1
|
Begam K, Cohen L, Goobes G, Dunietz BD. Solvent Dependent Nuclear Magnetic Resonance Molecular Parameters Based on a Polarization Consistent Screened Range Separated Hybrid Density Functional Theory Framework. J Chem Theory Comput 2022; 18:5259-5266. [PMID: 35929782 DOI: 10.1021/acs.jctc.2c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear magnetic resonance (NMR) properties of solvated molecules are significantly affected by the solvent. We, therefore, employ a polarization consistent framework that efficiently addresses the solvent polarizing environment effects. Toward this goal a dielectric screened range separated hybrid (SRSH) functional is invoked with a polarizable continuum model (PCM) to properly represent the orbital gap in the condensed phase. We build on the success of range separated hybrid (RSH) functionals to address the erroneous tendency of traditional density functional theory (DFT) to collapse the orbital gap. Recently, the impact of RSH that properly opens up the orbital gap in gas-phase calculations on NMR properties has been assessed. Here, we report the use of SRSH-PCM that produces properly solute orbital gaps in calculating isotropic nuclear magnetic shielding and chemical shift parameters of molecular systems in the condensed phase. We show that in contrast to simpler DFT-PCM approaches, SRSH-PCM successfully follows expected dielectric constant trends.
Collapse
Affiliation(s)
- Khadiza Begam
- Department of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Lilian Cohen
- Department of Chemistry and Institute for Nanotechnology and Advanced Materials Bar Ilan University, Ramat Gan 5290002, Israel
| | - Gil Goobes
- Department of Chemistry and Institute for Nanotechnology and Advanced Materials Bar Ilan University, Ramat Gan 5290002, Israel
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
2
|
Shang M, Lu K, Guan W, Cao S, Ren M, Zhou C. 2',3'-Cyclic GMP-AMP Dinucleotides for STING-Mediated Immune Modulation: Principles, Immunotherapeutic Potential, and Synthesis. ChemMedChem 2022; 17:e202100671. [PMID: 34807508 DOI: 10.1002/cmdc.202100671] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/09/2022]
Abstract
The cGAS-STING pathway discovered ten years ago is an important component of the innate immune system. Activation of cGAS-STING triggers downstream signalling, such as TBK1-IRF3, NF-κB and autophagy, which in turn leads to antipathogen responses, durable antitumour immunity or autoimmune diseases. 2',3'-Cyclic GMP-AMP dinucleotides (2',3'-cGAMP), the key second messengers produced by cGAS, play a pivotal role in cGAS-STING signalling by binding and activating STING. Thus, 2',3'-cGAMP has immunotherapeutic potential, which in turn has stimulated research on the design and synthesis of 2',3'-cGAMP analogues for clinical applications over the past ten years. This review presents the discovery, metabolism, and function of 2',3'-cGAMP in the cGAS-STING innate immune signalling axis. The enzymatic and chemical syntheses of 2',3'-cGAMP analogues as STING-targeting therapeutics are also summarized.
Collapse
Affiliation(s)
- Mengdi Shang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kuan Lu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenli Guan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shujie Cao
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Mengtian Ren
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Chemical evolution of cyclic dinucleotides: Perspective of the analogs and their preparation. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Gutten O, Jurečka P, Aliakbar Tehrani Z, Buděšínský M, Řezáč J, Rulíšek L. Conformational energies and equilibria of cyclic dinucleotides in vacuo and in solution: computational chemistry vs. NMR experiments. Phys Chem Chem Phys 2021; 23:7280-7294. [PMID: 33876088 DOI: 10.1039/d0cp05993e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Performance of computational methods in modelling cyclic dinucleotides - an important and challenging class of compounds - has been evaluated by two different benchmarks: (1) gas-phase conformational energies and (2) qualitative agreement with NMR observations of the orientation of the χ-dihedral angle in solvent. In gas-phase benchmarks, where CCSD(T) and DLPNO-CCSD(T) methods have been used as the reference, most of the (dispersion corrected) density functional approximations are accurate enough to justify prioritizing computational cost and compatibility with other modelling options as the criterion of choice. NMR experiments of 3'3'-c-di-AMP, 3'3'-c-GAMP, and 3'3'-c-di-GMP show the overall prevalence of the anti-conformation of purine bases, but some population of syn-conformations is observed for guanines. Implicit solvation models combined with quantum-chemical methods struggle to reproduce this behaviour, probably due to a lack of dynamics and explicitly modelled solvent, leading to structures that are too compact. Molecular dynamics simulations overrepresent the syn-conformation of guanine due to the overestimation of an intramolecular hydrogen bond. Our combination of experimental and computational benchmarks provides "error bars" for modelling cyclic dinucleotides in solvent, where such information is generally difficult to obtain, and should help gauge the interpretability of studies dealing with binding of cyclic dinucleotides to important pharmaceutical targets. At the same time, the presented analysis calls for improvement in both implicit solvation models and force-field parameters.
Collapse
Affiliation(s)
- Ondrej Gutten
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Praha 6, Czech Republic.
| | | | | | | | | | | |
Collapse
|
5
|
Wang Z, Zhao C, Wang C, Zhang H, Ma D, Zhang Q, Wen X, Li L, Xi Z. Synthesis and biological evaluation of all possible inosine-mixed cyclic dinucleotides that activate different hSTING variants. Bioorg Med Chem 2020; 29:115899. [PMID: 33285409 DOI: 10.1016/j.bmc.2020.115899] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/01/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023]
Abstract
Cyclic dinucleotides (CDNs) could activate stimulator of interferon genes (STING) protein to produce type I interferon and other pro-inflammation cytokines in mammalian cells. To explore new types of potentially efficient STING activators targeting all five major hSTING variants (WT, R232H, HAQ, AQ and R293Q), we here reported the synthesis of a total of 19 inosine-containing CDNs based on the combinations of hypoxanthine with four natural bases (A, G, C and U) and three phosphodiester linkage backbones (3'-3', 2'-3', 2'-2'). The IFN-β induction results showed that all of the 2'-3' and 2'-2' CDNs linked by inosine and purine nucleosides favored the stacking interaction with Y167 and R238 residues of hSTING protein, and several CDNs constructed by hypoxanthine and pyrimidine like c[I(2',5')U(2',5')] could also activate all five hSTING variants. The molecular dynamic simulation and the isothermal titration calorimetric (ITC) assay further demonstrated the potential of cAIMP isomers with 2'-5' phosphate to form the hydrogen binding with R232 and R238 residues of hSTING in an entropically driven manner compared to cGAMP isomers. It would be promising to exploit novel inosine-mixed CDNs as activators of hSTING variants in immune therapy.
Collapse
Affiliation(s)
- Zhenghua Wang
- State Key Laboratory of Elemento-organic Chemistry, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Cancan Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Chuanlin Wang
- State Key Laboratory of Elemento-organic Chemistry, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hang Zhang
- State Key Laboratory of Elemento-organic Chemistry, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dejun Ma
- State Key Laboratory of Elemento-organic Chemistry, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qiangzhe Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Xin Wen
- State Key Laboratory of Elemento-organic Chemistry, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Luyuan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China.
| | - Zhen Xi
- State Key Laboratory of Elemento-organic Chemistry, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China; National Pesticide Engineering Research Centre (Tianjin), China.
| |
Collapse
|
6
|
Kushwaha GS, Patra A, Bhavesh NS. Structural Analysis of (p)ppGpp Reveals Its Versatile Binding Pattern for Diverse Types of Target Proteins. Front Microbiol 2020; 11:575041. [PMID: 33224117 PMCID: PMC7674647 DOI: 10.3389/fmicb.2020.575041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/06/2020] [Indexed: 11/25/2022] Open
Abstract
(p)ppGpp, highly phosphorylated guanosine, are global regulatory nucleotides that modulate several biochemical events in bacterial physiology ranging from core central dogma to various metabolic pathways. Conventionally, (p)ppGpp collectively refers to two nucleotides, ppGpp, and pppGpp in the literature. Initially, (p)ppGpp has been discovered as a transcription regulatory molecule as it binds to RNA polymerase and regulates transcriptional gene regulation. During the past decade, several other target proteins of (p)ppGpp have been discovered and as of now, more than 30 proteins have been reported to be regulated by the binding of these two signaling nucleotides. The regulation of diverse biochemical activities by (p)ppGpp requires fine-tuned molecular interactions with various classes of proteins so that it can moderate varied functions. Here we report a structural dynamics of (p)ppGpp in the unbound state using well-defined computational tools and its interactions with target proteins to understand the differential regulation by (p)ppGpp at the molecular level. We carried out replica exchange molecular dynamics simulation studies to enhance sampling of conformations during (p)ppGpp simulation. The detailed comparative analysis of torsion angle conformation of ribose sugar of unbound (p)ppGpp and bound states of (p)ppGpp was carried out. The structural dynamics shows that two linear phosphate chains provide plasticity to (p)ppGpp nucleotides for the binding to diverse proteins. Moreover, the intermolecular interactions between (p)ppGpp and target proteins were characterized through various physicochemical parameters including, hydrogen bonds, van der Waal’s interactions, aromatic stacking, and side chains of interacting residues of proteins. Surprisingly, we observed that interactions of (p)ppGpp to target protein have a consensus binding pattern for a particular functional class of enzymes. For example, the binding of (p)ppGpp to RNA polymerase is significantly different from the binding of (p)ppGpp to the proteins involved in the ribosome biogenesis pathway. Whereas, (p)ppGpp binding to enzymes involved in nucleotide metabolism facilitates the functional regulation through oligomerization. Analysis of these datasets revealed that guanine base-specific contacts are key determinants to discriminate functional class of protein. Altogether, our studies provide significant information to understand the differential interaction pattern of (p)ppGpp to its target and this information may be useful to design antibacterial compounds based on (p)ppGpp analogs.
Collapse
Affiliation(s)
- Gajraj Singh Kushwaha
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.,KIIT Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT) (Deemed to be University), Bhubaneswar, India
| | - Anupam Patra
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
7
|
Qi Q, Lv S, Hao M, Dong X, Gu Y, Wu P, Zhang W, Chen Y, Wang C. An Efficient Cyclic Di-AMP Based Artificial Metalloribozyme for Enantioselective Diels-Alder Reactions. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qianqian Qi
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; 620 West Chang'an Avenue 710119 Xi'an China
| | - Shuting Lv
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; 620 West Chang'an Avenue 710119 Xi'an China
| | - Min Hao
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; 620 West Chang'an Avenue 710119 Xi'an China
| | - Xingchen Dong
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; 620 West Chang'an Avenue 710119 Xi'an China
| | - Youkun Gu
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; 620 West Chang'an Avenue 710119 Xi'an China
| | - Peizhe Wu
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; 620 West Chang'an Avenue 710119 Xi'an China
| | - Wenyue Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; 620 West Chang'an Avenue 710119 Xi'an China
| | - Yashao Chen
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; 620 West Chang'an Avenue 710119 Xi'an China
| | - Changhao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; 620 West Chang'an Avenue 710119 Xi'an China
| |
Collapse
|
8
|
Wang ZH, Zhao CC, Zhang QZ, Wang CL, Zhang H, Ma DJ, Wang DW, Wen X, Li LY, Xi Z. Design, synthesis and systematic evaluation of all possible cyclic dinucleotides (CDNs) that activate human stimulator of interferon genes (STING) variants. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9662-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Wang C, Hao M, Qi Q, Dang J, Dong X, Lv S, Xiong L, Gao H, Jia G, Chen Y, Hartig JS, Li C. Highly Efficient Cyclic Dinucleotide Based Artificial Metalloribozymes for Enantioselective Friedel–Crafts Reactions in Water. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Changhao Wang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Min Hao
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Qianqian Qi
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Jingshuang Dang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Xingchen Dong
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Shuting Lv
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Ling Xiong
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Huanhuan Gao
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Guoqing Jia
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Yashao Chen
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Jörg S. Hartig
- Department of ChemistryKonstanz Research School Chemical Biology (KoRS-CB)University of Konstanz 78457 Konstanz Germany
| | - Can Li
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
10
|
Wang C, Hao M, Qi Q, Dang J, Dong X, Lv S, Xiong L, Gao H, Jia G, Chen Y, Hartig JS, Li C. Highly Efficient Cyclic Dinucleotide Based Artificial Metalloribozymes for Enantioselective Friedel-Crafts Reactions in Water. Angew Chem Int Ed Engl 2020; 59:3444-3449. [PMID: 31825550 DOI: 10.1002/anie.201912962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/25/2019] [Indexed: 01/01/2023]
Abstract
The diverse secondary structures of nucleic acids are emerging as attractive chiral scaffolds to construct artificial metalloenzymes (ArMs) for enantioselective catalysis. DNA-based ArMs containing duplex and G-quadruplex scaffolds have been widely investigated, yet RNA-based ArMs are scarce. Here we report that a cyclic dinucleotide of c-di-AMP and Cu2+ ions assemble into an artificial metalloribozyme (c-di-AMP⋅Cu2+ ) that enables catalysis of enantioselective Friedel-Crafts reactions in aqueous media with high reactivity and excellent enantioselectivity of up to 97 % ee. The assembly of c-di-AMP⋅Cu2+ gives rise to a 20-fold rate acceleration compared to Cu2+ ions. Based on various biophysical techniques and density function theory (DFT) calculations, a fine coordination structure of c-di-AMP⋅Cu2+ metalloribozyme is suggested in which two c-di-AMP form a dimer scaffold and the Cu2+ ion is located in the center of an adenine-adenine plane through binding to two N7 nitrogen atoms and one phosphate oxygen atom.
Collapse
Affiliation(s)
- Changhao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Min Hao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Qianqian Qi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jingshuang Dang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xingchen Dong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shuting Lv
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ling Xiong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Huanhuan Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Guoqing Jia
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yashao Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jörg S Hartig
- Department of Chemistry, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457, Konstanz, Germany
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
11
|
Winnerdy FR, Das P, Heddi B, Phan AT. Solution Structures of a G-Quadruplex Bound to Linear- and Cyclic-Dinucleotides. J Am Chem Soc 2019; 141:18038-18047. [PMID: 31661272 DOI: 10.1021/jacs.9b05642] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cyclic dinucleotides have emerged as important secondary messengers and cell signaling molecules that regulate several cell responses. A guanine-deficit G-quadruplex structure formation by a sequence containing (4n - 1) guanines, n denoting the number of G-tetrad layers, was previously reported. Here, a (4n - 1) G-quadruplex structure is shown to be capable of binding guanine-containing dinucleotides in micromolar affinity. The guanine base of the dinucleotides interacts with a vacant G-triad, forming four additional Hoogsteen hydrogen bonds to complete a G-tetrad. Solution structures of two complexes, both comprised of a (4n - 1) G-quadruplex structure, one bound to a linear dinucleotide (d(AG)) and the other to a cyclic dinucleotide (cGAMP), are solved using NMR spectroscopy. The latter suggests sufficiently strong interaction between the guanine base of the dinucleotide and the vacant G-triad, which acts as an anchor point of binding. The binding interfaces from the two solution structures provide useful information for specific ligand design. The results also infer that other guanine-containing metabolites of a similar size have the capability of binding G-quadruplexes, potentially affecting the expression of the metabolites and functionality of the bound G-quadruplexes.
Collapse
Affiliation(s)
- Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Poulomi Das
- School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Brahim Heddi
- School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore.,Laboratoire de Biologie et de Pharmacologie Appliquée , CNRS UMR 8113 , Ecole Normale Supérieure Paris-Saclay , Cachan 94235 , France
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore.,NTU Institute of Structural Biology , Nanyang Technological University , Singapore 636921 , Singapore
| |
Collapse
|