1
|
Lai C, Liu Z, Yu Q, Sun H, Xia F, He X, Ma Z, Han Y, Liu X, Hao P, Bao Q, Shao M, He H. Control of carbon dioxide exchange fluxes by rainfall and biological carbon pump in karst river-lake systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173486. [PMID: 38796009 DOI: 10.1016/j.scitotenv.2024.173486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
As an important component of inland water, the primary factors affecting the carbon cycle in karst river-lake systems require further investigation. In particular, the impacts of climatic factors and the biological carbon pump (BCP) on carbon dioxide (CO2) exchange fluxes in karst rivers and lakes deserve considerable attention. Using quarterly sampling, field monitoring, and meteorological data collection, the spatiotemporal characteristics of CO2 exchange fluxes in Erhai Lake (a typical karst lake in Yunnan, SW China) and its inflow rivers were investigated and the primary influencing factors were analyzed. The average river CO2 exchange flux reached 346.80 mg m-2 h-1, compared to -6.93 mg m-2 h-1 for the lake. The carbon cycle in rivers was strongly influenced by land use within the basin; cultivated and construction land were the main contributors to organic carbon (OC) in the river (r = 0.66, p < 0.01) and the mineralization of OC was a major factor in CO2 oversaturation in most rivers (r = 0.76, p < 0.01). In addition, the BCP effect of aquatic plants and the high pH in karst river-lake systems enhance the ability of water body to absorb CO2, resulting in undersaturated CO2 levels in the lake. Notably, under rainfall regulation, riverine OC and dissolved inorganic carbon (DIC) flux inputs controlled the level of CO2 exchange fluxes in the lake (rOC = 0.78, p < 0.05; rDIC = 0.97, p < 0.01). We speculate that under future climate and human activity scenarios, the DIC and OC input from rivers may alleviate the CO2 limitation of BCP effects in karst eutrophication lakes, possibly enabling aquatic plants to convert more CO2 into OC for burial. The results of this research can help advance our understanding of CO2 emissions and absorption mechanisms in karst river-lake systems.
Collapse
Affiliation(s)
- Chaowei Lai
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Zaihua Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China.
| | - Qingchun Yu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hailong Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Fan Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejun He
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Ma
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Yongqiang Han
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyun Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Qian Bao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610066, China
| | - Mingyu Shao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Haibo He
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| |
Collapse
|
2
|
Abed RMM, Al-Hinai M, Al-Balushi Y, Haider L, Muthukrishnan T, Rinner U. Degradation of starch-based bioplastic bags in the pelagic and benthic zones of the Gulf of Oman. MARINE POLLUTION BULLETIN 2023; 195:115496. [PMID: 37703633 DOI: 10.1016/j.marpolbul.2023.115496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/21/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
The Gulf of Oman is becoming increasingly polluted with plastics, hence bioplastics have been considered 'a substitute', although their biodegradability in marine environments has not been well investigated. Most research has been performed on cellulose-based bioplastics, whereas starch-based bioplastics have proven to be a suitable, but less researched, alternative. This study is the first of its kind designed to investigate the degradability of two different types of starch-based bioplastic bags, available in the market and labeled as "biodegradable", in the pelagic and benthic zones of one of the warmest marine environment in the world. Fourier-Transform Infrared Spectroscopy (FTIR) showed a clear reduction in the presence of OH, CH, and CO in the bioplastic bags after 5 weeks of immersion. Thermo-Gravimetric Analysis (TGA) indicated degradation of glycerol, starch, and polyethylene. The biofouling bacterial communities on bioplastic surfaces showed distinct grouping based on the immersion zone. Candidaatus saccharibacteria, Verrucomicrobiae, Acidimicrobiia and Planctomycetia sequences were only detectable on bioplastics in the pelagic zone, whereas Actinomyces, Pseudomonas, Sphingobium and Acinetobacter related sequences were only found on bioplastics in the benthic layer. We conclude that starch-based bioplastics are more readily degradable in the Gulf of Oman than conventional plastics, hence could serve as a better environmentally friendly alternative.
Collapse
Affiliation(s)
- Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123 Al Khoud, Sultanate of Oman.
| | - Mahmood Al-Hinai
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123 Al Khoud, Sultanate of Oman
| | - Yasmin Al-Balushi
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123 Al Khoud, Sultanate of Oman
| | - Lorenz Haider
- Institute of Applied Chemistry, IMC University of Applied Sciences Krems, Piaristengasse 1, 3500 Krems, Austria
| | - Thirumahal Muthukrishnan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario M5S 3E5, Canada
| | - Uwe Rinner
- Institute of Applied Chemistry, IMC University of Applied Sciences Krems, Piaristengasse 1, 3500 Krems, Austria
| |
Collapse
|
3
|
Wang S, Gao Y, Jia J, Lu Y, Wang J, Ha X, Li Z, Sun K. Determining whether hydrological processes drive carbon source and sink conversion shifts in a large floodplain-lake system in China. WATER RESEARCH 2022; 224:119105. [PMID: 36122449 DOI: 10.1016/j.watres.2022.119105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/15/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Lake carbon (C) cycling is a key component of the global C cycle and associated C source and sink processes. The partial pressure of carbon dioxide (pCO2) and carbon dioxide (CO2) exchange flux at the lake-air interface (Fc) are controlled by complex physical, chemical, and biological mechanisms. It would be instructively significant to determine whether hydrological processes drive conversion shifts between C sources and sinks in floodplain-lake systems. Findings from this study show that exogenous input and in situ metabolism related to photosynthesis, respiration, and organic matter degradation were the main driving mechanisms of CO2 absorption and release in a large floodplain-lake system (i.e., Lake Poyang). Moreover, the intense and frequent water-level fluctuations inherent to floodplain-lakes may also have a direct or indirect impact on C cycling processes and CO2 exchange rates in floodplain-lake systems via their effect on physical processes, inorganic C transport, in-situ metabolic processes. We confirmed the potential of C source and sink conversion in floodplain-lakes under hydrological fluctuations, and strengthen the understanding of driving mechanisms of C source and sink conversion in floodplain systems.
Collapse
Affiliation(s)
- Shuoyue Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yang Gao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Junjie Jia
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yao Lu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xianrui Ha
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhaoxi Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kun Sun
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
4
|
Temporal and Spatial Analysis of Coastal Water Quality to Support Application of Whiteleg Shrimp Litopenaeus vannamei Intensive Pond Technology. SUSTAINABILITY 2022. [DOI: 10.3390/su14052659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The study aimed to determine the performance of whiteleg shrimp culture in relation to temporal and spatial aspects and characteristics and water quality status. Measurement and sampling of water were carried out before stocking/initial stocking of culture whiteleg shrimp (rainy season) and end of culture/after harvesting of whiteleg shrimp (dry season) at two locations in the coastal area of Bulukumba Regency, namely Bonto Bahari Subdistrict (BB) and Gantarang Subdistrict (GT), and one location as a control, namely in the coastal area of Ujung Loe Subdistrict. Variables measured and analyzed included temperature, salinity, pH, dissolved oxygen, nitrate, nitrite, ammonia, phosphate, total suspended solids, and total organic matter. Data were analyzed by descriptive statistics, multivariate statistics, and non-parametric statistics. Water quality status was determined using the Storet (Storage and Retrieval) method. The results showed that the culture of whiteleg shrimp was technology intensive with a stocking density of 110–220 ind/m2 with productivity between 13.9 and 44.4 tons/ha/cycle. The predicted waste load of N is 28.00 tons/cycle and P reaches 6.61 tons/cycle. Another result was that changes in water quality status during the rainy season were classified as moderately polluted at the BB location and complying with quality standards at the GT location. In the dry season, both locations were categorized as heavily polluted. Variables of water quality that caused the decrease in water quality status in both locations (BB and GT) were observed to increase salinity, nitrate concentration, and ammonia concentration and decreased dissolved oxygen concentration in the dry season. It is recommended to carry out proper feed management, use of probiotics, and increase the capacity and capability of wastewater treatment plants to reduce ammonia and nitrate concentrations in water in coastal areas. It is necessary to determine a more precise time for whiteleg shrimp stocking by reducing the possibility that whiteleg shrimp culture will still occur at the dry season’s peak.
Collapse
|
5
|
Ruginescu R, Gomoiu I, Popescu O, Cojoc R, Neagu S, Lucaci I, Batrinescu-Moteau C, Enache M. Bioprospecting for Novel Halophilic and Halotolerant Sources of Hydrolytic Enzymes in Brackish, Saline and Hypersaline Lakes of Romania. Microorganisms 2020; 8:microorganisms8121903. [PMID: 33266166 PMCID: PMC7760675 DOI: 10.3390/microorganisms8121903] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022] Open
Abstract
Halophilic and halotolerant microorganisms represent promising sources of salt-tolerant enzymes that could be used in various biotechnological processes where high salt concentrations would otherwise inhibit enzymatic transformations. Considering the current need for more efficient biocatalysts, the present study aimed to explore the microbial diversity of five under- or uninvestigated salty lakes in Romania for novel sources of hydrolytic enzymes. Bacteria, archaea and fungi were obtained by culture-based approaches and screened for the production of six hydrolases (protease, lipase, amylase, cellulase, xylanase and pectinase) using agar plate-based assays. Moreover, the phylogeny of bacterial and archaeal isolates was studied through molecular methods. From a total of 244 microbial isolates, 182 (74.6%) were represented by bacteria, 22 (9%) by archaea, and 40 (16.4%) by fungi. While most bacteria synthesized protease and lipase, the most frequent hydrolase produced by fungi was pectinase. The archaeal isolates had limited hydrolytic activity, being able to produce only amylase and cellulase. Among the taxonomically identified isolates, the best hydrolytic activities were observed in halotolerant bacteria belonging to the genus Bacillus and in extremely halophilic archaea of the genera Haloterrigena and Halostagnicola. Therefore, the present study highlights that the investigated lakes harbor various promising species of microorganisms able to produce industrially valuable enzymes.
Collapse
Affiliation(s)
- Robert Ruginescu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania; (I.G.); (O.P.); (R.C.); (S.N.); (I.L.); (C.B.-M.); (M.E.)
- Correspondence:
| | - Ioana Gomoiu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania; (I.G.); (O.P.); (R.C.); (S.N.); (I.L.); (C.B.-M.); (M.E.)
| | - Octavian Popescu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania; (I.G.); (O.P.); (R.C.); (S.N.); (I.L.); (C.B.-M.); (M.E.)
- Molecular Biology Center, Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai-University, 42 Treboniu Laurian St., 400271 Cluj-Napoca, Romania
| | - Roxana Cojoc
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania; (I.G.); (O.P.); (R.C.); (S.N.); (I.L.); (C.B.-M.); (M.E.)
| | - Simona Neagu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania; (I.G.); (O.P.); (R.C.); (S.N.); (I.L.); (C.B.-M.); (M.E.)
| | - Ioana Lucaci
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania; (I.G.); (O.P.); (R.C.); (S.N.); (I.L.); (C.B.-M.); (M.E.)
| | - Costin Batrinescu-Moteau
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania; (I.G.); (O.P.); (R.C.); (S.N.); (I.L.); (C.B.-M.); (M.E.)
| | - Madalin Enache
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania; (I.G.); (O.P.); (R.C.); (S.N.); (I.L.); (C.B.-M.); (M.E.)
| |
Collapse
|