1
|
Kage A, Takahashi K, Nozaki H, Higashiyama T, Baba SA, Nishizaka T. Swimming ability and flagellar motility of sperm packets of the volvocine green alga Pleodorina starrii. PLoS One 2024; 19:e0287561. [PMID: 39024288 PMCID: PMC11257277 DOI: 10.1371/journal.pone.0287561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Eukaryotic flagella collectively form metachronal waves that facilitate the ability to cause flow or swim. Among such flagellated and planktonic swimmers, large volvocine genera such as Eudorina, Pleodorina and Volvox form bundles of small male gametes (sperm) called "sperm packets" for sexual reproduction. Although these sperm packets reportedly have flagella and the ability to swim, previous studies on volvocine motility have focused on asexual forms and the swimming characteristics of sperm packets remain unknown. However, it is important to quantify the motility of sperm packets and sperm in order to gain insights into the significance of motility in the sexual reproduction of planktonic algae. In this study, we quantitatively described the behavior of three flagellated forms of a male strain of Pleodorina starrii-asexual colonies, sperm packets, and single dissociated sperm-with emphasis on comparison of the two multicellular forms. Despite being smaller, sperm packets swam approximately 1.4 times faster than the asexual colonies of the same male strain. Body length was approximately 0.5 times smaller in the sperm packets than in asexual colonies. The flagella from sperm packets and asexual colonies showed asymmetric waveforms, whereas those from dissociated single sperm showed symmetric waveforms, suggesting the presence of a switching mechanism between sperm packets and dissociated sperm. Flagella from sperm packets were approximately 0.5 times shorter and had a beat period approximately twice as long as those from asexual colonies. The flagella of sperm packets were densely distributed over the anterior part of the body, whereas the flagella of asexual colonies were sparse and evenly distributed. The distribution of flagella, but not the number of flagella, appear to illustrate a significant difference in the speeds of sperm packets and asexual colonies. Our findings reveal novel aspects of the regulation of eukaryotic flagella and shed light on the role of flagellar motility in sexual reproduction of planktonic algae.
Collapse
Affiliation(s)
- Azusa Kage
- Department of Physics, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Kohei Takahashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shoji A. Baba
- Department of Biology, Ochanomizu University, Bunkyo-ku, Tokyo, Japan
| | | |
Collapse
|
2
|
Iwata Y, Sato N, Hirohashi N, Watanabe Y, Sauer WHH, Shaw PW. Sperm competition risk affects ejaculate strategy in terms of sperm number but not sperm size in squid. J Evol Biol 2021; 34:1352-1361. [PMID: 34165857 DOI: 10.1111/jeb.13894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 01/04/2023]
Abstract
In polygamous species, the mode of sperm storage in females influences evolution of sperm quantitative and qualitative traits because it provides the arena for sperm competition, cryptic female choice and fertilization processes. In this study, we compared ejaculate traits of two squid species, Heterololigo bleekeri and Loligo reynaudii. Both species show dimorphic sperm traits associated with alternative reproductive tactics where consort and sneaker males transfer sperm to different storage sites within a female (on the oviduct and near the mouth, respectively). Due to differences in reproductive behaviours and sperm placement, sperm competition risk is expected to be higher in sneakers than in consorts of both species and higher overall in L. reynaudii. Our results demonstrate that the instantaneous number of released sperm is adjusted to the expected sperm competition risk via an elaborate sperm package. Consort sperm are similar in size; however, sneaker sperm have a significantly longer flagellum in H. bleekeri than in L. reynaudii, most likely due to intra-tactic conflicts associated with sperm storage conditions. From consideration of the different mating tactics, we suggest that while levels of sperm competition determine quantitative traits, sperm quality traits are determined more by the mode of sperm storage and fertilization.
Collapse
Affiliation(s)
- Yoko Iwata
- Atmosphere and Ocean Research Institute, University of Tokyo, Chiba, Japan
| | - Noriyosi Sato
- School of Marine Science and Technology, Tokai University, Shizuoka, Japan
| | | | - Yoshiro Watanabe
- Atmosphere and Ocean Research Institute, University of Tokyo, Chiba, Japan
| | - Warwick H H Sauer
- Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, South Africa
| | - Paul W Shaw
- Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, South Africa.,Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK
| |
Collapse
|
3
|
Marian JEAR, Apostólico LH, Chiao CC, Hanlon RT, Hirohashi N, Iwata Y, Mather J, Sato N, Shaw PW. Male Alternative Reproductive Tactics and Associated Evolution of Anatomical Characteristics in Loliginid Squid. Front Physiol 2019; 10:1281. [PMID: 31680998 PMCID: PMC6803530 DOI: 10.3389/fphys.2019.01281] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/24/2019] [Indexed: 01/27/2023] Open
Abstract
Loliginid squids provide a unique model system to explore male alternative reproductive tactics (ARTs) and their linkage to size, behavioral decision making, and possibly age. Large individuals fight one another and the winners form temporary consortships with females, while smaller individuals do not engage in male-male agonistic bouts but use various sneaker tactics to obtain matings, each with varying mating and fertilization success. There is substantial behavioral flexibility in most species, as smaller males can facultatively switch to the alternative consort behaviors as the behavioral context changes. These forms of ARTs can involve different: mating posture; site of spermatophore deposition; fertilization success; and sperm traits. Most of the traits of male dimorphism (both anatomical and behavioral) are consistent with traditional sexual selection theory, while others have unique features that may have evolved in response to the fertilization environment faced by each temporary or permanent male morph.
Collapse
Affiliation(s)
- José E A R Marian
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Lígia H Apostólico
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Chuan-Chin Chiao
- Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Roger T Hanlon
- Marine Biological Laboratory, Woods Hole, MA, United States
| | | | - Yoko Iwata
- Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan, Japan
| | - Jennifer Mather
- Department of Psychology, University of Lethbridge, Lethbridge, AB, Canada
| | - Noriyosi Sato
- Department of Fisheries, School of Marine Science and Technology, Tokai University, Shizuoka, Japan
| | - Paul W Shaw
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom.,Department of Ichthyology & Fisheries Science, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
4
|
Inaba K, Shiba K. Microscopic analysis of sperm movement: links to mechanisms and protein components. Microscopy (Oxf) 2018; 67:144-155. [DOI: 10.1093/jmicro/dfy021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/25/2018] [Indexed: 01/07/2023] Open
Affiliation(s)
- Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| |
Collapse
|
5
|
Angelova MI, Bitbol AF, Seigneuret M, Staneva G, Kodama A, Sakuma Y, Kawakatsu T, Imai M, Puff N. pH sensing by lipids in membranes: The fundamentals of pH-driven migration, polarization and deformations of lipid bilayer assemblies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2042-2063. [PMID: 29501601 DOI: 10.1016/j.bbamem.2018.02.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/22/2018] [Accepted: 02/24/2018] [Indexed: 01/27/2023]
Abstract
Most biological molecules contain acido-basic groups that modulate their structure and interactions. A consequence is that pH gradients, local heterogeneities and dynamic variations are used by cells and organisms to drive or regulate specific biological functions including energetic metabolism, vesicular traffic, migration and spatial patterning of tissues in development. While the direct or regulatory role of pH in protein function is well documented, the role of hydrogen and hydroxyl ions in modulating the properties of lipid assemblies such as bilayer membranes is only beginning to be understood. Here, we review approaches using artificial lipid vesicles that have been instrumental in providing an understanding of the influence of pH gradients and local variations on membrane vectorial motional processes: migration, membrane curvature effects promoting global or local deformations, crowding generation by segregative polarization processes. In the case of pH induced local deformations, an extensive theoretical framework is given and an application to a specific biological issue, namely the structure and stability of mitochondrial cristae, is described. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
Affiliation(s)
- Miglena I Angelova
- Sorbonne University, Faculty of Science and Engineering, UFR 925 Physics, Paris F-75005, France; University Paris Diderot - Paris 7, Sorbonne Paris Cité, Laboratory Matière et Systèmes Complexes (MSC) UMR 7057 CNRS, Paris F-75013, France.
| | - Anne-Florence Bitbol
- Sorbonne University, Faculty of Science and Engineering, Laboratory Jean Perrin, UMR 8237 CNRS, Paris F-75005, France
| | - Michel Seigneuret
- University Paris Diderot - Paris 7, Sorbonne Paris Cité, Laboratory Matière et Systèmes Complexes (MSC) UMR 7057 CNRS, Paris F-75013, France
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Atsuji Kodama
- Department of Physics, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Yuka Sakuma
- Department of Physics, Tohoku University, Aoba, Sendai 980-8578, Japan
| | | | - Masayuki Imai
- Department of Physics, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Nicolas Puff
- Sorbonne University, Faculty of Science and Engineering, UFR 925 Physics, Paris F-75005, France; University Paris Diderot - Paris 7, Sorbonne Paris Cité, Laboratory Matière et Systèmes Complexes (MSC) UMR 7057 CNRS, Paris F-75013, France
| |
Collapse
|
6
|
Apostólico LH, Marian JEAR. From sneaky to bully: reappraisal of male squid dimorphism indicates ontogenetic mating tactics and striking ejaculate transition. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Lìgia H Apostólico
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - José E A R Marian
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|