odontoblasts and epithelial cells, polarize to fulfil their destined functions. Odontoblast polarization is a prerequisite and fundamental step for tooth development and tubular dentin formation. Current knowledge of odontoblast polarization, however, is very limited, which greatly impedes the development of novel approaches for regenerative endodontics. Compared to odontoblasts, epithelial cell polarization has been extensively studied over the last several decades. The knowledge obtained from epithelia polarization has been found applicable to other cell types, which is particularly useful considering the remarkable similarities of the morphological and compositional features between polarized odontoblasts and epithelia. In this review, we first discuss the characteristics, the key regulatory factors, and the process of epithelial polarity. Next, we compare the known facts of odontoblast polarization with epithelial cells. Lastly, we clarify knowledge gaps in odontoblast polarization and propose the directions for future research to fill the gaps, leading to the advancement of regenerative endodontics.
Collapse
Affiliation(s)
- Bei Chang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Kathy K H Svoboda
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA.
| |
Collapse
|