1
|
Yin JN, Wang CF, Zhang XL, Cheng YJ, Wu YW, Zhang Q, Shao CL, Wei MY, Gu YC. Semisynthesis, Structure Elucidation and Anti- Mycobacterium marinum Activity of a Series of Marine-Derived 14-Membered Resorcylic Acid Lactones with Interesting Ketal Groups. Mar Drugs 2024; 22:431. [PMID: 39452839 PMCID: PMC11509596 DOI: 10.3390/md22100431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
The incidence of Mycobacterium marinum infection is on the rise; however, the existing drug treatment cycle is lengthy and often requires multi-drug combination. Therefore, there is a need to develop new and effective anti-M. marinum drugs. Cochliomycin A, a 14-membered resorcylic acid lactone with an acetonide group at C-5' and C-6', exhibits a wide range of antimicrobial, antimalarial, and antifouling activities. To further explore the effect of this structural change at C-5' and C-6' on this compound's activity, we synthesized a series of compounds with a structure similar to that of cochliomycin A, bearing ketal groups at C-5' and C-6'. The R/S configuration of the diastereoisomer at C-13' was further determined through an NOE correlation analysis of CH3 or CH2 at the derivative C-13' position and the H-5' and H-6' by means of a 1D NOE experiment. Further comparative 1H NMR analysis of diastereoisomers showed the difference in the chemical shift (δ) value of the diastereoisomers. The synthetic compounds were screened for their anti-microbial activities in vitro. Compounds 15-24 and 28-35 demonstrated promising activity against M. marinum, with MIC90 values ranging from 70 to 90 μM, closely approaching the MIC90 of isoniazid. The preliminary structure-activity relationships showed that the ketal groups with aromatic rings at C-5' and C-6' could enhance the inhibition of M. marinum. Further study demonstrated that compounds 23, 24, 29, and 30 had significant inhibitory effects on M. marinum and addictive effects with isoniazid and rifampicin. Its effective properties make it an important clue for future drug development toward combatting M. marinum resistance.
Collapse
Affiliation(s)
- Jun-Na Yin
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.-N.Y.); (C.-F.W.); (X.-L.Z.); (Y.-J.C.); (Y.-W.W.); (Q.Z.); (C.-L.S.)
| | - Cui-Fang Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.-N.Y.); (C.-F.W.); (X.-L.Z.); (Y.-J.C.); (Y.-W.W.); (Q.Z.); (C.-L.S.)
| | - Xiu-Li Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.-N.Y.); (C.-F.W.); (X.-L.Z.); (Y.-J.C.); (Y.-W.W.); (Q.Z.); (C.-L.S.)
| | - Ya-Jie Cheng
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.-N.Y.); (C.-F.W.); (X.-L.Z.); (Y.-J.C.); (Y.-W.W.); (Q.Z.); (C.-L.S.)
| | - Yan-Wei Wu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.-N.Y.); (C.-F.W.); (X.-L.Z.); (Y.-J.C.); (Y.-W.W.); (Q.Z.); (C.-L.S.)
| | - Qun Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.-N.Y.); (C.-F.W.); (X.-L.Z.); (Y.-J.C.); (Y.-W.W.); (Q.Z.); (C.-L.S.)
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.-N.Y.); (C.-F.W.); (X.-L.Z.); (Y.-J.C.); (Y.-W.W.); (Q.Z.); (C.-L.S.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.-N.Y.); (C.-F.W.); (X.-L.Z.); (Y.-J.C.); (Y.-W.W.); (Q.Z.); (C.-L.S.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| |
Collapse
|
2
|
Zhang Y, Xu WF, Yu Y, Zhang Q, Huang L, Hao C, Shao CL, Wang W. Inhibition of influenza A virus replication by a marine derived quinolone alkaloid targeting virus nucleoprotein. J Med Virol 2023; 95:e28499. [PMID: 36653877 DOI: 10.1002/jmv.28499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/14/2022] [Accepted: 01/14/2023] [Indexed: 01/20/2023]
Abstract
Owing to the emergence of drug resistance and high morbidity and mortality, the need for novel anti-influenza A virus (IAV) drugs with divergent targets is highly sought after. Herein, a novel quinolone alkaloid (QLA) derived from marine fungus was discovered with broad-spectrum anti-IAV activities with low toxicity. Distinct from current anti-IAV drugs, QLA may block virus replication and viral RNA (vRNA) export from the nucleus by targeting virus nucleoprotein (NP). QLA can block the binding of chromosome region maintenance 1 to nuclear export signal 3 of NP to inhibit the nuclear export of NP and vRNP. QLA may also affect vRNP assembly by interfering with the binding of NP to RNA rather than NP oligomerization. Arg305 and Phe488-Gly490 may be required for the interaction between QLA and NP, and the binding pocket around these amino acids may be a promising target for anti-IAV drugs. Importantly, oral administration of QLA can protect the mice against IAV-induced death and weight loss, superior to the effects of the clinical drug oseltamivir. In summary, the marine derived compound QLA has the potential to be developed into a novel anti-IAV agent targeting virus NP protein in the future.
Collapse
Affiliation(s)
- Yang Zhang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China
| | - Wei-Feng Xu
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yunjia Yu
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China
| | - Qun Zhang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lianghao Huang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China
| | - Cui Hao
- Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chang-Lun Shao
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wei Wang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Xu WF, Wu NN, Wu YW, Qi YX, Wei MY, Pineda LM, Ng MG, Spadafora C, Zheng JY, Lu L, Wang CY, Gu YC, Shao CL. Structure modification, antialgal, antiplasmodial, and toxic evaluations of a series of new marine-derived 14-membered resorcylic acid lactone derivatives. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:88-97. [PMID: 37073350 PMCID: PMC10077203 DOI: 10.1007/s42995-021-00103-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/01/2021] [Indexed: 05/03/2023]
Abstract
Marine natural products play critical roles in the chemical defense of many marine organisms and are essential, reputable sources of successful drug leads. Sixty-seven 14-membered resorcylic acid lactone derivatives 3-27 and 30-71 of the natural product zeaenol (1) isolated from the marine-derived fungus Cochliobolus lunatus were semisynthesized by chlorination, acylation, esterification, and acetalization in one to three steps. The structures of these new derivatives were established by HRESIMS and NMR techniques. All the compounds (1-71) were evaluated for their antialgal and antiplasmodial activities. Among them, 14 compounds displayed antifouling activities against adhesion of the fouling diatoms. In particular, 9 and 34 exhibited strong and selective inhibitory effects against the diatoms Navicula laevissima and Navicula exigua (EC50 = 6.67 and 8.55 μmol/L), respectively, which were similar in efficacy to those of the positive control SeaNine 211 (EC50 = 2.90 and 9.74 μmol/L). More importantly, 38, 39, and 69-71 showed potent antiplasmodial activities against Plasmodium falciparum with IC50 values ranging from 3.54 to 9.72 μmol/L. Very interestingly, the five antiplasmodial derivatives displayed non-toxicity in the cytotoxicity assays and the zebrafish embryos model, thus, representing potential promising antiplasmodial drug agents. The preliminary structure-activity relationships indicated that biphenyl substituent at C-2, acetonide at positions C-5' and C-6', and tri- or tetra-substituted of acyl groups increased the antiplasmodial activity. Therefore, combining evaluation of chemical ecology with pharmacological models will be implemented as a systematic strategy, not only for environmentally friendly antifoulants but also for structurally novel drugs. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00103-0.
Collapse
Affiliation(s)
- Wei-Feng Xu
- Key Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao, 266237 China
| | - Na-Na Wu
- Key Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao, 266237 China
| | - Yan-Wei Wu
- Key Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Yue-Xuan Qi
- Key Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao, 266237 China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Laura M. Pineda
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científcas y Servicios de Alta Tecnología, City of Knowledge, Clayton, Apartado 0816-02852 Panama
| | - Michelle G. Ng
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científcas y Servicios de Alta Tecnología, City of Knowledge, Clayton, Apartado 0816-02852 Panama
| | - Carmenza Spadafora
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científcas y Servicios de Alta Tecnología, City of Knowledge, Clayton, Apartado 0816-02852 Panama
| | - Ji-Yong Zheng
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao, 266237 China
| | - Ling Lu
- Key Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire, RG42 6EY UK
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao, 266237 China
| |
Collapse
|
4
|
Anti-leishmanial compounds from microbial metabolites: a promising source. Appl Microbiol Biotechnol 2021; 105:8227-8240. [PMID: 34625819 DOI: 10.1007/s00253-021-11610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Leishmania is a complex disease caused by the protozoan parasites and transmitted by female phlebotomine sandfly. The disease affects some of the poorest people on earth with an estimated 700,000 to 1 million new cases annually. The current treatment for leishmaniasis is toxic, long, and limited, in view of the high resistance rate presented by the parasite, necessitating new perspectives for treatment. The discovery of new compounds with different targets can be a hope to make the treatment more efficient. Microbial metabolites and their structural analogues with enormous scaffold diversity and structural complexity have historically played a key role in drug discovery. We found thirty-nine research articles published between 1999 and 2021 in the scientific database (PubMed, Science Direct) describing microbes and their metabolites with activity against leishmanial parasites which is the focus of this review. KEY POINTS: • Leishmania affects the poorest regions of the globe • Current treatments for leishmaniasis are toxic and of limited efficacy • Microbial metabolites are potential sources of antileishmania drugs.
Collapse
|
5
|
Secondary Metabolites from the Endophytic Fungus Xylariales sp. and their Antimicrobial Activity. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03080-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Hou XM, Hai Y, Gu YC, Wang CY, Shao CL. Chemical and Bioactive Marine Natural Products of Coral-Derived Microorganisms (2015-2017). Curr Med Chem 2020; 26:6930-6941. [PMID: 31241431 DOI: 10.2174/0929867326666190626153819] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/22/2018] [Accepted: 12/14/2018] [Indexed: 01/28/2023]
Abstract
Coral-derived microorganisms are known for their inherent ability to produce novel products of pharmaceutical importance. Nearly 260 marine natural products (MNPs) have been isolated from coral-derived microorganisms till 2014. In the last three years, 118 MNPs have been isolated from coral-associated microorganisms including 46 new compounds, two with a novel skeleton, and four new natural products. Most of them exhibited in vitro or in vivo activities against tumor cell lines, parasites, pathogenic bacteria, fungi and virus. We reviewed the natural products reported from 2015 to 2017 that have a wide range of bioactivities against different biological targets.
Collapse
Affiliation(s)
- Xue-Mei Hou
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yang Hai
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell RG42 6EY, Berkshire, United Kingdom
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
7
|
Debela TT, Liu S, Choi JH, Kang HS. Electronegativity, phase transition, and ferroelectricity of TeSe 2 few-layers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:045301. [PMID: 31581137 DOI: 10.1088/1361-648x/ab4ac2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We use first-principles calculations to demonstrate that γ TeSe2 few-layers (FLs) are significantly more stable than α and β FLs due to the difference in the electronegativity of two kinds of atoms, while γ Te FLs are not due to the unfavorable multivalency of Te atoms. The quasiparticle single-shot G0W0 band gaps are 1.13 and 2.30 eV for γ and β monolayers (MLs), respectively. Therefore, they will be useful for optoelectronics operating at room temperature, which is further supported by their dynamic and thermal stability. The γ ML and bilayer (BL) are expected to undergo phase transitions to β ML and α BL under hole doping. Furthermore, the ionicity brings about spontaneous electric polarization in the α BL that is approximately 60% larger than that in the α Te BL. Its ferroelectricity (FE) is comparable to that of SnTe ML, the only 2D FE material experimentally identified up to now. The polarization can be further enhanced by more than 75% under uniaxial tensile strain.
Collapse
Affiliation(s)
- Tekalign Terfa Debela
- Institute for Application of Advanced Materials, Jeonju University, Chonju, Chonbuk 55069, Republic of Korea
| | | | | | | |
Collapse
|
8
|
Tajuddeen N, Van Heerden FR. Antiplasmodial natural products: an update. Malar J 2019; 18:404. [PMID: 31805944 PMCID: PMC6896759 DOI: 10.1186/s12936-019-3026-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022] Open
Abstract
Background Malaria remains a significant public health challenge in regions of the world where it is endemic. An unprecedented decline in malaria incidences was recorded during the last decade due to the availability of effective control interventions, such as the deployment of artemisinin-based combination therapy and insecticide-treated nets. However, according to the World Health Organization, malaria is staging a comeback, in part due to the development of drug resistance. Therefore, there is an urgent need to discover new anti-malarial drugs. This article reviews the literature on natural products with antiplasmodial activity that was reported between 2010 and 2017. Methods Relevant literature was sourced by searching the major scientific databases, including Web of Science, ScienceDirect, Scopus, SciFinder, Pubmed, and Google Scholar, using appropriate keyword combinations. Results and Discussion A total of 1524 compounds from 397 relevant references, assayed against at least one strain of Plasmodium, were reported in the period under review. Out of these, 39% were described as new natural products, and 29% of the compounds had IC50 ≤ 3.0 µM against at least one strain of Plasmodium. Several of these compounds have the potential to be developed into viable anti-malarial drugs. Also, some of these compounds could play a role in malaria eradication by targeting gametocytes. However, the research into natural products with potential for blocking the transmission of malaria is still in its infancy stage and needs to be vigorously pursued.
Collapse
Affiliation(s)
- Nasir Tajuddeen
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Fanie R Van Heerden
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
9
|
Xu WF, Xue XJ, Qi YX, Wu NN, Wang CY, Shao CL. Cochliomycin G, a 14-membered resorcylic acid lactone from a marine-derived fungus Cochliobolus lunatus. Nat Prod Res 2019; 35:490-493. [PMID: 31264460 DOI: 10.1080/14786419.2019.1633646] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cochliomycin G (1), a new 14-membered resorcylic acid lactone, together with six known analogues (2-7), was isolated from the culture broth of a marine-derived fungus Cochliobolus lunatus. The planar structure of 1 was established by extensive NMR spectroscopy, and the absolute configuration was elucidated by the combination of empirical rules, CD data, and 13C chemical shift calculations. Compound 1 exhibited potent antifouling activity against Chlorella vulgaris, Chaetoceros socialis, and Navicula exigua, with EC50 values of 1.09, 0.92, and 0.61 μg/mL, respectively.
Collapse
Affiliation(s)
- Wei-Feng Xu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| | - Xiao-Jia Xue
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| | - Yue-Xuan Qi
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| | - Na-Na Wu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
10
|
Said G, Hou XM, Liu X, Chao R, Jiang YY, Zheng JY, Shao CL. Antimicrobial and Cytotoxic Activities of Secondary Metabolites from the Soft Coral Derived Fungus Aspergillus sp. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02732-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|