1
|
Rodríguez-Montaño ÓL, Santoro L, Vaiani L, Lamberti L, Uva AE, Boccaccio A. Cell adhesion on substrates with variable curvature: Effects on genetic transcription processes. Comput Biol Med 2025; 189:109917. [PMID: 40023074 DOI: 10.1016/j.compbiomed.2025.109917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Several studies suggest that changes in nuclear morphology due to forces and deformations as result of cell adhesion on biological substrates can induce molecular streaming through nuclear pore openings and alter chromatin structure. The condensed state of chromatin hinders transcription and replication, while its decompaction, induced by adhesion, plays a key role in differentiation. However, assessing nuclear stress/strain in vivo remains challenging, and the impact of substrate curvature on nuclear mechanics and chromatin structures is still unclear. In this study, we developed an axisymmetric finite element model of a mesenchymal stem cell adhering to substrates with different curvatures to analyze nuclear stress distribution and identify locations where adhesion-induced gene expression may occur. Results reveal a nuclear stress field with principal stresses in radial and circumferential directions, leading to chromatin decondensation and nuclear pore opening. The predicted forces acting on chromatin fibers, estimated and compared with experimental data, remain slightly below 5 pN-the threshold at which internucleosomal attraction is disrupted, triggering chromatin condensation-decondensation transition-. During early spreading, nuclear forces achieved through adhesion on convex substrates approach this threshold more closely than in concave or flat cases. These findings provide insights for tissue engineering and regenerative medicine, where early control of stem cell fate through substrate design is crucial. Understanding how mesenchymal stem cells respond to substrate curvature could lead to improved biomaterial surface topographies for guiding cell behavior. Tailoring curvature and mechanical properties may enhance early lineage commitment, optimizing regenerative strategies for tissue repair and organ regeneration.
Collapse
Affiliation(s)
| | - Lorenzo Santoro
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, 70125, Italy
| | - Lorenzo Vaiani
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, 70125, Italy
| | - Luciano Lamberti
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, 70125, Italy
| | - Antonio E Uva
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, 70125, Italy
| | - Antonio Boccaccio
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, 70125, Italy.
| |
Collapse
|
2
|
Kuchler O, Gerlach J, Vomhof T, Hettich J, Steinmetz J, Gebhardt JCM, Michaelis J, Knöll B. Single-molecule tracking (SMT) and localization of SRF and MRTF transcription factors during neuronal stimulation and differentiation. Open Biol 2022; 12:210383. [PMID: 35537478 PMCID: PMC9090491 DOI: 10.1098/rsob.210383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In cells, proteins encoded by the same gene do not all behave uniformly but engage in functional subpopulations induced by spatial or temporal segregation. While conventional microscopy has limitations in revealing such spatial and temporal diversity, single-molecule tracking (SMT) microscopy circumvented this problem and allows for high-resolution imaging and quantification of dynamic single-molecule properties. Particularly in the nucleus, SMT has identified specific DNA residence times of transcription factors (TFs), DNA-bound TF fractions and positions of transcriptional hot-spots upon cell stimulation. By contrast to cell stimulation, SMT has not been employed to follow dynamic TF changes along stages of cell differentiation. Herein, we analysed the serum response factor (SRF), a TF involved in the differentiation of many cell types to study nuclear single-molecule dynamics in neuronal differentiation. Our data in living mouse hippocampal neurons show dynamic changes in SRF DNA residence time and SRF DNA-bound fraction between the stages of adhesion, neurite growth and neurite differentiation in axon and dendrites. Using TALM (tracking and localization microscopy), we identified nuclear positions of SRF clusters and observed changes in their numbers and size during differentiation. Furthermore, we show that the SRF cofactor MRTF-A (myocardin-related TF or MKL1) responds to cell activation by enhancing the long-bound DNA fraction. Finally, a first SMT colocalization study of two proteins was performed in living cells showing enhanced SRF/MRTF-A colocalization upon stimulation. In summary, SMT revealed modulation of dynamic TF properties during cell stimulation and differentiation.
Collapse
Affiliation(s)
- Oliver Kuchler
- Institute of Neurobiochemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany,Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jule Gerlach
- Institute of Neurobiochemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany,Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Thomas Vomhof
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Johannes Hettich
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Julia Steinmetz
- Department of Statistics, TU Dortmund University, August-Schmidt Straße 1, 44227 Dortmund, Germany
| | | | - Jens Michaelis
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Bernd Knöll
- Institute of Neurobiochemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
3
|
Li H, You S, Yang X, Liu S, Hu L. Injectable recombinant human collagen-derived material with high cell adhesion activity limits adverse remodelling and improves pelvic floor function in pelvic floor dysfunction rats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112715. [DOI: 10.1016/j.msec.2022.112715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/13/2022] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
|
4
|
Yu L, Hou Y, Xie W, Cuellar-Camacho JL, Wei Q, Haag R. Self-Strengthening Adhesive Force Promotes Cell Mechanotransduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2006986. [PMID: 33206452 DOI: 10.1002/adma.202006986] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 06/11/2023]
Abstract
The extracellular matrix (ECM) undergoes dynamic remodeling and progressive stiffening during tissue regeneration and disease progression. However, most of the artificial ECMs and in vitro disease models are mechanically static. Here, a self-strengthening polymer coating mimicking the dynamic nature of native ECM is designed to study the cellular response to dynamic biophysical cues and promote cell mechanical sensitive response. Spiropyran (SP) is utilized as dynamic anchor group to regulate the strength of cell adhesive peptide ligands. Benefiting from spontaneous thermal merocyanine-to-spiropyran (MC-SP) isomerization, the resulting self-responsive coating displays dynamic self-strengthening of interfacial interactions. Comparing with the static and all of the previous dynamic artificial ECMs, cells on this self-responsive surface remodel the weakly bonded MC-based coatings to activate α5β1 integrin and Rac signaling in the early adhesion stage. The subsequent MC-to-SP conversion strengthens the ligand-integrin interaction to further activate αvβ3 integrin and RhoA/ROCK signaling in the latter stage. This sequential process enhances cellular mechanotransduction as well as the osteogenic differentiation of mesenchymal stem cells (MSCs). It is worth emphasizing that the self-strengthening occurs spontaneously in the absence of any stimulus, making it especially useful for implanted scaffolds in regenerative medicine.
Collapse
Affiliation(s)
- Leixiao Yu
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Yong Hou
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Wenyan Xie
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin, 14195, Germany
| | - Jose Luis Cuellar-Camacho
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| |
Collapse
|
5
|
Yu L, Hou Y, Xie W, Camacho JLC, Cheng C, Holle A, Young J, Trappmann B, Zhao W, Melzig MF, Cavalcanti-Adam EA, Zhao C, Spatz JP, Wei Q, Haag R. Ligand Diffusion Enables Force-Independent Cell Adhesion via Activating α5β1 Integrin and Initiating Rac and RhoA Signaling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002566. [PMID: 32537880 DOI: 10.1002/adma.202002566] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/12/2020] [Indexed: 05/12/2023]
Abstract
Cells reside in a dynamic microenvironment in which adhesive ligand availability, density, and diffusivity are key factors regulating cellular behavior. Here, the cellular response to integrin-binding ligand dynamics by directly controlling ligand diffusivity via tunable ligand-surface interactions is investigated. Interestingly, cell spread on the surfaces with fast ligand diffusion is independent of myosin-based force generation. Fast ligand diffusion enhances α5β1 but not αvβ3 integrin activation and initiates Rac and RhoA but not ROCK signaling, resulting in lamellipodium-based fast cell spreading. Meanwhile, on surfaces with immobile ligands, αvβ3 and α5β1 integrins synergistically initiate intracellular-force-based canonical mechanotransduction pathways to enhance cell adhesion and osteogenic differentiation of stem cells. These results indicate the presence of heretofore-unrecognized pathways, distinct from canonical actomyosin-driven mechanisms, that are capable of promoting cell adhesion.
Collapse
Affiliation(s)
- Leixiao Yu
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Yong Hou
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Wenyan Xie
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin, 14195, Germany
| | - Jose Luis Cuellar Camacho
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Chong Cheng
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Andrew Holle
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, Heidelberg, 69120, Germany
| | - Jennifer Young
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, Heidelberg, 69120, Germany
| | - Britta Trappmann
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, Münster, 48149, Germany
| | - Weifeng Zhao
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Matthias F Melzig
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin, 14195, Germany
| | - Elisabetta A Cavalcanti-Adam
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, Heidelberg, 69120, Germany
- Central Scientific Facility "Cellular Biotechnology", Jahnstr. 29, Heidelberg, 69120, Germany
| | - Changsheng Zhao
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, Heidelberg, 69120, Germany
| | - Qiang Wei
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| |
Collapse
|
6
|
Chaires-Rosas CP, Ambriz X, Montesinos JJ, Hernández-Téllez B, Piñón-Zárate G, Herrera-Enríquez M, Hernández-Estévez É, Ambrosio JR, Castell-Rodríguez A. Differential adhesion and fibrinolytic activity of mesenchymal stem cells from human bone marrow, placenta, and Wharton's jelly cultured in a fibrin hydrogel. J Tissue Eng 2019; 10:2041731419840622. [PMID: 31007888 PMCID: PMC6460889 DOI: 10.1177/2041731419840622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/08/2019] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells isolated from different tissues should share associated markers and the capability to differentiate to mesodermal lineages. However, their behavior varies in specific microenvironments. Herein, adhesion and fibrinolytic activity of mesenchymal stem cells from placenta, bone marrow, and Wharton’s jelly were evaluated in fibrin hydrogels prepared with nonpurified blood plasma and compared with two-dimensional cultures. Despite the source, mesenchymal stem cells adhered through focal adhesions positive for vinculin and integrin αV in two dimensions, while focal adhesions could not be detected in fibrin hydrogels. Moreover, some cells could not spread and stay rounded. The proportions of elongated and round phenotypes varied, with placenta mesenchymal stem cells having the lowest percentage of elongated cells (~10%). Mesenchymal stem cells degraded fibrin at distinct rates, and placenta mesenchymal stem cells had the strongest fibrinolytic activity, which was achieved principally through the plasminogen–plasmin axis. These findings might have clinical implications in tissue engineering and wound healing therapy.
Collapse
Affiliation(s)
- Casandra P Chaires-Rosas
- Department of Cellular and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Xóchitl Ambriz
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Juan J Montesinos
- Oncology Research Unit, Oncology Hospital, National Medical Center, Mexican Social Security Institute, Mexico City, Mexico
| | - Beatriz Hernández-Téllez
- Department of Cellular and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Gabriela Piñón-Zárate
- Department of Cellular and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Miguel Herrera-Enríquez
- Department of Cellular and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Érika Hernández-Estévez
- Oncology Research Unit, Oncology Hospital, National Medical Center, Mexican Social Security Institute, Mexico City, Mexico
| | - Javier R Ambrosio
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Andrés Castell-Rodríguez
- Department of Cellular and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
7
|
Bao M, Xie J, Huck WTS. Recent Advances in Engineering the Stem Cell Microniche in 3D. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800448. [PMID: 30128252 PMCID: PMC6096985 DOI: 10.1002/advs.201800448] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/01/2018] [Indexed: 05/18/2023]
Abstract
Conventional 2D cell culture techniques have provided fundamental insights into key biochemical and biophysical mechanisms responsible for various cellular behaviors, such as cell adhesion, spreading, division, proliferation, and differentiation. However, 2D culture in vitro does not fully capture the physical and chemical properties of the native microenvironment. There is a growing body of research that suggests that cells cultured on 2D substrates differ greatly from those grown in vivo. This article focuses on recent progress in using bioinspired 3D matrices that recapitulate as many aspects of the natural extracellular matrix as possible. A range of techniques for the engineering of 3D microenvironment with precisely controlled biophysical and chemical properties, and the impact of these environments on cellular behavior, is reviewed. Finally, an outlook on future challenges for engineering the 3D microenvironment and how such approaches would further our understanding of the influence of the microenvironment on cell function is provided.
Collapse
Affiliation(s)
- Min Bao
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - Jing Xie
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - Wilhelm T. S. Huck
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|