1
|
Yu S, Qin R, Yuan W, Lin Z. 1H, 15N and 13C resonance assignments of eggcase silk protein 3. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:227-232. [PMID: 39180712 DOI: 10.1007/s12104-024-10192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
Spider silk is a high-performance biomaterial known for its outstanding combination of strength and flexibility. Among the six distinct types of spider silk, eggcase silk stands out as it is exclusively produced from the tubuliform gland, playing a specialized role in offspring protection. In the spider species Latrodectus hesperus, eggcase silk is spun from a large spidroin complex, including the major silk component tubuliform spidroin 1 (TuSp1) and at least six different minor silk components. One of these minor components is eggcase protein 3 (ECP3), a small silk protein of 11.8 kDa that lacks the typical spidroin architecture. ECP3 shows very limited homology to all known spidroins. In this study, we report nearly complete backbone and side-chain resonance assignments of ECP3 as a basis for studying the structural mechanisms involved in eggcase silk formation.
Collapse
Affiliation(s)
- Shuixin Yu
- School of Life Sciences, Tianjin University, Tianjin, 300072, P.R. China
| | - Ruiqi Qin
- School of Life Sciences, Tianjin University, Tianjin, 300072, P.R. China
| | - Wensu Yuan
- School of Life Sciences, Tianjin University, Tianjin, 300072, P.R. China
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin, 300072, P.R. China.
| |
Collapse
|
2
|
Yang D, Wang S, Wang K, Zheng S, Zan X, Wen R. Physical Properties of the Second Type of Aciniform Spidroin (AcSp2) from Neoscona theisi Reveal a pH-Dependent Self-Assembly Repetitive Domain. ACS Biomater Sci Eng 2023; 9:6670-6682. [PMID: 38019679 DOI: 10.1021/acsbiomaterials.3c01194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Orb-weaving spiders can use an array of specialized silks with diverse mechanical properties and functions for daily survival. Of all spider silk types, aciniform silk is the toughest silk fiber that combines high strength and elasticity. Although aciniform spidroins (AcSp) are the main protein in aciniform silks, their complete genes have rarely been characterized until now. Moreover, the structural and physical properties of AcSp variant proteins within the species are also unclear. Here, we present three full-length AcSp genes (named AcSp1A, AcSp1B, and AcSp2) from the orb-weaving spider Neoscona theisi and investigate the structural and mechanical features of these three AcSp repetitive domains. We demonstrate that all three AcSp proteins have mainly α-helical structural features in neutral solution and high thermal stability. Significantly, the AcSp2 repetitive domain shows a pH-dependent structural transition from α to β conformations and can self-assemble into amyloid fibrils under acidic conditions, which is the first reported AcSp repetitive domain with pH-dependent self-assembly capacity. Compared with the other two AcSp spidroins, AcSp2 demonstrated the lowest expression level in the aciniform gland but had the highest strength for its silk fiber. Collectively, our findings provide new insight into the physical properties of each component of aciniform silk and expand the repertoire of known spidroin sequences for the synthesis of artificial silk materials.
Collapse
Affiliation(s)
- Dong Yang
- Department of Radiation and Medical Oncology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Suyang Wang
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Kangkang Wang
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325000, China
| | - Shengwu Zheng
- Wenzhou Celecare Medical Instruments Co., Ltd., Wenzhou, Zhejiang Province 325000, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325000, China
| | - Rui Wen
- Department of Radiation and Medical Oncology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| |
Collapse
|
3
|
Ren Y, Jiang W, Luo C, Zhang X, Huang M. The Promotive Effect of the Active Ingredients of Atractylodes macrocephala on Intestinal Epithelial Repair Through Activating Ca2+ Pathway. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Atractylodes macrocephala ( AM) is a famous traditional Chinese medicine for intestinal epithelial restitution through activating Ca2+ channels. However, the roles of specific AM compositions in intestinal epithelial restitution are sparse. Therefore, this study aimed to compare the concrete effects of the 4 active ingredients (atractylon, β-eudesmol, atractylenolide II, atractylenolide III) of AM and their combination on intestinal epithelial repair and the Ca2+ pathway in intestinal epithelial cell (IEC-6) cells. First, the best combination of the 4 ingredients with an optimal mixing ratio of atractylon: β-eudesmol: atractylenolide II: atractylenolide III = 1:2:2:2 was demonstrated by a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide orthogonal experiment. Subsequently, enzyme-linked immunosorbent assay was used to measure anti-inflammatory cytokine levels, the migratory ability was evaluated by cell scratch experiments, cell cycle analysis and [Ca2+]cyt concentration in cells were detected by flow cytometry, and the expression of the Ca2+ pathway-related genes was detected by immunofluorescence staining, quantitative polymerase chain reaction and whole blood assays. Our result showed that atractylon, β-Eudesmol, atractylenolide II, and atractylenolide III showed different abilities to promote the IEC-6 cells proliferation, migration, and the expression of anti-inflammatory cytokines interleukin (IL)-2, IL-10, and ornithine decarboxylase, as well as the intracellular [Ca2+]cyt concentration through stromal interaction molecule 1 transposition to activate Ca2+ pathway. Thereinto, atractylenolide III was the main active ingredient of AM for pro-proliferation and anti-inflammation, and the combination of 4 AM ingredients performed better beneficial effects on IEC-6 cells. Therefore, our study suggested that atractylenolide III was the active ingredient of AM for intestinal epithelial repair through activating the Ca2+ pathway, and the 4 ingredients of AM have a synergy in intestinal epithelial repair.
Collapse
Affiliation(s)
- Yan Ren
- College of Pharmaceutical Science, Guizhou University, Guiyang, China
| | - Wenwen Jiang
- College of Pharmaceutical Science, Guizhou University, Guiyang, China
| | - Chunli Luo
- College of Agriculture, Guizhou University, Guiyang, China
| | - Xiaohan Zhang
- College of Pharmaceutical Science, Guizhou University, Guiyang, China
| | - Mingjin Huang
- College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Fan T, Zhang Y, Fan JS, Yuan W, Lin Z. 1H, 15N and 13C resonance assignments of a repetitive domain of tubuliform spidroin 2. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:475-477. [PMID: 34436735 DOI: 10.1007/s12104-021-10048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Spider silk is renowned for its excellent mechanical properties. Among six types of silk and one silk glue produced by different abdominal glands for various purposes, tubuliform (eggcase) silk is unique due to its high serine and low glycine content. Eggcase silk is spun from at least two spidroins, tubuliform spidroin 1 (TuSp1) and TuSp2. TuSp1 and TuSp2 were identified as the major and the minor components in tubuliform glands, respectively. TuSp2 consists of multiple repetitive (RP) domains with short terminal tails and shares very limited homology to all known spidroins. Here we report backbone and side chain resonance assignments of TuSp2-RP as a basis for structural and functional studies on eggcase silk formation.
Collapse
Affiliation(s)
- Tiantian Fan
- School of Life Sciences, Tianjin University, Tianjin, 300072, People's Republic of China
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yan Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, People's Republic of China
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Wensu Yuan
- School of Life Sciences, Tianjin University, Tianjin, 300072, People's Republic of China
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin, 300072, People's Republic of China.
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
5
|
Critical role of minor eggcase silk component in promoting spidroin chain alignment and strong fiber formation. Proc Natl Acad Sci U S A 2021; 118:2100496118. [PMID: 34531321 DOI: 10.1073/pnas.2100496118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2021] [Indexed: 11/18/2022] Open
Abstract
Natural spider silk with extraordinary mechanical properties is typically spun from more than one type of spidroin. Although the main components of various spider silks have been widely studied, little is known about the molecular role of the minor silk components in spidroin self-assembly and fiber formation. Here, we show that the minor component of spider eggcase silk, TuSp2, not only accelerates self-assembly but remarkably promotes molecular chain alignment of spidroins upon physical shearing. NMR structure of the repetitive domain of TuSp2 reveals that its dimeric structure with unique charged surface serves as a platform to recruit different domains of the main eggcase component TuSp1. Artificial fiber spun from the complex between TuSp1 and TuSp2 minispidroins exhibits considerably higher strength and Young's modulus than its native counterpart. These results create a framework for rationally designing silk biomaterials based on distinct roles of silk components.
Collapse
|
6
|
Wang J, Yuan W, Qin R, Fan T, Fan JS, Huang W, Yang D, Lin Z. Self-assembly of tubuliform spidroins driven by hydrophobic interactions among terminal domains. Int J Biol Macromol 2020; 166:1141-1148. [PMID: 33157141 DOI: 10.1016/j.ijbiomac.2020.10.269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/01/2020] [Accepted: 10/31/2020] [Indexed: 11/26/2022]
Abstract
Spider silk has remarkable physical and biocompatible properties. Investigation of structure-function relationship and self-assembly process of spidroins is necessary for uncovering the mechanism of silk fiber formation. Nevertheless, how the terminal domains initiate self-assembly of soluble tubuliform spidroins to form solid eggcase silk is still not fully understood. Here we investigate the roles of both terminal domains of tubuliform spidroin 1 (TuSp1) in the silk fiber formation. We found that interactions among the terminal domains drive rapid TuSp1 self-assembly and fiber formation, which is insensitive to pH changes from 6.0 to 7.0. These interactions also contribute to the spidroin chain alignment in fiber formation upon shear-force exposure. Structural analysis and site-directed mutagenesis identified eight critical surface-exposed residues involved in hydrophobic interactions among terminal domains. Spidroins with single-point mutations of these residues fail to form intermediate micelle-like structures. The structural docking model indicates that multiple terminal domains of TuSp1 may interact with each other based on hydrophobic interactions and surface complementarity, which may lead to forming the surface of the micelle-like structure. Our results provide new insights into the structural mechanism of eggcase silk formation and the basis for designing and producing novel biomaterials derived from spider eggcase silk.
Collapse
Affiliation(s)
- Jingxia Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Wensu Yuan
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Ruiqi Qin
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Tiantian Fan
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Weidong Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
7
|
Wen R, Wang K, Meng Q. Characterization of the second type of aciniform spidroin (AcSp2) provides new insight into design for spidroin-based biomaterials. Acta Biomater 2020; 115:210-219. [PMID: 32798722 DOI: 10.1016/j.actbio.2020.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022]
Abstract
Spiders spin a range of silks from different glands for distinct functions, and each silk type exhibits distinct material properties. Silk extruded by the aciniform gland is used for prey wrapping and egg case construction and displays high toughness and extensibility. So far, only the aciniform spidroin 1 (AcSp1) gene which was firstly identified as a silk gene in aciniform gland has been obtained. Here we present the gene sequence for the second type of full-length aciniform silk protein, AcSp2. Analysis of the AcSp2 primary sequence reveals relatively conserved terminal regions and a distinct repetitive sequence relative to AcSp1. A fraction of the gene can be expressed in recombinant systems. Secondary structure analysis of the recombinant AcSp2 protein in solution reveals that the protein adopts mainly an α-helical conformation. Artificial spinning of recombinant AcSp2 demonstrates that the spidroins can be spun into fine fibers which display up to 142% extensibility. The silk fibers are dominated by β-sheet and β-turn secondary structures. Moreover, the mechanical data collected from these synthetic fibers revealed that the mechanical properties are partly correlated with the molecular weights. Overall, our studies enrich our knowledge of spidroin gene family members and provide a new insight into creation of high-performance silk fibers for next generation biomaterials. STATEMENT OF SIGNIFICANCE: In this study, we presented the second type of aciniform silk protein (AcSp2) gene sequence of orb-weaving spider Araneus ventricosus, expanding the spider silk gene family members. The primary structure revealed the central repetitive sequence of the new spidroin gene is distinctly different from other AcSp1 genes. Characterization of the recombinant minispidroin fibers of AcSp2 revealed the mechanical properties are partly correlate with the molecular weights, and the spidroins can be spun into fine fibers which display up to 142% extensibility. Overall, our studies enrich our knowledge of spidroin gene family members and provide a new insight into creation of high-performance silk fibers for next generation biomaterials.
Collapse
Affiliation(s)
- Rui Wen
- Institute of Biological Sciences and Biotechnology, Donghua University, 2999 North Renmin Road 201620, Shanghai 201620, China
| | - Kangkang Wang
- Institute of Biological Sciences and Biotechnology, Donghua University, 2999 North Renmin Road 201620, Shanghai 201620, China
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, 2999 North Renmin Road 201620, Shanghai 201620, China.
| |
Collapse
|
8
|
Yuan Y, Yu Q, Wen J, Li C, Guo Z, Wang X, Wang N. Ultrafast and Highly Selective Uranium Extraction from Seawater by Hydrogel‐like Spidroin‐based Protein Fiber. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906191] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University Haikou 570228 P. R. China
| | - Qiuhan Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University Haikou 570228 P. R. China
| | - Jun Wen
- Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics Mianyang 621900 P. R. China
| | - Chaoyang Li
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University Haikou 570228 P. R. China
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL) Department of Chemical & Biomolecular Engineering University of Tennessee Knoxville TN 37996 USA
- College of Chemical and Environmental Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Xiaolin Wang
- Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics Mianyang 621900 P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University Haikou 570228 P. R. China
| |
Collapse
|
9
|
Yuan Y, Yu Q, Wen J, Li C, Guo Z, Wang X, Wang N. Ultrafast and Highly Selective Uranium Extraction from Seawater by Hydrogel‐like Spidroin‐based Protein Fiber. Angew Chem Int Ed Engl 2019; 58:11785-11790. [DOI: 10.1002/anie.201906191] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University Haikou 570228 P. R. China
| | - Qiuhan Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University Haikou 570228 P. R. China
| | - Jun Wen
- Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics Mianyang 621900 P. R. China
| | - Chaoyang Li
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University Haikou 570228 P. R. China
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL) Department of Chemical & Biomolecular Engineering University of Tennessee Knoxville TN 37996 USA
- College of Chemical and Environmental Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Xiaolin Wang
- Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics Mianyang 621900 P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University Haikou 570228 P. R. China
| |
Collapse
|