1
|
Garafutdinov RR, Kupova OY, Sakhabutdinova AR. Influence of Nucleotide Context on Non-Specific Amplification of DNA with Bst exo - DNA Polymerase. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:53-64. [PMID: 38467545 DOI: 10.1134/s0006297924010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 03/13/2024]
Abstract
Isothermal nucleic acids amplification that requires DNA polymerases with strand-displacement activity gained more attention in the last two decades. Among the DNA polymerases with strand-displacement activity, Bst exo- is the most widely used. However, it tends to carry out nonspecific DNA synthesis through multimerization. In this study, the effect of nucleotide sequence on the Bst exo- binding with DNA and on the efficiency of multimerization initiation, are reported. Preference for binding of the "closed" form of Bst exo- to the purine-rich DNA sequences, especially those containing dG at the 3'-end of the growing chain was revealed using molecular docking of the single-stranded trinucleotides (sst) and trinucleotide duplexes (dst). The data obtained in silico were confirmed in the experiments using oligonucleotide templates that differ in the structure of the 3'- and 5'-terminal motifs. It has been shown that templates with the oligopurine 3'-terminal fragment and oligopyrimidine 5'-terminal part contribute to the earlier start of multimerization. The results can be used for design of nucleotide sequences suitable for reliable isothermal amplification. To avoid multimerization, DNA templates and primers containing terminal dA and/or dG nucleotides should be excluded.
Collapse
Affiliation(s)
- Ravil R Garafutdinov
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, 450054, Russia.
| | - Olga Yu Kupova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, 450054, Russia
| | - Assol R Sakhabutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, 450054, Russia
| |
Collapse
|
2
|
Wax N, Pförtner LS, Holz N, Sterzl S, Melnik M, Kappel K, Bade P, Schröder U, Haase I, Fritsche J, Fischer M. Fast and User-Friendly Detection of Flatfish Species ( Pleuronectes platessa and Solea solea) via Loop-Mediated Isothermal Amplification (LAMP). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14795-14805. [PMID: 37751470 DOI: 10.1021/acs.jafc.3c03917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The detection of a Cytochrome b gene (cytb) for species differentiation in fish is intensively used. A fast alternative to expensive and time-consuming DNA barcoding is loop-mediated isothermal amplification (LAMP) in combination with efficient readout systems. For this reason, we developed LAMP assays for rapid species detection of Pleuronectes platessa and Solea solea, two economically important flatfish species in Europe that are prone to mislabeling. Species-specific primer sets targeting cytb were designed, and LAMP assays were optimized. With the optimized LAMP assays, we were able to detect up to 0.1 and 0.01 ng of target DNA of P. platessa and S. solea, respectively, and in each case up to 1% (w/w) of target species in mixtures with nontarget species. For future on-site detection, a lateral flow assay and a pocket-sized lab-on-phone assay were used as readout systems. The lab-on-phone assay with the S. solea specific primer set revealed cross-reactivity to Solea senegalensis. The assay targeting P. platessa proved to be highly specific. Both assays could be performed within 45 min and provided rapid and easy detection of fish species.
Collapse
Affiliation(s)
- Nils Wax
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Laura Sophie Pförtner
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Nathalie Holz
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Svenja Sterzl
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Melina Melnik
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Kristina Kappel
- National Reference Centre for Authentic Food, Max Rubner-Institut (MRI), Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
| | - Patrizia Bade
- National Reference Centre for Authentic Food, Max Rubner-Institut (MRI), Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
| | - Ute Schröder
- Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut (MRI), Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
| | - Ilka Haase
- National Reference Centre for Authentic Food, Max Rubner-Institut (MRI), E.-C.-Baumann-Straße 20, 95326 Kulmbach, Germany
| | - Jan Fritsche
- Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut (MRI), Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|
3
|
Sakhabutdinova AR, Chemeris AV, Garafutdinov RR. Detection of Specific RNA Targets by Multimerization. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:679-686. [PMID: 37331713 DOI: 10.1134/s0006297923050103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/26/2023] [Accepted: 03/09/2023] [Indexed: 06/20/2023]
Abstract
Detection of specific RNA targets via amplification-mediated techniques is widely used in fundamental studies and medicine due to essential role of RNA in transfer of genetic information and development of diseases. Here, we report on an approach for detection of RNA targets based on the particular type of isothermal amplification, namely, reaction of nucleic acid multimerization. The proposed technique requires only a single DNA polymerase possessing reverse transcriptase, DNA-dependent DNA polymerase, and strand-displacement activities. Reaction conditions that lead to efficient detection of the target RNAs through multimerization mechanism were determined. The approach was verified by using genetic material of the SARS-CoV-2 coronavirus as a model viral RNA. Reaction of multimerization allowed to differentiate the SARS-CoV-2 RNA-positive samples from the SARS-CoV-2 negative samples with high reliability. The proposed technique allows detection of RNA even in the samples, which were subjected to multiple freezing-thawing cycles.
Collapse
Affiliation(s)
- Assol R Sakhabutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, 450054, Bashkortostan, Russia
| | - Alexey V Chemeris
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, 450054, Bashkortostan, Russia
| | - Ravil R Garafutdinov
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, 450054, Bashkortostan, Russia.
| |
Collapse
|
4
|
Antropov DN, Stepanov GA. Molecular Mechanisms Underlying CRISPR/Cas-Based Assays for Nucleic Acid Detection. Curr Issues Mol Biol 2023; 45:649-662. [PMID: 36661529 PMCID: PMC9857636 DOI: 10.3390/cimb45010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
Applied to investigate specific sequences, nucleic acid detection assays can help identify novel bacterial and viral infections. Most up-to-date systems combine isothermal amplification with Cas-mediated detection. They surpass standard PCR methods in detection time and sensitivity, which is crucial for rapid diagnostics. The first part of this review covers the variety of isothermal amplification methods and describes their reaction mechanisms. Isothermal amplification enables fast multiplication of a target nucleic acid sequence without expensive laboratory equipment. However, researchers aim for more reliable results, which cannot be achieved solely by amplification because it is also a source of non-specific products. This motivated the development of Cas-based assays that use Cas9, Cas12, or Cas13 proteins to detect nucleic acids and their fragments in biological specimens with high specificity. Isothermal amplification yields a high enough concentration of target nucleic acids for the specific signal to be detected via Cas protein activity. The second part of the review discusses combinations of different Cas-mediated reactions and isothermal amplification methods and presents signal detection techniques adopted in each assay. Understanding the features of Cas-based assays could inform the choice of an optimal protocol to detect different nucleic acids.
Collapse
|
5
|
Gray ER, Mordaka JM, Christoforou ER, von Bargen K, Potts ND, Xyrafaki C, Silva AL, Stolarek-Januszkiewicz M, Anton K, Powalowska PK, Andreazza S, Tomassini A, Palmer RN, Cooke A, Osborne RJ, Balmforth BW. Ultra-sensitive molecular detection of gene fusions from RNA using ASPYRE. BMC Med Genomics 2022; 15:215. [PMID: 36224552 PMCID: PMC9555097 DOI: 10.1186/s12920-022-01363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
Background RNA is a critical analyte for unambiguous detection of actionable mutations used to guide treatment decisions in oncology. Currently available methods for gene fusion detection include molecular or antibody-based assays, which suffer from either being limited to single-gene targeting, lack of sensitivity, or long turnaround time. The sensitivity and predictive value of next generation sequencing DNA-based assays to detect fusions by sequencing intronic regions is variable, due to the extensive size of introns. The required depth of sequencing and input nucleic acid required can be prohibitive; in addition it is not certain that predicted gene fusions are actually expressed. Results Herein we describe a method based on pyrophosphorolysis to include detection of gene fusions from RNA, with identical assay steps and conditions to detect somatic mutations in DNA [1], permitting concurrent assessment of DNA and RNA in a single instrument run. Conclusion The limit of detection was under 6 molecules/ 6 µL target volume. The workflow and instrumentation required are akin to PCR assays, and the entire assay from extracted nucleic acid to sample analysis can be completed within a single day. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01363-0.
Collapse
Affiliation(s)
- Eleanor R Gray
- Biofidelity Ltd, 330 Cambridge Science Park, Milton road, CB4 0WN, Cambridge, England
| | - Justyna M Mordaka
- Biofidelity Ltd, 330 Cambridge Science Park, Milton road, CB4 0WN, Cambridge, England
| | | | - Kristine von Bargen
- Biofidelity Ltd, 330 Cambridge Science Park, Milton road, CB4 0WN, Cambridge, England
| | - Nicola D Potts
- Biofidelity Ltd, 330 Cambridge Science Park, Milton road, CB4 0WN, Cambridge, England
| | - Christina Xyrafaki
- Biofidelity Ltd, 330 Cambridge Science Park, Milton road, CB4 0WN, Cambridge, England
| | - Ana-Luisa Silva
- Biofidelity Ltd, 330 Cambridge Science Park, Milton road, CB4 0WN, Cambridge, England
| | | | - Katarzyna Anton
- Biofidelity Ltd, 330 Cambridge Science Park, Milton road, CB4 0WN, Cambridge, England
| | - Paulina K Powalowska
- Biofidelity Ltd, 330 Cambridge Science Park, Milton road, CB4 0WN, Cambridge, England
| | - Simonetta Andreazza
- Biofidelity Ltd, 330 Cambridge Science Park, Milton road, CB4 0WN, Cambridge, England
| | - Alessandro Tomassini
- Biofidelity Ltd, 330 Cambridge Science Park, Milton road, CB4 0WN, Cambridge, England
| | - Rebecca N Palmer
- Biofidelity Ltd, 330 Cambridge Science Park, Milton road, CB4 0WN, Cambridge, England
| | - Aishling Cooke
- Biofidelity Ltd, 330 Cambridge Science Park, Milton road, CB4 0WN, Cambridge, England
| | - Robert J Osborne
- Biofidelity Ltd, 330 Cambridge Science Park, Milton road, CB4 0WN, Cambridge, England
| | - Barnaby W Balmforth
- Biofidelity Ltd, 330 Cambridge Science Park, Milton road, CB4 0WN, Cambridge, England.
| |
Collapse
|
6
|
Hyman LB, Christopher CR, Romero PA. Competitive SNP-LAMP probes for rapid and robust single-nucleotide polymorphism detection. CELL REPORTS METHODS 2022; 2:100242. [PMID: 35880021 PMCID: PMC9308130 DOI: 10.1016/j.crmeth.2022.100242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/28/2022] [Accepted: 06/02/2022] [Indexed: 12/01/2022]
Abstract
In this work, we developed a simple and robust assay to rapidly detect SNPs in nucleic acid samples. Our approach combines loop-mediated isothermal amplification (LAMP)-based target amplification with fluorescent probes to detect SNPs with high specificity. A competitive "sink" strand preferentially binds to non-SNP amplicons and shifts the free energy landscape to favor specific activation by SNP products. We demonstrated the broad utility and reliability of our SNP-LAMP method by detecting three distinct SNPs across the human genome. We also designed an assay to rapidly detect highly transmissible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants from crude biological samples. This work demonstrates that competitive SNP-LAMP is a powerful and universal method that could be applied in point-of-care settings to detect any target SNP with high specificity and sensitivity. We additionally developed a publicly available web application for researchers to design SNP-LAMP probes for any target sequence of interest.
Collapse
Affiliation(s)
- Leland B. Hyman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Philip A. Romero
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
7
|
Garafutdinov RR, Sakhabutdinova AR, Gilvanov AR, Chemeris AV. Rolling Circle Amplification as a Universal Method for the Analysis of a Wide Range of Biological Targets. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021; 47:1172-1189. [PMID: 34931113 PMCID: PMC8675116 DOI: 10.1134/s1068162021060078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 11/23/2022]
Abstract
Detection and quantification of biotargets are important analytical tasks, which are solved using a wide range of various methods. In recent years, methods based on the isothermal amplification of nucleic acids (NAs) have been extensively developed. Among them, a special place is occupied by rolling circle amplification (RCA), which is used not only for the detection of a specific NA but also for the analysis of other biomolecules, and is also a versatile platform for the development of highly sensitive methods and convenient diagnostic devices. The present review reveals a number of methodical aspects of RCA-mediated analysis; in particular, the data on its key molecular participants are presented, the methods for increasing the efficiency and productivity of RCA are described, and different variants of reporter systems are briefly characterized. Differences in the techniques of RCA-mediated analysis of biotargets of various types are shown. Some examples of using different RCA variants for the solution of specific diagnostic problems are given.
Collapse
Affiliation(s)
- R. R. Garafutdinov
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia
| | - A. R. Sakhabutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia
| | - A. R. Gilvanov
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia
| | - A. V. Chemeris
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia
| |
Collapse
|
8
|
Carboxamide and N-alkylcarboxamide additives can greatly reduce non specific amplification in Loop-Mediated Isothermal Amplification for Foot-and-Mouth disease Virus (FMDV) using Bst 3.0 polymerase. J Virol Methods 2021; 298:114284. [PMID: 34520810 DOI: 10.1016/j.jviromet.2021.114284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/12/2021] [Accepted: 09/10/2021] [Indexed: 11/23/2022]
Abstract
Foot-and-Mouth disease Virus (FMDV) is a highly infectious RNA virus that causes severe economic losses in cloven-hoofed animals. Early detection is needed to control epidemics, and loop-mediated isothermal amplification (LAMP) can be performed using inexpensive and commonly available equipment with a short processing time, but existing assays for FMDV still require an additional reverse transcriptase enzyme to convert RNA to cDNA prior to amplification. We sought to develop a novel RT-LAMP assay for FMDV with carboxamide and N-alkylcarboxamide additives to reduce non-specific amplification in combination with an improved commercially available polymerase (Bst 3.0) with efficient reverse transcriptase activity. SYBR Green I dye was used for sensitive visual detection of amplification products from our LAMP assay within 15 min without the need for a colorimeter. In the presence of a carefully titrated mixture of carboxamide and N-alkylcarboxamide additives, longer reactions of up to 1 h were also possible on both RNA and cDNA without the appearance of non-specific amplification products, thereby increasing the potential robustness of the assay by allowing a greater window of time in which to detect weak positives.
Collapse
|
9
|
Jamwal VL, Kumar N, Bhat R, Jamwal PS, Singh K, Dogra S, Kulkarni A, Bhadra B, Shukla MR, Saran S, Dasgupta S, Vishwakarma RA, Gandhi SG. Optimization and validation of RT-LAMP assay for diagnosis of SARS-CoV2 including the globally dominant Delta variant. Virol J 2021; 18:178. [PMID: 34461941 PMCID: PMC8404189 DOI: 10.1186/s12985-021-01642-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/12/2021] [Indexed: 01/12/2023] Open
Abstract
Background Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19 pandemic, has infected more than 179 million people worldwide. Testing of infected individuals is crucial for identification and isolation, thereby preventing further spread of the disease. Presently, Taqman™ Reverse Transcription Real Time PCR is considered gold standard, and is the most common technique used for molecular testing of COVID-19, though it requires sophisticated equipments, expertise and is also relatively expensive. Objective Development and optimization of an alternate molecular testing method for the diagnosis of COVID-19, through a two step Reverse Transcription Loop-mediated isothermal AMPlification (RT-LAMP). Results Primers for LAMP were carefully designed for discrimination from other closely related human pathogenic coronaviruses. Care was also taken that primer binding sites are present in conserved regions of SARS-CoV2. Our analysis shows that the primer binding sites are well conserved in all the variants of concern (VOC) and variants of interest (VOI), notified by World Health Organization (WHO). These lineages include B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.427/B.1.429, P.2, B.1.525, P.3, B.1.526 and B.1.617.1. Various DNA polymerases with strand displacement activity were evaluated and conditions were optimized for LAMP amplification and visualization. Different LAMP primer sets were also evaluated using synthetic templates as well as patient samples. Conclusion In a double blind study, the RT-LAMP assay was validated on more than 150 patient samples at two different sites. The RT-LAMP assay appeared to be 89.2% accurate when compared to the Taqman™ rt-RT-PCR assay. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01642-9.
Collapse
Affiliation(s)
- Vijay Lakshmi Jamwal
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Natish Kumar
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Rahul Bhat
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Piyush Singh Jamwal
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Kaurab Singh
- Higher Education Department, Union Territory of Jammu and Kashmir, Jammu, India
| | - Sandeep Dogra
- Department of Microbiology, Government Medical College, Jammu, 180001, India
| | - Abhishek Kulkarni
- A2O - Biology, Reliance Technology Group, Reliance Industries Limited, RCP, Navi Mumbai, 400701, India
| | - Bhaskar Bhadra
- A2O - Biology, Reliance Technology Group, Reliance Industries Limited, RCP, Navi Mumbai, 400701, India
| | - Manish R Shukla
- A2O - Biology, Reliance Technology Group, Reliance Industries Limited, RCP, Navi Mumbai, 400701, India
| | - Saurabh Saran
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Santanu Dasgupta
- A2O - Biology, Reliance Technology Group, Reliance Industries Limited, RCP, Navi Mumbai, 400701, India
| | - Ram A Vishwakarma
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Sumit G Gandhi
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Zyrina NV, Antipova VN. Nonspecific Synthesis in the Reactions of Isothermal Nucleic Acid Amplification. BIOCHEMISTRY (MOSCOW) 2021; 86:887-897. [PMID: 34284713 DOI: 10.1134/s0006297921070099] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The review focuses on the main factors involved in the formation of nonspecific products in isothermal nucleic acid amplification, such as mispriming, ab initio DNA synthesis, and additional activities of DNA polymerases, and discusses approaches to prevent formation of such nonspecific products in LAMP, RPA, NASBA, RCA, SDA, LSDA, NDA, and EXPAR.
Collapse
Affiliation(s)
- Nadezhda V Zyrina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Valeriya N Antipova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
11
|
Glökler J, Lim TS, Ida J, Frohme M. Isothermal amplifications - a comprehensive review on current methods. Crit Rev Biochem Mol Biol 2021; 56:543-586. [PMID: 34263688 DOI: 10.1080/10409238.2021.1937927] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The introduction of nucleic acid amplification techniques has revolutionized the field of medical diagnostics in the last decade. The advent of PCR catalyzed the increasing application of DNA, not just for molecular cloning but also for molecular based diagnostics. Since the introduction of PCR, a deeper understanding of molecular mechanisms and enzymes involved in DNA/RNA replication has spurred the development of novel methods devoid of temperature cycling. Isothermal amplification methods have since been introduced utilizing different mechanisms, enzymes, and conditions. The ease with which isothermal amplification methods have allowed nucleic acid amplification to be carried out has had a profound impact on the way molecular diagnostics are being designed after the turn of the millennium. With all the advantages isothermal amplification brings, the issues or complications surrounding each method are heterogeneous making it difficult to identify the best approach for an end-user. This review pays special attention to the various isothermal amplification methods by classifying them based on the mechanistic characteristics which include reaction formats, amplification information, promoter, strand break, and refolding mechanisms. We would also compare the efficiencies and usefulness of each method while highlighting the potential applications and detection methods involved. This review will serve as an overall outlook on the journey and development of isothermal amplification methods as a whole.
Collapse
Affiliation(s)
- Jörn Glökler
- Department of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Jeunice Ida
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Marcus Frohme
- Department of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| |
Collapse
|
12
|
Sakhabutdinova AR, Kamalov MI, Salakhieva DV, Mavzyutov AR, Garafutdinov RR. Inhibition of nonspecific polymerase activity using Poly(Aspartic) acid as a model anionic polyelectrolyte. Anal Biochem 2021; 628:114267. [PMID: 34089699 DOI: 10.1016/j.ab.2021.114267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/04/2023]
Abstract
DNA polymerases with strand-displacement activity allow to amplify nucleic acids under isothermal conditions but often lead to undesirable by-products. Here, we report the increase of specificity of isothermal amplification in the presence of poly (aspartic) acids (pAsp). We hypothesized that side reactions occur due to the binding of the phosphate backbone of synthesized DNA strands with surface amino groups of the polymerase, and weakly acidic polyelectrolytes could shield polymerase molecules from DNA and thereby inhibit nonspecific amplification. Suppression of nonspecific polymerase activity by pAsp was studied on multimerization as a model side reaction. It was found that a low concentration of pAsp (0.01%) provides successful amplification of specific DNA targets. The inhibitory effect of pAsp is due to its polymeric structure since aspartic acid did affect neither specific nor nonspecific amplification. Strongly acidic polyelectrolyte heparin does not possess the same selectivity since it suppresses any DNA synthesis. The applicability of pAsp to prevent nonspecific reactions and reliable detection of the specific target has been demonstrated on the genetic material of SARS-CoV-2 coronavirus using Loop-mediated isothermal amplification.
Collapse
Affiliation(s)
- Assol R Sakhabutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, 450054, Prosp. Oktyabrya, 71, Ufa, Bashkortostan, Russia.
| | - Marat I Kamalov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021, Parizhskoy Kommuny Str., 9, Kazan, Tatarstan, Russia.
| | - Diana V Salakhieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021, Parizhskoy Kommuny Str., 9, Kazan, Tatarstan, Russia.
| | - Ayrat R Mavzyutov
- Bashkir State Medical University, 450008, Lenin Str., 3, Ufa, Bashkortostan, Russia; Research Center «LABORATORY», Ltd, 450501, PO Box, 147, Bulgakovo, Ufa District, Bashkortostan, Russia.
| | - Ravil R Garafutdinov
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, 450054, Prosp. Oktyabrya, 71, Ufa, Bashkortostan, Russia.
| |
Collapse
|
13
|
Silva AL, Powalowska PK, Stolarek M, Gray ER, Palmer RN, Herman B, Frayling CA, Balmforth BW. Single-copy detection of somatic variants from solid and liquid biopsy. Sci Rep 2021; 11:6068. [PMID: 33727644 PMCID: PMC7966381 DOI: 10.1038/s41598-021-85545-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Accurate detection of somatic variants, against a background of wild-type molecules, is essential for clinical decision making in oncology. Existing approaches, such as allele-specific real-time PCR, are typically limited to a single target gene and lack sensitivity. Alternatively, next-generation sequencing methods suffer from slow turnaround time, high costs, and are complex to implement, typically limiting them to single-site use. Here, we report a method, which we term Allele-Specific PYrophosphorolysis Reaction (ASPYRE), for high sensitivity detection of panels of somatic variants. ASPYRE has a simple workflow and is compatible with standard molecular biology reagents and real-time PCR instruments. We show that ASPYRE has single molecule sensitivity and is tolerant of DNA extracted from plasma and formalin fixed paraffin embedded (FFPE) samples. We also demonstrate two multiplex panels, including one for detection of 47 EGFR variants. ASPYRE presents an effective and accessible method that simplifies highly sensitive and multiplexed detection of somatic variants.
Collapse
Affiliation(s)
- Ana-Luisa Silva
- Biofidelity Ltd, 330 Cambridge Science Park, Cambridge, CB4 0WN, UK
| | | | | | | | | | - Bram Herman
- Agilent Technologies LDA UK Ltd, 5500 Lakeside, Cheadle, SK8 3GR, UK
| | | | | |
Collapse
|
14
|
Garafutdinov RR, Kupova OY, Gilvanov AR, Sakhabutdinova AR. Data on molecular docking simulations of quaternary complexes 'Bst exo- polymerase-DNA-dCTP-metal cations'. Data Brief 2020; 33:106549. [PMID: 33299910 PMCID: PMC7704292 DOI: 10.1016/j.dib.2020.106549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022] Open
Abstract
This article reports data related to the research article entitled “Effect of metal ions on isothermal amplification with Bst exo- DNA polymerase” (R.R. Garafutdinov, A.R. Gilvanov, O.Y. Kupova, A.R. Sakhabutdinova, 2020) [1]. Here, the results of molecular simulations of the complexes of Bst exo- DNA polymerase with dCTP triphosphate, double-stranded DNA and divalent metal cations are presented. Energetic parameters, number and type of chemical bonds formed by dCTP with the environment are given.
Collapse
Affiliation(s)
- Ravil R Garafutdinov
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, Ufa, Russia
| | - Olga Yu Kupova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, Ufa, Russia.,Ufa State Petroleum Technological University, Ufa, Russia
| | - Aidar R Gilvanov
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, Ufa, Russia
| | - Assol R Sakhabutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, Ufa, Russia
| |
Collapse
|
15
|
Garafutdinov RR, Gilvanov AR, Kupova OY, Sakhabutdinova AR. Effect of metal ions on isothermal amplification with Bst exo- DNA polymerase. Int J Biol Macromol 2020; 161:1447-1455. [DOI: 10.1016/j.ijbiomac.2020.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 01/28/2023]
|
16
|
Li M, Liu M, Ma C, Shi C. Rapid DNA detection and one-step RNA detection catalyzed by Bst DNA polymerase and narrow-thermal-cycling. Analyst 2020; 145:5118-5122. [PMID: 32648859 DOI: 10.1039/d0an00975j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We reported a novel detection method named accelerated strand exchange amplification by employing Bst DNA polymerase and narrow-thermal-cycling for the first time, achieving direct detection of 120 copies of DNA within 15 min and 1.2 × 105 copies of RNA within 20 min and sparking the revolution of the use of routine isothermal polymerases for diverse applications.
Collapse
Affiliation(s)
- Mengzhe Li
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, and Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China.
| | | | | | | |
Collapse
|
17
|
Rolando JC, Jue E, Barlow JT, Ismagilov RF. Real-time kinetics and high-resolution melt curves in single-molecule digital LAMP to differentiate and study specific and non-specific amplification. Nucleic Acids Res 2020; 48:e42. [PMID: 32103255 PMCID: PMC7144905 DOI: 10.1093/nar/gkaa099] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/08/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022] Open
Abstract
Isothermal amplification assays, such as loop-mediated isothermal amplification (LAMP), show great utility for the development of rapid diagnostics for infectious diseases because they have high sensitivity, pathogen-specificity and potential for implementation at the point of care. However, elimination of non-specific amplification remains a key challenge for the optimization of LAMP assays. Here, using chlamydia DNA as a clinically relevant target and high-throughput sequencing as an analytical tool, we investigate a potential mechanism of non-specific amplification. We then develop a real-time digital LAMP (dLAMP) with high-resolution melting temperature (HRM) analysis and use this single-molecule approach to analyze approximately 1.2 million amplification events. We show that single-molecule HRM provides insight into specific and non-specific amplification in LAMP that are difficult to deduce from bulk measurements. We use real-time dLAMP with HRM to evaluate differences between polymerase enzymes, the impact of assay parameters (e.g. time, rate or florescence intensity), and the effect background human DNA. By differentiating true and false positives, HRM enables determination of the optimal assay and analysis parameters that leads to the lowest limit of detection (LOD) in a digital isothermal amplification assay.
Collapse
Affiliation(s)
- Justin C Rolando
- Division of Chemistry and Chemical Engineering, California Institute of Technology 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Erik Jue
- Division of Biology and Biological Engineering, California Institute of Technology 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Jacob T Barlow
- Division of Biology and Biological Engineering, California Institute of Technology 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Rustem F Ismagilov
- Division of Chemistry and Chemical Engineering, California Institute of Technology 1200 E. California Boulevard, Pasadena, CA 91125, USA
- Division of Biology and Biological Engineering, California Institute of Technology 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
18
|
Sakhabutdinova AR, Mirsaeva LR, Oscorbin IP, Filipenko ML, Garafutdinov RR. Elimination of DNA Multimerization Arising from Isothermal Amplification in the Presence of Bst Exo– DNA Polymerase. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020010082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Garafutdinov RR, Sakhabutdinova AR, Kupryushkin MS, Pyshnyi DV. Data on multimerization efficiency for short linear DNA templates and phosphoryl guanidine primers during isothermal amplification with Bst exo- DNA polymerase. Data Brief 2020; 29:105188. [PMID: 32071971 PMCID: PMC7011048 DOI: 10.1016/j.dib.2020.105188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/21/2020] [Indexed: 11/23/2022] Open
Abstract
This article reports experimental data related to the research article entitled “Prevention of DNA multimerization using phosphoryl guanidine primers during isothermal amplification with Bst exo- DNA polymerase” (R.R. Garafutdinov, A.R. Sakhabutdinova, M.S. Kupryushkin, D.V. Pyshnyi, 2020) [1]. Here, multimerization efficiency in terms of Tt (time-to-threshold) values obtained for artificial DNA templates with the different nucleotide sequences during isothermal amplification with Bst exo- DNA polymerase is given. Data on the influence of phosphoryl guanidine primers (PGO) on multimerization for the LTc template which has shown high efficiency of multimerization are presented as well.
Collapse
Affiliation(s)
- Ravil R. Garafutdinov
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, Russian Federation
- Corresponding author.
| | - Assol R. Sakhabutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, Russian Federation
| | - Maxim S. Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Russian Federation
| | - Dmitrii V. Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Russian Federation
| |
Collapse
|
20
|
The Influence of Reaction Conditions on DNA Multimerization During Isothermal Amplification with Bst exo− DNA Polymerase. Appl Biochem Biotechnol 2019; 190:758-771. [DOI: 10.1007/s12010-019-03127-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/25/2019] [Indexed: 12/20/2022]
|
21
|
Ding X, Clark KD, Varona M, Emaus MN, Anderson JL. Magnetic ionic liquid-enhanced isothermal nucleic acid amplification and its application to rapid visual DNA analysis. Anal Chim Acta 2019; 1045:132-140. [DOI: 10.1016/j.aca.2018.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/03/2018] [Accepted: 09/08/2018] [Indexed: 12/24/2022]
|