1
|
Willis NB, Papoutsakis ET. Separate, separated, and together: the transcriptional program of the Clostridium acetobutylicum-Clostridium ljungdahlii syntrophy leading to interspecies cell fusion. mSystems 2025:e0003025. [PMID: 40298437 DOI: 10.1128/msystems.00030-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Syntrophic cocultures (hitherto assumed to be commensalistic) of Clostridium acetobutylicum and Clostridium ljungdahlii, whereby CO2 and H2 produced by the former feed the latter, result in interspecies cell fusion involving large-scale exchange of protein, RNA, and DNA between the two organisms. Although mammalian cell fusion is mechanistically dissected, the mechanism for such microbial-cell fusions is unknown. To start exploring this mechanism, we used RNA sequencing to identify genes differentially expressed in this coculture using two types of comparisons. One type compared coculture to the two monocultures, capturing the combined impact of interactions through soluble signals in the medium and through direct cell-to-cell interactions. The second type compared membrane-separated versus -unseparated cocultures, isolating the impact of interspecies physical contact. While we could not firmly identify specific genes that might drive cell fusion, consistent with our hypothesized model for this interspecies microbial cell fusion, we observed differential regulation of genes involved in C. ljungdahlii's autotrophic Wood-Ljungdahl pathway metabolism and genes of the motility machinery. Unexpectedly, we also identified differential regulation of biosynthetic genes of several amino acids, and notably of arginine and histidine. We verified that they are produced by C. acetobutylicum and are metabolized by C. ljungdahlii to its growth advantage. These and other findings, and notably upregulation of C. acetobutylicum ribosomal-protein genes, paint a more complex syntrophic picture and suggest a mutualistic relationship, whereby beyond CO2 and H2, C. acetobutylicum feeds C. ljungdahlii with growth-boosting amino acids, while benefiting from the H2 utilization by C. ljungdahlii.IMPORTANCEThe construction and study of synthetic microbial cocultures is a growing research area due to the untapped potential of defined multi-species industrial bioprocesses and the utility of defined cocultures for generating insight into complex, undefined, natural microbial consortia. Our previous work showed that coculturing C. acetobutylicum and C. ljungdahlii leads to a unique metabolic phenotype (production of isopropanol) and heterologous cell fusion events. Here, we used RNAseq to explore genes involved in and impacted by these fusions. First, we compared gene expression in coculture to each monoculture. Second, we utilized a transwell system to compare gene expression in mixed cocultures to cocultures with both species physically separated by a permeable membrane, isolating the impact of interspecies "touching" on the transcriptome. This study deepens our mechanistic understanding of the C. acetobutylicum-C. ljungdahlii coculture phenotype, laying the groundwork for reverse genetic studies of heterologous cell fusion in Clostridium cocultures.
Collapse
Affiliation(s)
- Noah B Willis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Eleftherios T Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
- 3Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
2
|
Haft DH, Tolstoy I. Novel selenoprotein neighborhoods suggest specialized biochemical processes. mSystems 2025; 10:e0141724. [PMID: 40162776 PMCID: PMC12013261 DOI: 10.1128/msystems.01417-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Prokaryotic genomes encode selenoproteins sparsely, roughly one protein per 5,000. Finding novel selenoprotein families can expose unknown biological processes that are enabled, or at least enhanced, by having a selenium atom replace a sulfur atom in some cysteine residues. Here, we report the discovery of 18 novel selenoprotein families or second selenocysteine sites in previously unrecognized extensions of protein translations. Most of these families had some confounding factors-too small a family, too few selenoproteins in the family, selenocysteine (U) too close to one end, a skew toward understudied or uncultured lineages, and consequently were missed previously. Discoveries were triggered by observations during the ongoing construction of protein family models for the National Center for Biotechnology Information's RefSeq and Prokaryotic Gene Annotation Pipeline or made by targeted searches for novel selenoproteins in the vicinity of known ones, rather than by any broadly applied genome mining method. Unrelated families TsoA, TsoB, TsoC, and TsoX are adjacent in tso (three selenoprotein operon) loci in the bacterial phylum Thermodesulfobacteriota. TrsS (third radical SAM selenoprotein) occurs strictly in the context of a molybdopterin-dependent aldehyde oxidoreductase. A short carboxy-terminal motif, U-X-X-stop (UXX-star), occurs in selenoproteins with various architectures, usually providing the second U in the protein. The multiple new selenocysteine insertion sites, selenoprotein families, and selenium-dependent operons we curated manually suggest that many more proteins and pathways remain to be discovered; once improved computational methods are applied comprehensively to the latest collections of microbial genomes and metagenomes, they may reveal surprising new biochemical processes. IMPORTANCE Next-generation DNA sequencing and assembly of metagenome-assembled genomes (MAGs) for uncultured species of various microbiomes adds a vast "dark matter" of hard-to-decipher protein sequences. Selenoproteins, optimized by natural selection to encode selenocysteine where cysteine might have been encoded much more easily, carry a strong clue to their function-some specialized aspect of binding or catalysis. Operons with multiple adjacent, but otherwise unrelated, selenoproteins should provide even more vivid information. In this study, efforts in protein family construction and curation, aimed at improving the PGAP genome annotation pipeline, generated multiple novel selenoprotein-containing genomic contexts that may lead to the future characterization of several systems of proteins. Past observations suggest roles in the metabolic handling of trace elements (mercury, tungsten, arsenic, etc.) or of organic compounds refractory to simpler enzymatic pathways. In addition, the work significantly expands the truth set of validated selenoproteins, which should aid future, more automated genome mining efforts.
Collapse
Affiliation(s)
- Daniel H. Haft
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
3
|
Kountz DJ, Balskus EP. A diversified, widespread microbial gene cluster encodes homologs of methyltransferases involved in methanogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551370. [PMID: 37577662 PMCID: PMC10418091 DOI: 10.1101/2023.07.31.551370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Analyses of microbial genomes have revealed unexpectedly wide distributions of enzymes from specialized metabolism, including methanogenesis, providing exciting opportunities for discovery. Here, we identify a family of gene clusters (the type 1 mlp gene clusters (MGCs)) that encodes homologs of the soluble coenzyme M methyltransferases (SCMTs) involved in methylotrophic methanogenesis and is widespread in bacteria and archaea. Type 1 MGCs are expressed and regulated in medically, environmentally, and industrially important organisms, making them likely to be physiologically relevant. Enzyme annotation, analysis of genomic context, and biochemical experiments suggests these gene clusters play a role in methyl-sulfur and/or methyl-selenide metabolism in numerous anoxic environments, including the human gut microbiome, potentially impacting sulfur and selenium cycling in diverse, anoxic environments.
Collapse
Affiliation(s)
- Duncan J. Kountz
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
4
|
Antonicelli G, Ricci L, Tarraran L, Fraterrigo Garofalo S, Re A, Vasile NS, Verga F, Pirri CF, Menin B, Agostino V. Expanding the product portfolio of carbon dioxide and hydrogen-based gas fermentation with an evolved strain of Clostridium carboxidivorans. BIORESOURCE TECHNOLOGY 2023; 387:129689. [PMID: 37597573 DOI: 10.1016/j.biortech.2023.129689] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
CO2:H2-based gas fermentation with acetogenic Clostridium species are at an early stage of development. This work exploited the Adaptive Laboratory Evolution technique to improve the growth of C. carboxidivorans P7 on CO2 and H2. An adapted strain with decreased growth lag phase and improved biomass production was obtained. Genomic analysis revealed a conserved frameshift mutation in the catalytic subunit of the hexameric hydrogenase gene. The resulted truncated protein variant, most likely lacking its functionality, suggests that other hydrogenases might be more efficient for H2-based growth of this strain. Furthermore, the adapted strain generated hexanol as primary fermentation product. For the first time, hexanol was produced directly from CO2:H2 blend, achieving the highest maximum productivity reported so far via gas fermentation. Traces of valerate, pentanol, eptanol and octanol were observed in the fermentation broth. The adapted strain shows promising to enrich the product spectrum targetable by future gas fermentation processes.
Collapse
Affiliation(s)
- G Antonicelli
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy; Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - L Ricci
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
| | - L Tarraran
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy; Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - S Fraterrigo Garofalo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - A Re
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - N S Vasile
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy; Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - F Verga
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - C F Pirri
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy; Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - B Menin
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy; Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Alfonso Corti 12, 20133 Milan, Italy
| | - V Agostino
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy.
| |
Collapse
|
5
|
Metatranscriptomic insights into the microbial electrosynthesis of acetate by Fe 2+/Ni 2+ addition. World J Microbiol Biotechnol 2023; 39:109. [PMID: 36879133 DOI: 10.1007/s11274-023-03554-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023]
Abstract
As important components of enzymes and coenzymes involved in energy transfer and Wood-Ljungdahl (WL) pathways, Fe2+ and Ni2+ supplementation may promote the acetate synthesis through CO2 reduction by the microbial electrosynthesis (MES). However, the effect of Fe2+ and Ni2+ addition on acetate production in MES and corresponding microbial mechanisms have not been fully studied. Therefore, this study investigated the effect of Fe2+ and Ni2+ addition on acetate production in MES, and explored the underlying microbial mechanism from the metatranscriptomic perspective. Both Fe2+ and Ni2+ addition enhanced acetate production of the MES, which was 76.9% and 110.9% higher than that of control, respectively. Little effect on phylum level and small changes in genus-level microbial composition was caused by Fe2+ and Ni2+ addition. Gene expression of 'Energy metabolism', especially in 'Carbon fixation pathways in prokaryotes' was up-regulated by Fe2+ and Ni2+ addition. Hydrogenase was found as an important energy transfer mediator for CO2 reduction and acetate synthesis. Fe2+ addition and Ni2+ addition respectively enhanced the expression of methyl branch and carboxyl branch of the WL pathway, and thus promoted acetate production. The study provided a metatranscriptomic insight into the effect of Fe2+ and Ni2+ on acetate production by CO2 reduction in MES.
Collapse
|
6
|
Yang Y, Cao W, Shen F, Liu Z, Qin L, Liang X, Wan Y. L-Cys-Assisted Conversion of H 2/CO 2 to Biochemicals Using Clostridium ljungdahlii. Appl Biochem Biotechnol 2023; 195:844-860. [PMID: 36214953 DOI: 10.1007/s12010-022-04174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 01/24/2023]
Abstract
Carbon fixation and conversion based on Clostridium ljungdahlii have great potential for the sustainable production of biochemicals (i.e., 2,3-butanediol, acetic acid, and ethanol). Here, the effects of reducing agents on the production of biochemicals from H2/CO2 using C. ljungdahlii were studied. It was found that the element S and reducing power could significantly affect the production of biochemicals, and cysteine (Cys) was better than sodium sulfide for the production of biochemicals, especially for the production of 2,3-butanediol. Moreover, comparing to the control (i.e., without the addition of Cys), the gene expression profiles indicated that the fdh and adhE1 were significantly upregulated with the addition of Cys, which involved in pathways of the CO2 fixation and ethanol production. Therefore, the irreplaceability of Cys on the production of biochemicals was both caused by its utilization as a reducing agent and its effect on the metabolic pathway. Finally, compared to the control, the production of 2,3-butanediol was increased by 2.17 times under the addition of 1.7 g/L Cys.
Collapse
Affiliation(s)
- Yuling Yang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.,State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weifeng Cao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China. .,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Fei Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiqian Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Linli Qin
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Xinquan Liang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Kwon SJ, Lee J, Lee HS. Metabolic changes of the acetogen Clostridium sp. AWRP through adaptation to acetate challenge. Front Microbiol 2022; 13:982442. [PMID: 36569090 PMCID: PMC9768041 DOI: 10.3389/fmicb.2022.982442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, we report the phenotypic changes that occurred in the acetogenic bacterium Clostridium sp. AWRP as a result of an adaptive laboratory evolution (ALE) under the acetate challenge. Acetate-adapted strain 46 T-a displayed acetate tolerance to acetate up to 10 g L-1 and increased ethanol production in small-scale cultures. The adapted strain showed a higher cell density than AWRP even without exogenous acetate supplementation. 46 T-a was shown to have reduced gas consumption rate and metabolite production. It was intriguing to note that 46 T-a, unlike AWRP, continued to consume H2 at low CO2 levels. Genome sequencing revealed that the adapted strain harbored three point mutations in the genes encoding an electron-bifurcating hydrogenase (Hyt) crucial for autotrophic growth in CO2 + H2, in addition to one in the dnaK gene. Transcriptome analysis revealed that most genes involved in the CO2-fixation Wood-Ljungdahl pathway and auxiliary pathways for energy conservation (e.g., Rnf complex, Nfn, etc.) were significantly down-regulated in 46 T-a. Several metabolic pathways involved in dissimilation of nucleosides and carbohydrates were significantly up-regulated in 46 T-a, indicating that 46 T-a evolved to utilize organic substrates rather than CO2 + H2. Further investigation into degeneration in carbon fixation of the acetate-adapted strain will provide practical implications for CO2 + H2 fermentation using acetogenic bacteria for long-term continuous fermentation.
Collapse
Affiliation(s)
- Soo Jae Kwon
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea
- Department of Marine Biotechnology, University of Science and Technology, Daejeon, South Korea
| | - Joungmin Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea
| | - Hyun Sook Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea
- Department of Marine Biotechnology, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
8
|
Oliveira L, Röhrenbach S, Holzmüller V, Weuster-Botz D. Continuous sulfide supply enhanced autotrophic production of alcohols with Clostridium ragsdalei. BIORESOUR BIOPROCESS 2022; 9:15. [PMID: 38647823 PMCID: PMC10992549 DOI: 10.1186/s40643-022-00506-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
Autotrophic syngas fermentation with clostridia enables the conversion of CO, CO2, and H2 into organic acids and alcohols. The batch process performance of Clostridium ragsdalei was studied in fully controlled and continuously gassed (600 mbar CO, 200 mbar H2, 200 mbar CO2) stirred-tank bioreactors. The final ethanol concentration varied as function of the reaction conditions. Decreasing the pH from pH 6.0-5.5 at a temperature of 37 °C increased the ethanol concentration from 2.33 g L-1 to 3.95 g L-1, whereas lowering the temperature from 37 to 32 °C at constant pH 6.0 resulted in a final ethanol concentration of 5.34 g L-1 after 5 days of batch operation. The sulphur availability was monitored by measuring the cysteine concentration in the medium and the H2S fraction in the exhaust gas. It was found that most of the initially added sulphur was stripped out within the first day of the batch process (first half of the exponential growth phase). A continuous sodium sulfide feed allowed ethanol concentrations to increase more than threefold to 7.67 g L-1 and the alcohol-to-acetate ratio to increase 43-fold to 17.71 g g-1.
Collapse
Affiliation(s)
- Luis Oliveira
- Department of Energy and Process Engineering, School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| | - Simon Röhrenbach
- Department of Energy and Process Engineering, School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| | - Verena Holzmüller
- Department of Energy and Process Engineering, School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| | - Dirk Weuster-Botz
- Department of Energy and Process Engineering, School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany.
| |
Collapse
|
9
|
Piatek P, Humphreys C, Raut MP, Wright PC, Simpson S, Köpke M, Minton NP, Winzer K. Agr Quorum Sensing influences the Wood-Ljungdahl pathway in Clostridium autoethanogenum. Sci Rep 2022; 12:411. [PMID: 35013405 PMCID: PMC8748961 DOI: 10.1038/s41598-021-03999-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/07/2021] [Indexed: 01/04/2023] Open
Abstract
Acetogenic bacteria are capable of fermenting CO2 and carbon monoxide containing waste-gases into a range of platform chemicals and fuels. Despite major advances in genetic engineering and improving these biocatalysts, several important physiological functions remain elusive. Among these is quorum sensing, a bacterial communication mechanism known to coordinate gene expression in response to cell population density. Two putative agr systems have been identified in the genome of Clostridium autoethanogenum suggesting bacterial communication via autoinducing signal molecules. Signal molecule-encoding agrD1 and agrD2 genes were targeted for in-frame deletion. During heterotrophic growth on fructose as a carbon and energy source, single deletions of either gene did not produce an observable phenotype. However, when both genes were simultaneously inactivated, final product concentrations in the double mutant shifted to a 1.5:1 ratio of ethanol:acetate, compared to a 0.2:1 ratio observed in the wild type control, making ethanol the dominant fermentation product. Moreover, CO2 re-assimilation was also notably reduced in both hetero- and autotrophic growth conditions. These findings were supported through comparative proteomics, which showed lower expression of carbon monoxide dehydrogenase, formate dehydrogenase A and hydrogenases in the ∆agrD1∆agrD2 double mutant, but higher levels of putative alcohol and aldehyde dehydrogenases and bacterial micro-compartment proteins. These findings suggest that Agr quorum sensing, and by inference, cell density play a role in carbon resource management and use of the Wood-Ljungdahl pathway as an electron sink.
Collapse
Affiliation(s)
- Pawel Piatek
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465, Trondheim, Norway
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
| | - Christopher Humphreys
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
| | - Mahendra P Raut
- Department of Chemical and Biological Engineering, The ChELSI Institute, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Phillip C Wright
- University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Sean Simpson
- LanzaTech Inc., 8045 Lamon Ave, Suite 400, Skokie, IL, 60077, USA
| | - Michael Köpke
- LanzaTech Inc., 8045 Lamon Ave, Suite 400, Skokie, IL, 60077, USA
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
| | - Klaus Winzer
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK.
| |
Collapse
|
10
|
Systems Biology on Acetogenic Bacteria for Utilizing C1 Feedstocks. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:57-90. [DOI: 10.1007/10_2021_199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Patakova P, Branska B, Vasylkivska M, Jureckova K, Musilova J, Provaznik I, Sedlar K. Transcriptomic studies of solventogenic clostridia, Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnol Adv 2021; 58:107889. [PMID: 34929313 DOI: 10.1016/j.biotechadv.2021.107889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Solventogenic clostridia are not a strictly defined group within the genus Clostridium but its representatives share some common features, i.e. they are anaerobic, non-pathogenic, non-toxinogenic and endospore forming bacteria. Their main metabolite is typically 1-butanol but depending on species and culture conditions, they can form other metabolites such as acetone, isopropanol, ethanol, butyric, lactic and acetic acids, and hydrogen. Although these organisms were previously used for the industrial production of solvents, they later fell into disuse, being replaced by more efficient chemical production. A return to a more biological production of solvents therefore requires a thorough understanding of clostridial metabolism. Transcriptome analysis, which reflects the involvement of individual genes in all cellular processes within a population, at any given (sampling) moment, is a valuable tool for gaining a deeper insight into clostridial life. In this review, we describe techniques to study transcription, summarize the evolution of these techniques and compare methods for data processing and visualization of solventogenic clostridia, particularly the species Clostridium acetobutylicum and Clostridium beijerinckii. Individual approaches for evaluating transcriptomic data are compared and their contributions to advancements in the field are assessed. Moreover, utilization of transcriptomic data for reconstruction of computational clostridial metabolic models is considered and particular models are described. Transcriptional changes in glucose transport, central carbon metabolism, the sporulation cycle, butanol and butyrate stress responses, the influence of lignocellulose-derived inhibitors on growth and solvent production, and other respective topics, are addressed and common trends are highlighted.
Collapse
Affiliation(s)
- Petra Patakova
- University of Chemistry and Technology Prague, Technicka 5, 16628 Prague 6, Czech Republic.
| | - Barbora Branska
- University of Chemistry and Technology Prague, Technicka 5, 16628 Prague 6, Czech Republic
| | - Maryna Vasylkivska
- University of Chemistry and Technology Prague, Technicka 5, 16628 Prague 6, Czech Republic
| | | | - Jana Musilova
- Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| | - Ivo Provaznik
- Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| | - Karel Sedlar
- Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| |
Collapse
|
12
|
Yi J, Huang H, Liang J, Wang R, Liu Z, Li F, Wang S. A Heterodimeric Reduced-Ferredoxin-Dependent Methylenetetrahydrofolate Reductase from Syngas-Fermenting Clostridium ljungdahlii. Microbiol Spectr 2021; 9:e0095821. [PMID: 34643446 PMCID: PMC8515935 DOI: 10.1128/spectrum.00958-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/31/2021] [Indexed: 11/20/2022] Open
Abstract
The strict anaerobe Clostridium ljungdahlii can ferment CO or H2/CO2 via the Wood-Ljungdahl pathway to acetate, ethanol, and 2,3-butanediol. This ability has attracted considerable interest, since it can be used for syngas fermentation to produce biofuels and biochemicals. However, the key enzyme methylenetetrahydrofolate reductase (MTHFR) in the Wood-Ljungdahl pathway of the strain has not been characterized, and its physiological electron donor is unclear. In this study, we purified the enzyme 46-fold with a benzyl viologen reduction activity of 41.2 U/mg from C. ljungdahlii cells grown on CO. It is composed of two subunits, MetF (31.5 kDa) and MetV (23.5 kDa), and has an apparent molecular mass of 62.2 kDa. The brownish yellow protein contains 0.73 flavin mononucleotide (FMN) and 7.4 Fe, in agreement with the prediction that MetF binds one flavin and MetV binds two [4Fe4S] clusters. It cannot use NAD(P)H as its electron donor or catalyze an electron-bifurcating reaction in combination with ferredoxin as an electron acceptor. The reduced recombinant ferredoxin, flavodoxin, and thioredoxin of C. ljungdahlii can serve as electron donors with specific activities of 91.2, 22.1, and 7.4 U/mg, respectively. The apparent Km values for reduced ferredoxin and flavodoxin were around 1.46 μM and 0.73 μM, respectively. Subunit composition and phylogenetic analysis showed that the enzyme from C. ljungdahlii belongs to MetFV-type MTHFR, which is a heterodimer, and uses reduced ferredoxin as its electron donor. Based on these results, we discuss the energy metabolism of C. ljungdahlii when it grows on CO or H2 plus CO2. IMPORTANCE Syngas, a mixture of CO, CO2, and H2, is the main component of steel mill waste gas and also can be generated by the gasification of biomass and urban domestic waste. Its fermentation to biofuels and biocommodities has attracted attention due to the economic and environmental benefits of this process. Clostridium ljungdahlii is one of the superior acetogens used in the technology. However, the biochemical mechanism of its gas fermentation via the Wood-Ljungdahl pathway is not completely clear. In this study, the key enzyme, methylenetetrahydrofolate reductase (MTHFR), was characterized and found to be a non-electron-bifurcating heterodimer with reduced ferredoxin as its electron donor, representing another example of MetFV-type MTHFR. The findings will form the basis for a deeper understanding of the energy metabolism of syngas fermentation by C. ljungdahlii, which is valuable for developing metabolic engineering strains and efficient syngas fermentation technologies.
Collapse
Affiliation(s)
- Jihong Yi
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, People’s Republic of China
| | - Haiyan Huang
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Jiyu Liang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, People’s Republic of China
| | - Rufei Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, People’s Republic of China
| | - Ziyong Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, People’s Republic of China
| | - Fuli Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, People’s Republic of China
| | - Shuning Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, People’s Republic of China
| |
Collapse
|
13
|
Zhang C, Nie X, Zhang H, Wu Y, He H, Yang C, Jiang W, Gu Y. Functional dissection and modulation of the BirA protein for improved autotrophic growth of gas-fermenting Clostridium ljungdahlii. Microb Biotechnol 2021; 14:2072-2089. [PMID: 34291572 PMCID: PMC8449670 DOI: 10.1111/1751-7915.13884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022] Open
Abstract
Gas-fermenting Clostridium species can convert one-carbon gases (CO2 /CO) into a variety of chemicals and fuels, showing excellent application prospects in green biological manufacturing. The discovery of crucial genes and proteins with novel functions is important for understanding and further optimization of these autotrophic bacteria. Here, we report that the Clostridium ljungdahlii BirA protein (ClBirA) plays a pleiotropic regulator role, which, together with its biotin protein ligase (BPL) activity, enables an effective control of autotrophic growth of C. ljungdahlii. The structural modulation of ClBirA, combined with the in vivo and in vitro analyses, further reveals the action mechanism of ClBirA's dual roles as well as their interaction in C. ljungdahlii. Importantly, an atypical, flexible architecture of the binding site was found to be employed by ClBirA in the regulation of a lot of essential pathway genes, thereby expanding BirA's target genes to a broader range in clostridia. Based on these findings, molecular modification of ClBirA was performed, and an improved cellular performance of C. ljungdahlii was achieved in gas fermentation. This work reveals a previously unknown potent role of BirA in gas-fermenting clostridia, providing new perspective for understanding and engineering these autotrophic bacteria.
Collapse
Affiliation(s)
- Can Zhang
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoqun Nie
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Huan Zhang
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijingChina
| | - Yuwei Wu
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijingChina
| | - Huiqi He
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Chen Yang
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Weihong Jiang
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Yang Gu
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| |
Collapse
|
14
|
Abstract
Acetogens synthesize acetyl-CoA via the CO2-fixing Wood-Ljungdahl pathway. Despite their ecological and biotechnological importance, their translational regulation of carbon and energy metabolisms remains unclear. Here, we report how carbon and energy metabolisms in the model acetogen Acetobacterium woodii are translationally controlled under different growth conditions. Data integration of genome-scale transcriptomic and translatomic analyses revealed that the acetogenesis genes, including those of the Wood-Ljungdahl pathway and energy metabolism, showed changes in translational efficiency under autotrophic growth conditions. In particular, genes encoding the Wood-Ljungdahl pathway are translated at similar levels to achieve efficient acetogenesis activity under autotrophic growth conditions, whereas genes encoding the carbonyl branch present increased translation levels in comparison to those for the methyl branch under heterotrophic growth conditions. The translation efficiency of genes in the pathways is differentially regulated by 5′ untranslated regions and ribosome-binding sequences under different growth conditions. Our findings provide potential strategies to optimize the metabolism of syngas-fermenting acetogenic bacteria for better productivity. IMPORTANCE Acetogens are capable of reducing CO2 to multicarbon compounds (e.g., ethanol or 2,3-butanediol) via the Wood-Ljungdahl pathway. Given that protein synthesis in bacteria is highly energy consuming, acetogens living at the thermodynamic limit of life are inevitably under translation control. Here, we dissect the translational regulation of carbon and energy metabolisms in the model acetogen Acetobacterium woodii under heterotrophic and autotrophic growth conditions. The latter may be experienced when acetogen is used as a cell factory that synthesizes products from CO2 during the gas fermentation process. We found that the methyl and carbonyl branches of the Wood-Ljungdahl pathway are activated at similar translation levels during autotrophic growth. Translation is mainly regulated by the 5′-untranslated-region structure and ribosome-binding-site sequence. This work reveals novel translational regulation for coping with autotrophic growth conditions and provides the systematic data set, including the transcriptome, translatome, and promoter/5′-untranslated-region bioparts.
Collapse
|
15
|
Diallo M, Kengen SWM, López-Contreras AM. Sporulation in solventogenic and acetogenic clostridia. Appl Microbiol Biotechnol 2021; 105:3533-3557. [PMID: 33900426 PMCID: PMC8102284 DOI: 10.1007/s00253-021-11289-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
The Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes. Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent productivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes, sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus, understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.Key Points• The regulatory network governing sporulation initiation varies in solventogenic clostridia.• Media composition and cell density are the main triggers of sporulation.• Spores can be used to improve the fermentation process.
Collapse
Affiliation(s)
- Mamou Diallo
- Wageningen Food and Biobased Research, Wageningen, The Netherlands.
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
16
|
Hermann M, Teleki A, Weitz S, Niess A, Freund A, Bengelsdorf FR, Dürre P, Takors R. Identifying and Engineering Bottlenecks of Autotrophic Isobutanol Formation in Recombinant C. ljungdahlii by Systemic Analysis. Front Bioeng Biotechnol 2021; 9:647853. [PMID: 33748092 PMCID: PMC7968104 DOI: 10.3389/fbioe.2021.647853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
Clostridium ljungdahlii (C. ljungdahlii, CLJU) is natively endowed producing acetic acid, 2,3-butandiol, and ethanol consuming gas mixtures of CO2, CO, and H2 (syngas). Here, we present the syngas-based isobutanol formation using C. ljungdahlii harboring the recombinant amplification of the "Ehrlich" pathway that converts intracellular KIV to isobutanol. Autotrophic isobutanol production was studied analyzing two different strains in 3-L gassed and stirred bioreactors. Physiological characterization was thoroughly applied together with metabolic profiling and flux balance analysis. Thereof, KIV and pyruvate supply were identified as key "bottlenecking" precursors limiting preliminary isobutanol formation in CLJU[KAIA] to 0.02 g L-1. Additional blocking of valine synthesis in CLJU[KAIA]:ilvE increased isobutanol production by factor 6.5 finally reaching 0.13 g L-1. Future metabolic engineering should focus on debottlenecking NADPH availability, whereas NADH supply is already equilibrated in the current generation of strains.
Collapse
Affiliation(s)
- Maria Hermann
- Institute of Biochemical Engineering, Faculty of Energy-, Process-, and Bio-Engineering, University of Stuttgart, Stuttgart, Germany
| | - Attila Teleki
- Institute of Biochemical Engineering, Faculty of Energy-, Process-, and Bio-Engineering, University of Stuttgart, Stuttgart, Germany
| | - Sandra Weitz
- Institute of Microbiology and Biotechnology, Faculty of Natural Sciences, University of Ulm, Ulm, Germany
| | - Alexander Niess
- Institute of Biochemical Engineering, Faculty of Energy-, Process-, and Bio-Engineering, University of Stuttgart, Stuttgart, Germany
| | - Andreas Freund
- Institute of Biochemical Engineering, Faculty of Energy-, Process-, and Bio-Engineering, University of Stuttgart, Stuttgart, Germany
| | - Frank Robert Bengelsdorf
- Institute of Microbiology and Biotechnology, Faculty of Natural Sciences, University of Ulm, Ulm, Germany
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, Faculty of Natural Sciences, University of Ulm, Ulm, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, Faculty of Energy-, Process-, and Bio-Engineering, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
17
|
Lo J, Humphreys JR, Jack J, Urban C, Magnusson L, Xiong W, Gu Y, Ren ZJ, Maness PC. The Metabolism of Clostridium ljungdahlii in Phosphotransacetylase Negative Strains and Development of an Ethanologenic Strain. Front Bioeng Biotechnol 2020; 8:560726. [PMID: 33195125 PMCID: PMC7653027 DOI: 10.3389/fbioe.2020.560726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
The sustainable production of chemicals from non-petrochemical sources is one of the greatest challenges of our time. CO2 release from industrial activity is not environmentally friendly yet provides an inexpensive feedstock for chemical production. One means of addressing this problem is using acetogenic bacteria to produce chemicals from CO2, waste streams, or renewable resources. Acetogens are attractive hosts for chemical production for many reasons: they can utilize a variety of feedstocks that are renewable or currently waste streams, can capture waste carbon sources and covert them to products, and can produce a variety of chemicals with greater carbon efficiency over traditional fermentation technologies. Here we investigated the metabolism of Clostridium ljungdahlii, a model acetogen, to probe carbon and electron partitioning and understand what mechanisms drive product formation in this organism. We utilized CRISPR/Cas9 and an inducible riboswitch to target enzymes involved in fermentation product formation. We focused on the genes encoding phosphotransacetylase (pta), aldehyde ferredoxin oxidoreductases (aor1 and aor2), and bifunctional alcohol/aldehyde dehydrogenases (adhE1 and adhE2) and performed growth studies under a variety of conditions to probe the role of those enzymes in the metabolism. Finally, we demonstrated a switch from acetogenic to ethanologenic metabolism by these manipulations, providing an engineered bacterium with greater application potential in biorefinery industry.
Collapse
Affiliation(s)
- Jonathan Lo
- National Renewable Energy Laboratory, Golden, CO, United States
| | | | - Joshua Jack
- Andlinger Center for Energy and Environment, Princeton University, Princeton, NJ, United States
| | - Chris Urban
- National Renewable Energy Laboratory, Golden, CO, United States
| | | | - Wei Xiong
- National Renewable Energy Laboratory, Golden, CO, United States
| | - Yang Gu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhiyong Jason Ren
- Andlinger Center for Energy and Environment, Princeton University, Princeton, NJ, United States
| | | |
Collapse
|
18
|
Synthetic Biology on Acetogenic Bacteria for Highly Efficient Conversion of C1 Gases to Biochemicals. Int J Mol Sci 2020; 21:ijms21207639. [PMID: 33076477 PMCID: PMC7589590 DOI: 10.3390/ijms21207639] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Synthesis gas, which is mainly produced from fossil fuels or biomass gasification, consists of C1 gases such as carbon monoxide, carbon dioxide, and methane as well as hydrogen. Acetogenic bacteria (acetogens) have emerged as an alternative solution to recycle C1 gases by converting them into value-added biochemicals using the Wood-Ljungdahl pathway. Despite the advantage of utilizing acetogens as biocatalysts, it is difficult to develop industrial-scale bioprocesses because of their slow growth rates and low productivities. To solve these problems, conventional approaches to metabolic engineering have been applied; however, there are several limitations owing to the lack of required genetic bioparts for regulating their metabolic pathways. Recently, synthetic biology based on genetic parts, modules, and circuit design has been actively exploited to overcome the limitations in acetogen engineering. This review covers synthetic biology applications to design and build industrial platform acetogens.
Collapse
|
19
|
Abstract
Microbial CO2 fixation and conversion constitute a potential solution to both utilization of greenhouse gas or industrial waste gases and sustainable production of bulk chemicals and fuels. Autotrophic gas-fermenting bacteria play central roles in this bioprocess. This study provides new insights regarding the metabolic regulatory mechanisms underlying CO2 reduction in Clostridium ljungdahlii, a representative gas-fermenting bacterium. A critical formate dehydrogenase (FDH1) responsible for fixing CO2 and a dominant reversible lysine acetylation system, At2/Dat1, were identified. Furthermore, FDH1 was found to be interactively regulated by both the At2/Dat1 system and the global transcriptional factor CcpA, and the two regulatory systems are mutually restricted. Reconstruction of this multilevel metabolic regulatory module led to improved CO2 metabolism by C. ljungdahlii. These findings not only substantively expand our understanding but also provide a potentially useful metabolic engineering strategy for microbial carbon fixation. Protein lysine acetylation, a prevalent posttranslational modification, regulates numerous crucial biological processes in cells. Nevertheless, how lysine acetylation interacts with other types of regulation to coordinate metabolism remains largely unknown owing to the complexity of the process. Here, using a representative gas-fermenting bacterium, Clostridium ljungdahlii, we revealed a novel regulatory mechanism that employs both the lysine acetylation and transcriptional regulation systems to interactively control CO2 fixation, a key biological process for utilizing this one-carbon gas. A dominant lysine acetyltransferase/deacetylase system, At2/Dat1, was identified and found to regulate FDH1 (formate dehydrogenase responsible for CO2 fixation) activity via a crucial acetylation site (lysine-29). Notably, the global transcription factor CcpA was also shown to be regulated by At2/Dat1; in turn, CcpA could directly control At2 expression, thus indicating an unreported interaction mode between the acetylation system and transcription factors. Moreover, CcpA was observed to negatively regulate FDH1 expression, which, when combined with At2/Dat1, leads to the collaborative regulation of this enzyme. Based on this concept, we reconstructed the regulatory network related to FDH1, realizing significantly increased CO2 utilization by C. ljungdahlii.
Collapse
|
20
|
Zhu HF, Liu ZY, Zhou X, Yi JH, Lun ZM, Wang SN, Tang WZ, Li FL. Energy Conservation and Carbon Flux Distribution During Fermentation of CO or H 2/CO 2 by Clostridium ljungdahlii. Front Microbiol 2020; 11:416. [PMID: 32256473 PMCID: PMC7092622 DOI: 10.3389/fmicb.2020.00416] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/27/2020] [Indexed: 11/23/2022] Open
Abstract
Both CO and H2 can be utilized as energy sources during the autotrophic growth of Clostridium ljungdahlii. In principle, CO is a more energetically and thermodynamically favorable energy source for gas fermentation in comparison to H2. Therefore, metabolism may vary during growth under different energy sources. In this study, C. ljungdahlii was fed with CO and/or CO2/H2 at pH 6.0 with a gas pressure of 0.1 MPa. C. ljungdahlii primarily produced acetate in the presence of H2 as an energy source, but produced alcohols with CO as an energy source under the same fermentation conditions. A key enzyme activity assay, metabolic flux analysis, and comparative transcriptomics were performed for investigating the response mechanism of C. ljungdahlii under different energy sources. A CO dehydrogenase and an aldehyde:ferredoxin oxidoreductase were found to play important roles in CO utilization and alcohol production. Based on these findings, novel metabolic schemes are proposed for C. ljungdahlii growing on CO and/or CO2/H2. These schemes indicate that more ATP is produced during CO-fermentation than during H2-fermentation, leading to increased alcohol production.
Collapse
Affiliation(s)
- Hai-Feng Zhu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Zi-Yong Liu
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xia Zhou
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC Exploration and Production Research Institute, Beijing, China
| | - Ji-Hong Yi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zeng-Min Lun
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC Exploration and Production Research Institute, Beijing, China
| | - Shu-Ning Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wen-Zhu Tang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Fu-Li Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
21
|
de Souza Pinto Lemgruber R, Valgepea K, Gonzalez Garcia RA, de Bakker C, Palfreyman RW, Tappel R, Köpke M, Simpson SD, Nielsen LK, Marcellin E. A TetR-Family Protein (CAETHG_0459) Activates Transcription From a New Promoter Motif Associated With Essential Genes for Autotrophic Growth in Acetogens. Front Microbiol 2019; 10:2549. [PMID: 31803150 PMCID: PMC6873888 DOI: 10.3389/fmicb.2019.02549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/22/2019] [Indexed: 01/08/2023] Open
Abstract
Acetogens can fix carbon (CO or CO2) into acetyl-CoA via the Wood-Ljungdahl pathway (WLP) that also makes them attractive cell factories for the production of fuels and chemicals from waste feedstocks. Although most biochemical details of the WLP are well understood and systems-level characterization of acetogen metabolism has recently improved, key transcriptional features such as promoter motifs and transcriptional regulators are still unknown in acetogens. Here, we use differential RNA-sequencing to identify a previously undescribed promoter motif associated with essential genes for autotrophic growth of the model-acetogen Clostridium autoethanogenum. RNA polymerase was shown to bind to the new promoter motif using a DNA-binding protein assay and proteomics enabled the discovery of four candidates to potentially function directly in control of transcription of the WLP and other key genes of C1 fixation metabolism. Next, in vivo experiments showed that a TetR-family transcriptional regulator (CAETHG_0459) and the housekeeping sigma factor (σA) activate expression of a reporter protein (GFP) in-frame with the new promoter motif from a fusion vector in Escherichia coli. Lastly, a protein-protein interaction assay with the RNA polymerase (RNAP) shows that CAETHG_0459 directly binds to the RNAP. Together, the data presented here advance the fundamental understanding of transcriptional regulation of C1 fixation in acetogens and provide a strategy for improving the performance of gas-fermenting bacteria by genetic engineering.
Collapse
Affiliation(s)
| | - Kaspar Valgepea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | | | - Christopher de Bakker
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Robin William Palfreyman
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
- Queensland Node of Metabolomics Australia, The University of Queensland, Brisbane, QLD, Australia
| | | | | | | | - Lars Keld Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
- Queensland Node of Metabolomics Australia, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Emerson DF, Stephanopoulos G. Limitations in converting waste gases to fuels and chemicals. Curr Opin Biotechnol 2019; 59:39-45. [DOI: 10.1016/j.copbio.2019.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 12/22/2022]
|
23
|
Lee J, Lee JW, Chae CG, Kwon SJ, Kim YJ, Lee JH, Lee HS. Domestication of the novel alcohologenic acetogen Clostridium sp. AWRP: from isolation to characterization for syngas fermentation. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:228. [PMID: 31572495 PMCID: PMC6757427 DOI: 10.1186/s13068-019-1570-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Gas-fermenting acetogens have received a great deal of attention for their ability to grow on various syngas and waste gas containing carbon monoxide (CO), producing acetate as the primary metabolite. Among them, some Clostridium species, such as C. ljungdahlii and C. autoethanogenum, are of particular interest as they produce fuel alcohols as well. Despite recent efforts, alcohol production by these species is still unsatisfactory due to their low productivity and acetate accumulation, necessitating the isolation of strains with better phenotypes. RESULTS In this study, a novel alcohol-producing acetogen (Clostridium sp. AWRP) was isolated, and its complete genome was sequenced. This bacterium belongs the same phylogenetic group as C. ljungdahlii, C. autoethanogenum, C. ragsdalei, and C. coskatii based on 16S rRNA homology; however, the levels of genome-wide average nucleotide identity (gANI) for strain AWRP compared with these strains range between 95 and 96%, suggesting that this strain can be classified as a novel species. In addition, strain AWRP produced a substantial amount of ethanol (70-90 mM) from syngas in batch serum bottle cultures, which was comparable to or even exceeded the typical values obtained using its close relatives cultivated under similar conditions. In a batch bioreactor, strain AWRP produced 119 and 12 mM of ethanol and 2,3-butanediol, respectively, while yielding only 1.4 mM of residual acetate. Interestingly, the alcohologenesis of this strain was strongly affected by oxidoreduction potential (ORP), which has not been reported with other gas-fermenting clostridia. CONCLUSION Considering its ethanol production under low oxidoreduction potential (ORP) conditions, Clostridium sp. AWRP will be an interesting host for biochemical studies to understand the physiology of alcohol-producing acetogens, which will contribute to metabolic engineering of those strains for the production of alcohols and other value-added compounds from syngas.
Collapse
Affiliation(s)
- Joungmin Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Haeyangro 385, Busan, 49111 Republic of Korea
| | - Jin Woo Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Haeyangro 385, Busan, 49111 Republic of Korea
| | - Cheol Gi Chae
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Haeyangro 385, Busan, 49111 Republic of Korea
- Department of Marine Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Soo Jae Kwon
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Haeyangro 385, Busan, 49111 Republic of Korea
- Department of Marine Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Yun Jae Kim
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Haeyangro 385, Busan, 49111 Republic of Korea
- Department of Marine Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Haeyangro 385, Busan, 49111 Republic of Korea
- Department of Marine Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Hyun Sook Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Haeyangro 385, Busan, 49111 Republic of Korea
- Department of Marine Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
24
|
Optimization of carbon and energy utilization through differential translational efficiency. Nat Commun 2018; 9:4474. [PMID: 30367068 PMCID: PMC6203783 DOI: 10.1038/s41467-018-06993-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 10/02/2018] [Indexed: 01/19/2023] Open
Abstract
Control of translation is vital to all species. Here we employ a multi-omics approach to decipher condition-dependent translational regulation in the model acetogen Clostridium ljungdahlii. Integration of data from cells grown autotrophically or heterotrophically revealed that pathways critical to carbon and energy metabolism are under strong translational regulation. Major pathways involved in carbon and energy metabolism are not only differentially transcribed and translated, but their translational efficiencies are differentially elevated in response to resource availability under different growth conditions. We show that translational efficiency is not static and that it changes dynamically in response to mRNA expression levels. mRNAs harboring optimized 5'-untranslated region and coding region features, have higher translational efficiencies and are significantly enriched in genes encoding carbon and energy metabolism. In contrast, mRNAs enriched in housekeeping functions harbor sub-optimal features and have lower translational efficiencies. We propose that regulation of translational efficiency is crucial for effectively controlling resource allocation in energy-deprived microorganisms.
Collapse
|