1
|
Shi F, Xing Y, Niu Y, Cheng L, Xu Y, Li X, Ren L, Zong S, Tao J. Unveiling winter survival strategies: physiological and metabolic responses to cold stress of Monochamus saltuarius larvae during overwintering. PEST MANAGEMENT SCIENCE 2024; 80:5656-5671. [PMID: 38979967 DOI: 10.1002/ps.8282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/18/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Monochamus saltuarius is a destructive trunk-borer of pine forest and an effective dispersal vector for pinewood nematode (PWN), a causative agent of pine wilt disease (PWD), which leads to major ecological disasters. Cold winter temperatures determine insect survival and distribution. However, little is known about the cold tolerance and potential physiological mechanisms of M. saltuarius. RESULTS We demonstrated that dead Pinus koraiensis trunks do not provide larvae with insulation. The M. saltuarius larvae are freeze-tolerant species. Unlike most other freeze-tolerant insects, they can actively freeze extracellular fluid at higher subzero temperatures by increasing their supercooling points. The main energy sources for larvae overwintering are glycogen and the mid-late switch to lipid. The water balance showed a decrease in free and an increase in bound water of small magnitude. Cold stress promoted lipid peroxidation, thus activating the antioxidant system to prevent cold-induced oxidative damage. We found eight main pathways linked to cold stress and 39 important metabolites, ten of which are cryoprotectants, including maltose, UDP-glucose, d-fructose 6P, galactinol, dulcitol, inositol, sorbitol, l-methionine, sarcosine, and d-proline. The M. saltuarius larvae engage in a dual respiration process involving both anaerobic and aerobic pathways when their bodily fluids freeze. Cysteine and methionine metabolism, as well as alanine, aspartate, and glutamate metabolism, are the most important pathways linked to antioxidation and energy production. CONCLUSIONS The implications of our findings may help strengthen and supplement the management strategies for monitoring, quarantine, and control of this pest, thereby contributing to controlling the further spread of PWD. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fengming Shi
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yu Xing
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yiming Niu
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Ling Cheng
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yabei Xu
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Xinyu Li
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Lili Ren
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Shixiang Zong
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Ma X, Liu Y, Ding B, Lu S, Ni B, Chen Y, Yang L, Liu Y, Zhang Y, Wang Y, Yang Y, Liu X. Anthocyanins from blueberry ameliorated arsenic-induced memory impairment, oxidative stress, and mitochondrial-biosynthesis imbalance in rat hippocampal neurons. Cell Signal 2024; 119:111177. [PMID: 38621470 DOI: 10.1016/j.cellsig.2024.111177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
In this study, blueberry anthocyanins extract (BAE) was used to investigate its protective effect on arsenic-induced rat hippocampal neurons damage. Arsenic exposure resulted in elevated levels of oxidative stress, decreased antioxidant capacity and increased apoptosis in rat hippocampal brain tissue and mitochondria. Immunohistochemical results showed that arsenic exposure also significantly decreased the expression of mitochondrial biosynthesis-related factors PGC-1α and TFAM. Treatment with BAE alleviated the decrease in antioxidant capacity, mitochondrial biogenesis related protein PGC-1α/NRF2/TFAM expression, and ATP production of arsenic induced hippocampal neurons in rats, and improved cognitive function in arsenic damaged rats. This study provides new insights into the detoxification effect of anthocyanins on the nervous system toxicity caused by metal exposure in the environment, indicating that anthocyanins may be a natural antioxidant against the nervous system toxicity caused by environmental metal exposure.
Collapse
Affiliation(s)
- Xinbo Ma
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Yang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Bo Ding
- Nanning Center for Disease Control and Prevention, China
| | - Siqi Lu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Bangyao Ni
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Yuting Chen
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Liu Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Yanan Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Yuchen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Yuxi Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China.
| |
Collapse
|
3
|
Li Y, Ye Y, Rihan N, Zhu B, Jiang Q, Liu X, Zhao Y, Che X. Polystyrene nanoplastics exposure alters muscle amino acid composition and nutritional quality of Pacific whiteleg shrimp (Litopenaeus vannamei). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168904. [PMID: 38016548 DOI: 10.1016/j.scitotenv.2023.168904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
Litopenaeus vannamei were exposed to 80-nm polystyrene nanoplastics (NPs) at different concentrations (0, 0.1, 1, 5, and 10 mg/L) for 28 days to study the effects on muscle nutritional quality. Our results showed that with increasing NPs concentrations, the survival rate, specific gain rate, and protein efficiency ratio decreased but the feed conversion ratio increased. There was no significant difference in moisture, ash, and crude lipid content in the muscle, and a general decrease in crude protein content was observed. However, the total amino acid and semi-essential amino acid contents decreased. The spacing between muscle fibers and the melting morphology of muscle increased. The hardness of muscle flesh texture increased, but springiness, cohesiveness, and chewiness decreased. Regarding antioxidant enzyme activity, the activity of catalase decreased, but the total antioxidant capacity, superoxide dismutase activity, and reduced glutathione first increased and then decreased. The expression level of the growth-related genes retinoid X receptor (RXR), chitin synthase (CHS), and calmodulin A (CaM) first increased then decreased, but calcium/calmodulin-dependent protein kinase I (CaMKI), ecdysteroid receptor (EcR), chitinase 5 (CHT5), cell division cycle 2 (Cdc2), and cyclin-dependent kinase 2 (CDK2) decreased. Our results suggest that exposure to NPs can inhibit growth by inducing oxidative stress, which leads to muscle tissue damage and changes in amino acid composition. These results will provide a theoretical reference for the risk assessment of NPs and the ecological health aquaculture of shrimp.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Na Rihan
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Bihong Zhu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| |
Collapse
|
4
|
Shen N, Li C, Yang S, Ma Y, Wang HL. Liver proteomics analysis reveals the differentiation of lipid mechanism and antioxidant enzyme activity during chicken embryonic development. Int J Biol Macromol 2023; 253:127417. [PMID: 37848110 DOI: 10.1016/j.ijbiomac.2023.127417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Chicken embryo development is a dynamic process. However, no detailed information is available about the protein abundance changes associated with the lipid mechanism and antioxidant enzyme activity during the egg embryo development. Thus, in the present study, an TMT-based proteomic approach was used to quantify protein abundance changes at different stages of chicken embryonic development. A total of 289 significantly differentially abundant hepatic proteins were quantified, of which 180 were upregulated and 109 were downregulated in the comparison of Day 20 with Day 12 in chicken embryos. Pathway analysis showed that metabolic pathways were the most highly enriched pathways, followed by arachidonic acid metabolism and steroid biosynthesis. Integration of proteomic-based studies profiling of three incubation stages revealed that the two compare groups (Day 12 vs Day 20 and Day 16 vs Day 20) shared some key differentially abundant proteins (DAPs), including LBFABP, FABP5, CYP4V2, PDCD4, LAL, APOA1, APOA4, SAA, FABP2, ACBSG2, FABP2, CYP51A1, and FBXO9. The STRING database and GO analysis results showed that there was close connectivity between APOA4, LBFABP, SERPINC1, APOA1, FGB, FGA, ANGPTL3 and these proteins were involved in the oxidation-reduction process, lipid transport, iron ion, heme, and lipid binding. Importantly, APOA4, FABP2, and CYP51A1 might be key factors to control fat deposition and antioxidant enzyme activity during chicken embryonic development. These findings will facilitate a better understanding of antioxidant and lipid mechanisms in chicken embryo and these DAPs can be further investigated as candidate markers to predict lipid deposition and the activity of antioxidant enzymes.
Collapse
Affiliation(s)
- Nan Shen
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Changqing Li
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Shaohua Yang
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| | - Yilong Ma
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Hui-Li Wang
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| |
Collapse
|
5
|
Zhu J, Song S, Xu X, Zhou G, Li C. White meat proteins were more conducive to hepatic antioxidative status than soybean and red meat proteins. J Food Biochem 2022; 46:e13947. [PMID: 34561892 DOI: 10.1111/jfbc.13947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/24/2023]
Abstract
Intake of protein-rich foods might induce oxidative stress in organs. This study investigated the impacts of protein sources including casein, soybean, fish, chicken, pork, and beef proteins on hepatic oxidation and antioxidation status in rats. It was shown that meat proteins produced higher reactive oxygen species in livers (from 64,868 to 87,153 F/mgpro) than casein (54,045 F/mgpro) and soybean protein (48,361 F/mgpro, p < .05). Pork and soybean proteins induced higher hepatic oxidative stress than fish, chicken and beef proteins by increasing malondialdehyde production (>16%, p < .05). White meat (fish and chicken) proteins promoted hepatic superoxide dismutase activity and total antioxidant capacity compared to soybean and red meat (pork and beef) proteins (p < .05). Compared to red meat proteins, white meat proteins increased hepatic expressions of thioredoxin and glutaredoxin. Rats fed red meat proteins showed hepatic steatosis with small vacuoles. Therefore, white meat proteins were more conducive to hepatic antioxidative status than soybean and red meat proteins. PRACTICAL APPLICATIONS: Intake of protein-rich foods may induce oxidative stress response at both cell and organ levels. The objective of this study was to investigate the impacts of different protein sources including casein, soybean, fish, chicken, pork, and beef proteins on oxidation and antioxidation status in rat livers. It was shown that meat proteins induced higher production of reactive oxygen species than casein and soybean protein. However, white meat proteins showed higher antioxidant capacity than soybean and red meat proteins by increasing hepatic superoxide dismutase activity and total antioxidant capacity. Therefore, compared to soybean and red meat proteins, white meat proteins lowered hepatic oxidative stress by reducing malondialdehyde production. This study suggested that intake of moderate white meat proteins was more conducive to hepatic antioxidative status than intake of soybean and red meat proteins. This study would promote the understanding of healthy effects of different protein sources.
Collapse
Affiliation(s)
- Jing Zhu
- Key Lab of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, P.R. China
- Key Lab of Meat Processing, MARA, Nanjing Agricultural University, Nanjing, P.R. China
| | - Shangxin Song
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, P.R. China
| | - Xinglian Xu
- Key Lab of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, P.R. China
- Key Lab of Meat Processing, MARA, Nanjing Agricultural University, Nanjing, P.R. China
| | - Guanghong Zhou
- Key Lab of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, P.R. China
- Key Lab of Meat Processing, MARA, Nanjing Agricultural University, Nanjing, P.R. China
| | - Chunbao Li
- Key Lab of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, P.R. China
- Key Lab of Meat Processing, MARA, Nanjing Agricultural University, Nanjing, P.R. China
| |
Collapse
|
6
|
Wang Z, Bo H, Song Y, Li C, Zhang Y. Mitochondrial ROS Produced by Skeletal Muscle Mitochondria Promote the Decisive Signal for UPRmt Activation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7436577. [PMID: 35237690 PMCID: PMC8885241 DOI: 10.1155/2022/7436577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022]
Abstract
The mitochondrial unfolded protein response (UPRmt) can repair and remove misfolded or unfolded proteins in mitochondria and enhance mitochondrial protein homeostasis. Reactive oxygen species (ROS) produced by regular exercise is a crucial signal for promoting health, and skeletal muscle mitochondria are the primary source of ROS during exercise. To verify whether UPRmt is related to ROS produced by mitochondria in skeletal muscle during regular exercise, we adapted MitoTEMPO, mitochondrially targeted antioxidants, and ROS production by mitochondria. Our results showed that mitochondrial ROS is the key factor for activating UPRmt in different pathways.
Collapse
Affiliation(s)
- Zhe Wang
- Tianjin University of Sport, Tianjin Key Laboratory of Exercise, Physiology and Sports Medicine, Research Center for Exercise & Health Science, Tianjin 301617, China
| | - Hai Bo
- Department of Military Training Medicines, Logistics University of Chinese People's Armed Police Force, Tianjin 300162, China
| | - Yu Song
- Tianjin University of Sport, Tianjin Key Laboratory of Exercise, Physiology and Sports Medicine, Research Center for Exercise & Health Science, Tianjin 301617, China
| | - Can Li
- Tianjin University of Sport, Tianjin Key Laboratory of Exercise, Physiology and Sports Medicine, Research Center for Exercise & Health Science, Tianjin 301617, China
| | - Yong Zhang
- Tianjin University of Sport, Tianjin Key Laboratory of Exercise, Physiology and Sports Medicine, Research Center for Exercise & Health Science, Tianjin 301617, China
| |
Collapse
|
7
|
Williamson M, Moustaid-Moussa N, Gollahon L. The Molecular Effects of Dietary Acid Load on Metabolic Disease (The Cellular PasaDoble: The Fast-Paced Dance of pH Regulation). FRONTIERS IN MOLECULAR MEDICINE 2021; 1:777088. [PMID: 39087082 PMCID: PMC11285710 DOI: 10.3389/fmmed.2021.777088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 08/02/2024]
Abstract
Metabolic diseases are becoming more common and more severe in populations adhering to western lifestyle. Since metabolic conditions are highly diet and lifestyle dependent, it is suggested that certain diets are the cause for a wide range of metabolic dysfunctions. Oxidative stress, excess calcium excretion, inflammation, and metabolic acidosis are common features in the origins of most metabolic disease. These primary manifestations of "metabolic syndrome" can lead to insulin resistance, diabetes, obesity, and hypertension. Further complications of the conditions involve kidney disease, cardiovascular disease, osteoporosis, and cancers. Dietary analysis shows that a modern "Western-style" diet may facilitate a disruption in pH homeostasis and drive disease progression through high consumption of exogenous acids. Because so many physiological and cellular functions rely on acid-base reactions and pH equilibrium, prolonged exposure of the body to more acids than can effectively be buffered, by chronic adherence to poor diet, may result in metabolic stress followed by disease. This review addresses relevant molecular pathways in mammalian cells discovered to be sensitive to acid - base equilibria, their cellular effects, and how they can cascade into an organism-level manifestation of Metabolic Syndromes. We will also discuss potential ways to help mitigate this digestive disruption of pH and metabolic homeostasis through dietary change.
Collapse
Affiliation(s)
- Morgan Williamson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Naima Moustaid-Moussa
- Department of Nutrition Sciences, Texas Tech University, Lubbock, TX, United States
- Obesity Research Institute, Texas Tech University, Lubbock, TX, United States
| | - Lauren Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
- Department of Nutrition Sciences, Texas Tech University, Lubbock, TX, United States
- Obesity Research Institute, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
8
|
Zou X, Ahmad MI, Zhao D, Zhang M, Li C. Glutaredoxin1 knockout promotes high-fat diet-induced obesity in male mice but not in female ones. Food Funct 2021; 12:7415-7427. [PMID: 34190288 DOI: 10.1039/d1fo01241j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This study aims to explore how a high-fat diet and glutaredoxin1 (Glrx1) deficiency affect the development of obesity in male and female mice. A high-fat diet induced great differences in calorie intake and body weight gain between male and female mice; furthermore, the Glrx1 deficiency made male mice more sensitive to a high-fat diet than females. Male mice had higher glucose intolerance, and Glrx1 deficiency aggravated gender differences in glucose intolerance. Glrx1 deficiency aggravated high-fat diet-induced hyperlipidemia. The mRNA levels of HMGCR, Srebf-1c, Srebf-2, CD36, FASN and SCD1 were consistently lower in females than in males. Glrx1 deficiency exacerbated high-fat diet induced liver injury and oxidative stress. Diet but not gender or genotype altered the composition of gut microbiota. These findings provide a new insight into the different susceptibilities to obesity caused by a high-fat diet between males and females.
Collapse
Affiliation(s)
- Xiaoyu Zou
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Products Processing, MOA; Nanjing Agricultural University, Nanjing 210095, P.R. China.
| | | | | | | | | |
Collapse
|
9
|
Glutaredoxin 1 protects neurons from oxygen-glucose deprivation/reoxygenation (OGD/R)-induced apoptosis and oxidative stress via the modulation of GSK-3β/Nrf2 signaling. J Bioenerg Biomembr 2021; 53:369-379. [PMID: 33956252 DOI: 10.1007/s10863-021-09898-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/09/2021] [Indexed: 12/18/2022]
Abstract
Increasing evidence has indicated that glutaredoxin 1 (GRX1) is a potent antioxidant protein that promotes cell survival under conditions of oxidative stress. Oxidative stress-induced neuronal injury contributes to cerebral ischemia/reperfusion injury. However, the role of GRX1-mediated antioxidant defense against neuronal damage during cerebral ischemia/reperfusion injury has not been thoroughly investigated. Thus, the objective of this study was to evaluate whether GRX1 protects neurons against oxygen-glucose deprivation/reoxygenation (OGD/R)-evoked oxidative stress injury in an in vitro model of cerebral ischemia/reperfusion injury. Our data revealed that GRX1 was induced by OGD/R treatment in neurons. Functional assays indicated that loss of GRX1 exacerbated OGD/R-induced apoptosis and the generation of reactive oxygen species (ROS), while GRX1 up-regulation protected against OGD/R-evoked neuronal injury. Further investigation revealed that GRX1 promoted the nuclear expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and enhanced transcription of the Nrf2/antioxidant response element (ARE) in GOD/R-exposed neurons. Furthermore, GRX1 promoted the activation of Nrf2/ARE associated with the modulation of glycogen synthase kinase-3β (GSK-3β). GSK-3β inhibition blocked GRX1 knockdown-mediated suppression of Nrf2 activation. Notably, the suppression of Nrf2 partially reversed GRX1-mediated anti-oxidative stress injury in OGD/R-exposed neurons. In summary, these findings indicate that GRX1 protects neurons against OGD/R-induced oxidative stress injury by enhancing Nrf2 activation via the modulation of GSK-3β. Our study suggests that GRX1 is a potential neuroprotective protein that protects against cerebral ischemia/reperfusion injury.
Collapse
|
10
|
Luo K, Zhao H, Bian B, Wei X, Si N, Brantner A, Fan X, Gu X, Zhou Y, Wang H. Huanglian Jiedu Decoction in the Treatment of the Traditional Chinese Medicine Syndrome "Shanghuo"-An Intervention Study. Front Pharmacol 2021; 12:616318. [PMID: 33995016 PMCID: PMC8120301 DOI: 10.3389/fphar.2021.616318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/05/2021] [Indexed: 01/16/2023] Open
Abstract
“Shanghuo” (“excessive internal heat”) is caused by exuberant endogenous fire, which does not have a comprehensive and systematic traditional Chinese medicine theory. In previous study, we had evaluated the therapeutic effect of Huanglian Jiedu Decoction (HLJDD) (granule) on patients with “Shanghuo”, however, the specific mechanism was not clear, which need further exploration. To explain its intervention mechanism, we select 57 patients with oral diseases caused by “Shanghuo” and 20 health volunteers to divide into oral disease group, HLJDD intervention group and healthy control group. Firstly, biochemical indicators before and after HLJDD intervention are detected, such as inflammatory factors, oxidative stress factors and energy metabolism factors. The results exhibit that HLJDD significantly decreases indicators succinic acid (p < 0.001); tumor necrosis factor-alpha, adenosine triphosphate, citric acid (p < 0.01); interleukin-8 (IL-8), 4-hydroxynonenal, pyruvic acid, lactate dehydrogenase (p < 0.05). The levels of glucocorticoid, adrenocorticotropic hormone (p < 0.01); lactic acid, IL-4, IL-10 (p < 0.05) significantly increase after HLJDD intervention. In addition, we adopt multi-omics analysis approach to investigate the potential biomarkers. Nontargeted metabolomics demonstrate that the levels of 7 differential metabolites approach that in the healthy control group after HLJDD intervention, which are correlated with histidine metabolism, beta-alanine metabolism and sphingolipid metabolism through metabolic pathway analysis. Targeted lipidomics results and receiver operating characteristic curve analysis show that 13 differential lipids are identified in the three groups mainly focuse on lysophosphatidylcholines, lysophosphatidylethanolamines. Finally, the network associations of those differential biomarkers reveal the regulation of adenosine triphosphate and tricarboxylic acid cycle play essential role in the therapeutic effect mechanism of HLJDD in “Shanghuo”. The study has laid the foundation for further revealing the mechanism and finding clinical biomarkers related to “Shanghuo”.
Collapse
Affiliation(s)
- Keke Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Adelheid Brantner
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Xiaorui Fan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinru Gu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanyan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
In vivo emergence of beige-like fat in chickens as physiological adaptation to cold environments. Amino Acids 2021; 53:381-393. [PMID: 33598768 PMCID: PMC7979618 DOI: 10.1007/s00726-021-02953-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022]
Abstract
While it has been hypothesized that brown adipocytes responsible for mammalian thermogenesis are absent in birds, the existence of beige fat has yet to be studied directly. The present study tests the hypothesis that beige fat emerges in birds as a mechanism of physiological adaptation to cold environments. Subcutaneous neck adipose tissue from cold-acclimated or triiodothyronine (T3)-treated chickens exhibited increases in the expression of avian uncoupling protein (avUCP, an ortholog of mammalian UCP2 and UCP3) gene and some known mammalian beige adipocyte-specific markers. Morphological characteristics of white adipose tissues of treated chickens showed increased numbers of both small and larger clusters of multilocular fat cells within the tissues. Increases in protein levels of avUCP and mitochondrial marker protein, voltage-dependent anion channel, and immunohistochemical analysis for subcutaneous neck fat revealed the presence of potentially thermogenic mitochondria-rich cells. This is the first evidence that the capacity for thermogenesis may be acquired by differentiating adipose tissue into beige-like fat for maintaining temperature homeostasis in the subcutaneous fat 'neck warmer' in chickens exposed to a cold environment.
Collapse
|
12
|
Li ZQ, Wang LL, Zhou J, Zheng X, Jiang Y, Li P, Li HJ. Integration of transcriptomics and metabolomics profiling reveals the metabolic pathways affected in dictamnine-induced hepatotoxicity in mice. J Proteomics 2020; 213:103603. [DOI: 10.1016/j.jprot.2019.103603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/12/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
|
13
|
Pivovarova-Ramich O, Markova M, Weber D, Sucher S, Hornemann S, Rudovich N, Raila J, Sunaga-Franze D, Sauer S, Rohn S, Pfeiffer AFH, Grune T. Effects of diets high in animal or plant protein on oxidative stress in individuals with type 2 diabetes: A randomized clinical trial. Redox Biol 2020; 29:101397. [PMID: 31926623 PMCID: PMC6909130 DOI: 10.1016/j.redox.2019.101397] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022] Open
Abstract
High-protein diet is a promising strategy for diabetes treatment supporting body weight control, improving glycaemic status, cardiovascular risk factors and reducing liver fat. Here, we investigated effects of diets high in animal (AP) or plant (PP) protein on oxidative stress and antioxidant status in individuals with type 2 diabetes (T2DM). 37 obese individuals (age 64.3 ± 1.0 years) with T2DM were randomized to an isocaloric diet (30 energy(E)% protein, 30 E% fat and 40 E% carbohydrates) rich in AP or PP for 6 weeks. Markers of oxidative and nitrosative stress and antioxidant status in plasma and nitrate/nitrite levels in urine were assessed. Gene expression in subcutaneous adipose tissue (SAT) was analysed by RNA-Seq and real-time PCR. Both AP and PP diets similarly reduced plasma levels of malondialdehyde (PAP = 0.003, PPP = 1.6 × 10-4) and protein carbonyls (PAP = 1.2 × 10-4, PPP = 3.0 × 10-5) over 6 weeks. Nitrotyrosine (NT) increased upon both AP and PP diets (PAP = 0.005, PPP = 0.004). SAT expression of genes involved in nitric oxide (NO) and oxidative stress metabolism and urine NO metabolite (nitrate/nitrite) levels were not changed upon both diets. Plasma levels of carotenoids increased upon PP diet, whereas retinol, alpha- and gamma-tocopherol slightly decreased upon both diets. AP and PP diets similarly improve oxidative stress but increase nitrosative stress markers in individuals with T2DM. Mechanisms of the NT regulation upon high-protein diets need further investigation.
Collapse
Affiliation(s)
- Olga Pivovarova-Ramich
- Dept. of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; Reseach Group Molecular Nutritional Medicine, Dept. of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Dept. of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University of Medicine, Berlin, Germany.
| | - Mariya Markova
- Dept. of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Daniela Weber
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany; Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Stephanie Sucher
- Dept. of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Silke Hornemann
- Dept. of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Natalia Rudovich
- Dept. of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Dept. of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University of Medicine, Berlin, Germany; Division of Endocrinology and Diabetes, Department of Internal Medicine, Spital Bülach, Bülach, Switzerland
| | - Jens Raila
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Daniele Sunaga-Franze
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany and Berlin Institute of Health, Berlin, Germany
| | - Sascha Sauer
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany and Berlin Institute of Health, Berlin, Germany
| | - Sascha Rohn
- Institute for Food and Environmental Research e.V, Bad Belzig, Germany; Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
| | - Andreas F H Pfeiffer
- Dept. of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Dept. of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University of Medicine, Berlin, Germany
| | - Tilman Grune
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany; Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), Berlin, Germany
| |
Collapse
|