1
|
Liegertová M, Semerádtová A, Kocholatá M, Průšová M, Němcová L, Štofik M, Kříženecká S, Malý J, Janoušková O. Mucus-derived exosome-like vesicles from the Spanish slug (Arion vulgaris): taking advantage of invasive pest species in biotechnology. Sci Rep 2022; 12:21768. [PMID: 36526668 PMCID: PMC9870906 DOI: 10.1038/s41598-022-26335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The slug Arion vulgaris has attracted major attention as one of the worst invasive herbivore pests in Europe and is renowned for the stiff mucus it secretes for locomotion. In this study we focused on the isolation and characterisation of extracellular vesicles, specifically exosomes and exosome-like vesicles, from Arion secretions. We developed a method for slug mucus collection and subsequent vesicle isolation by ultracentrifugation. The isolated vesicles with an average diameter of ~ 100 nm carry abundant proteins and short RNAs, as well as adhesion molecules similar to mammalian galectins. We demonstrated that the slug extracellular vesicles are internalised by plant cells and human cancer cells in in vitro assays and are loadable by bioactive compounds, which makes them an interesting tool for utilisation in biotechnology.
Collapse
Affiliation(s)
- Michaela Liegertová
- grid.424917.d0000 0001 1379 0994Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic ,grid.424917.d0000 0001 1379 0994Department of Biology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Alena Semerádtová
- grid.424917.d0000 0001 1379 0994Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Michaela Kocholatá
- grid.424917.d0000 0001 1379 0994Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Michaela Průšová
- grid.424917.d0000 0001 1379 0994Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Lenka Němcová
- grid.424917.d0000 0001 1379 0994Department of Biology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Marcel Štofik
- grid.424917.d0000 0001 1379 0994Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Sylvie Kříženecká
- grid.424917.d0000 0001 1379 0994Department of Environmental Chemistry and Technology, Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Jan Malý
- grid.424917.d0000 0001 1379 0994Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Olga Janoušková
- grid.424917.d0000 0001 1379 0994Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| |
Collapse
|
2
|
Biogeographical and Diversification Analyses of Indian Pseudoscorpions Reveal the Western Ghats as Museums of Ancient Biodiversity. Mol Phylogenet Evol 2022; 175:107495. [DOI: 10.1016/j.ympev.2022.107495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022]
|
3
|
Mas-Peinado P, García-París M, Ruiz JL, Buckley D. The Strait of Gibraltar is an ineffective palaeogeographic barrier for some flightless darkling beetles (Coleoptera: Tenebrionidae: Pimelia). Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The geographic distribution of a species is shaped by its biology and by environmental and palaeogeographic factors that interact at different spatial-temporal scales, which leads to distributions and diversification patterns observed between and within lineages. The darkling beetle genus Pimelia has been diversifying for more than 31.2 Mya showing different colonization patterns after the opening of the Gibraltar Strait 5 Mya. Three of the 14 subgenera of Pimelia have populations on both sides of the Strait. Through extensive sampling and the analysis of three molecular markers, we determine levels of intra- and interspecific genetic variation, identify evolutionary lineages in subgenera, estimate their temporal origin and distribution ranges and discuss the historical basis for the geographic and diversification patterns of Pimelia around the Strait. This single geographical feature acted both as a barrier and as a dispersal route for different Pimelia species. The Strait has represented a strong barrier for the subgenus Magrebmelia since the Middle Miocene. However, the subgenera Amblyptera and Amblypteraca share repetitive signatures of post-Messinian colonization across the Strait, possibly driven by stochastic or ‘catastrophic’ events such as tsunamis. Our demographic analyses support Wallace’s hypothesis on insect dispersal stochasticity. Some taxonomic changes, including the designation of a lectotype for Pimelia maura, are also proposed.
Collapse
Affiliation(s)
- Paloma Mas-Peinado
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/ José Gutiérrez Abascal 2, 28006-Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Facultad de Ciencias, Universidad Autónoma de Madrid, c/ Darwin 2, 28049-Madrid, Spain
| | - Mario García-París
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/ José Gutiérrez Abascal 2, 28006-Madrid, Spain
| | - José L Ruiz
- Instituto de Estudios Ceutíes, Paseo del Revellín 30, 51001-Ceuta, Spain
| | - David Buckley
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/ José Gutiérrez Abascal 2, 28006-Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Facultad de Ciencias, Universidad Autónoma de Madrid, c/ Darwin 2, 28049-Madrid, Spain
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), c/ Darwin 2, 28049-Madrid, Spain
| |
Collapse
|
4
|
Delicado D, Arconada B, Aguado A, Ramos MA. Multilocus phylogeny, species delimitation and biogeography of Iberian valvatiform springsnails (Caenogastropoda: Hydrobiidae), with the description of a new genus. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zly093] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Valvatiform gastropods of the family Hydrobiidae are frequently found in European spring-fed systems. Their simplified and sometimes convergent morphological structures and restricted geographical ranges make the description and identification of valvatiform species challenging. In the Iberian Peninsula, to date, 20 valvatiform species have been described morphologically. To test morphological species delimitations and to evaluate the role of physical geography on their evolutionary history, we analysed two mitochondrial (COI and 16S rRNA) and two nuclear (28S rRNA and 18S rRNA) gene fragments of 16 valvatiform species from the Iberian Peninsula. Molecular species delimitation methods consistently inferred 11 of the nominal species. Our phylogenetic analyses recovered the species Islamia azarum as an independent lineage, distantly related to other genera, which we place in the new genus Deganta. Furthermore, Iberian valvatiform hydrobiids do not form a monophyletic subunit, but they are included in two distinct clades of Hydrobiidae. Divergence times indicate that speciation in these clades is likely to have coincided with the formation of major Iberian mountain ranges and river basins. Similarities of geographical subdivision and divergent times between this assemblage and the non-valvatiform genus Corrosella provide strong evidence for the role of the Iberian geographical barriers in shaping the biogeography of these springsnails.
Collapse
Affiliation(s)
- Diana Delicado
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, Madrid, Spain
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Beatriz Arconada
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, Madrid, Spain
| | - Amanda Aguado
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, Madrid, Spain
| | - Marian A Ramos
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, Madrid, Spain
| |
Collapse
|